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Abstract— Autonomous active sensing presents the need for
control of sensor motion in both position and orientation. This
paper presents a method of planning continuous search tra-
jectories over the Euclidean motion group SE(2). The method
allows one to calculate an optimal search trajectory with respect
to a distribution representing probable information gain over
the search space. The ergodicity of a trajectory with respect to
the information distribution is used to formulate an objective
function for a projection-based optimal control strategy. Results
from previous work on ergodic trajectory optimization are
extended to consider trajectories and information densities
defined on SE(2).

I. INTRODUCTION

We consider the problem of efficient planning for active
exploration. For both biological and robotic systems, exhaus-
tive exploration of the entire search space is impractical, as
there is the tradeoff between coverage and energy or time
expenditure. This tradeoff cannot be ignored for realistic
applications. Additionally, complete coverage in terms of
both sensor position and orientation may not be possible for
a physical, dynamically constrained mobile sensor system.
We therefore develop a method of generating continuous, dy-
namically constrained search strategies which take advantage
of probabilistic knowledge of the most information-dense
regions of the search space. In previous work, we developed a
method for trajectory planning with respect to probabilistic
search tasks [1]. In this paper, we extend the approach to
develop a method of generating optimal control strategies
for planar exploration tasks in which sensor position and
orientation are considered on the motion group SE(2).

Autonomous active search and exploration relies on devel-
opment of efficient control strategies for sensor movement.
For a wide range of applications, either the available sensing
modality or the sensing task make control of both sensor
position and orientation important. Successful docking for
underwater autonomous vehicles, for example, involves lo-
calizing the dock and determining the orientation of the dock
[2]. Sensing modalities typically used for docking in low-
light conditions, such as electromagnetic homing or optical
sensing, are typically short range and orientation dependent;
the ship must be close to the dock and correctly oriented to
acquire the information needed to dock successfully [3].

As a biological example, the primary sensing modality
used by the South American weakly electric fish is similarly

This material is based upon work supported by the National Institute of
Health under grant T32 HD007418 and the National Science Foundation
under Grant IIS 1018167.

The authors are with the Department of Mechanical Engineering, North-
western University, Evanston, IL, 60208 USA (e-mail:
LaurenMiller@U.Northwestern.edu, T-Murphey@Northwestern.Edu

position and orientation dependent [4]. The fish must be
sufficiently close and oriented correctly with respect to an
object’s geometry in order to successfully localize or identify
it by sensing disturbances in a self-generated electric field.
Both position and orientation dependence also factor into
vision-based imaging and object recognition, in which some
views provide better information than others [5], [6], as well
as tactile feature recognition, which is often sensitive to the
orientation of a feature with respect to the sensor motion [7].
These examples are a subset of exploration tasks for which
the choice of control strategy should directly consider both
position and orientation.

The approach we use involves iteratively solving for
a continuous trajectory which maximizes the amount of
information gained over a finite time horizon. We assume
that there is a previously defined measure representing the
distribution of information for a given search task over the
search space, a bounded domain on SE(2). There are many
potential choices of an information measure. We leave the
determination of the optimal measure for future work, and
consider a general probabilistic representation of information
at all points in the search domain, given prior knowledge or
integration of previous measurements. It should be noted that
the formulation of the control algorithm we present is general
to the choice of information measure over the search space.

The trajectory planning method presented here will ul-
timately be integrated into an iterative closed loop search
algorithm, e.g. 1) plan exploration trajectory based on prob-
abilistic distribution of information over the search space,
2) execute trajectory and collect data, and 3) process data,
update probabilistic representation of information, repeat.

A. Related Work

The question we consider is how to most efficiently
use knowledge of the distribution of information to plan
and execute the movement necessary for search. A broad
category of search methods employ greedy algorithms, where
the optimal sensor movement is incrementally calculated,
choosing a motion which locally maximizes a search metric
[8]–[10]. These methods, while computationally simple, do
not take advantage of sensor dynamics or the global shape
of the information density.

Control for active exploration is also closely related to
the field of simultaneous localization and mapping (SLAM).
While a large percentage of SLAM research is focused on
environmental or dynamic uncertainty, a subset also consid-
ers action uncertainty [11]–[13]. The technique we present in
this paper is related to the idea of action uncertainty, where



control action is chosen to maximize a measure of predicted
information gain. Most closely related to our approach are
active SLAM algorithms which optimize information gain
over a sequence of control actions, as opposed to a single
action, typically with respect to both information gain and
the cost of exploration [11], [13]–[15]. Optimization in these
contexts is typically combinatorial. Therefore only short time
horizons are considered, and the set of control choices is
limited [11], [13], [16]. Expanding the search and control
action space over SE(2) would increase these effects. We
therefore present an alternate method of computing a trajec-
tory which balances control effort and optimal information
gain in the continuous space of control. This approach
does not require discretization of the search domain or
control actions, and the optimization does not suffer from
combinatorial complexity. The method generalizes to SE(2),
and the optimized trajectories are guaranteed to be feasible.

B. Ergodicity

Our approach involves using projection-based trajectory
optimization to solve for the continuous optimal control
with respect a PDF representing information density over
the search space. In order to formulate the objective for the
optimization, we use the concept of ergodicity to develop a
metric relating the finite-time horizon sensor trajectory to the
spatial information density.

A trajectory that evolves in time is ergodic with respect to
a spatial PDF if the percentage of time spent by the trajectory
in any subset of the spatial domain is equal to the measure of
that subset. This is demonstrated in Fig. 1 for the distribution
φ(x), depicted as level sets over the domain X , and the
trajectory x(t) from t = 0 to t = T . The trajectory x(t) is
ergodic with respect to the PDF φ(x) if the percentage of
time spent in any subset N of X from t = 0 to t = T is
equal to the measure of N . The equations in Fig. 1 represent
the condition for ergodicity for the subsets [17].

The use of ergodicity in the context of search or explo-
ration is quite intuitive; given that there are regions of the
search space which are more likely to contain important
information, an efficient search trajectory should spend more
time in those areas. We use the distance from ergodicity
of the time-averaged trajectory from the spatial information
PDF as a metric to be minimized.

Note that we are not maximizing the information over the
trajectory, which would result in behavior along the lines
of travel directly to the state where the PDF is maximized
and remaining there (i.e. maximizing the integral of the PDF
along the trajectory). This is certainly an alternative approach
to solving this type of problem, however we argue that using
an ergodic metric, which results in a trajectory that does not
maximize the information acquired but rather distributes the
information according to the PDF, allows effective search
strategies in scenarios where an information-maximizing
approach is likely to fail, e.g. when the variance of the
PDF is high or when the PDF is multimodal. Our recent
experimental work utilizing ergodic control in R1 during
one dimensional search demonstrates performance increase
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Fig. 1: Conceptual illustration of what it means for the trajectory x(t) to
be ergodic with respect to the distribution φ(x), represented by the level
sets shown. Equations representing the condition for ergodicity for the two
subsets, N1 and N2 are shown [17].

compared to locally information maximizing strategies, and
similar comparison in R2 and SE(2) is planned [18].

The use of an ergodic metric for determining optimal
control strategies was originally presented in [19] for a
nonuniform coverage problem. A greedy approach is used
to solve for a control input at each point in time that
maximizes the decrease of the metric at each timestep. A
similar method is employed in [20], using a Mix Norm
for coverage on Riemannian manifolds. Our previous work
involved using the same metric used in [19] in the context
of continuous trajectory optimization for a search problem in
R2. In the current work, we extend this method to calculate
optimal control solutions on the motion group SE(2), which
is critical in applications where the sensing task or sensor
dynamics are both position and orientation dependent.

C. Trajectory Optimization

Optimal control using trajectory optimization methods has
several benefits for the type of sensing task we are interested
in. While the idea of optimal coverage with respect to a
distribution has received a lot of attention in the distributed
robotics community for static coverage [21], [22], we are
interested in optimization over a continuous trajectory, i.e.
dynamic coverage for a single robot. Trajectory optimization
simultaneously outputs both the optimal path, with respect
to a given objective function, and the control necessary to
achieve this path; path planning and control generation are si-
multaneous. The dynamics are therefore explicitly considered
as a constraint in the trajectory optimization, and a weighted
term on the control effort is included. Thus, the optimal paths
generated are feasible and the method can be adapted to
simultaneously minimize control effort and optimize search
performance, critical for an active sensing system.

II. PROBLEM DEFINITION

We consider planar dynamic systems which are orientation
dependent. In particular, systems where the configuration



space is curves in the special Euclidean group SE(2).
We call the position component of the configuration q =
(X,Y, θ), and elements of the group g = (Rθ,x) ∈ SE(2),
where x ∈ R2 = (X,Y ) represents translation and Rθ ∈
SO(2) is a rotation parameterized by the angle θ.

Calculation of the optimal control solution is done over a
fixed time horizon [0, T ]. It is assumed that there is a prob-
ability distribution function Φ(q) representing information
density over the bounded exploration domain X ⊂ SE(2).

III. METRIC FOR ERGODICITY

The ergodicity of a trajectory q(t) with respect to a distri-
bution Φ(q) can be quantified by the sum of a weighted norm
on the difference between the Fourier coefficients, φm,n,p, of
the spatial distribution and those of the distribution represent-
ing the time-averaged trajectory cm,n,p where m,n, p are the
indices of the coefficients along each dimension.

The ergodic metric will be defined as E(q(t)), as follows:

E(q(t)) =

M,N,P∑
m,n,p=0

Λm,n,p||cm,n,p(q(t))− φm,n,p||2 (1)

where M,N,P are the numbers of basis functions used
in each dimension and Λm,n,p is a weighting factor which
places larger weight of on lower frequency information [19].

Note that the notion of ergodicity here does not strictly
necessitate the use of Fourier basis functions in constructing
an objective function. The basis functions provide a compu-
tationally tractable way of quantifying the spatial statistics
of a trajectory, allowing us to ensure the distribution of time
spent exploring the search domain is proportional to the PDF.

A. Fourier Coefficients on SE(2)

Fourier coefficients are essentially the Fourier transform
f̂(s) of a function f(q) sampled on a grid in the frequency
domain. We use the definition of the Fourier transform on
SE(2) defined in [23].

The transform involves defining a unitary representation
of SE(2). This unitary operator can then be expressed in
the standard Fourier orthonormal basis functions using an
inner product. We will write the transform, parameterized
by m,n, p, as

f̂(m,n, p) =

∫
SE(2)

f(g)U(g−1,m, n, p)d(g),

where

U(g−1(r, φ, θ),m, n, p) = in−m expi[mφ+(n−m)θ] Jm−n(pr).

d(g) is the volume element on SE(2) and Jm−n is the m−
nth order Bessel function [23]. Note that this representation
is in terms of elements of SE(2) in polar coordinates, i.e.

g(r, φ, θ) =

cos θ − sin θ r cosφ
sin θ cos θ r sinφ

0 0 1.


Since q can be redefined in terms of polar coordinates or
(2) can be modified for Cartesian coordinates, we write the
transform moving forward in terms of q for simplicity.

The coefficients for a function f(q) can therefore be
calculated by evaluating the transform at (m,n, p). We will
use Fm,n,p(q), as the notation for basis functions of index
(m,n, p), i.e.

Fm,n,p(q) = U(g−1(q),m, n, p).

In general, use of a higher number of basis functions
will result in a more accurate representation of the PDF or
time-averaged trajectory, however the computational cost of
calculating the coefficients also increases.

The Fourier coefficients for a spatial distribution Φ(q) can
be computed using an inner product of the function Φ(q) and
the set of orthonormal basis functions on SE(2) as follows

φm.n.p =

∫
X

Φ(q)Fm,n,p(q)dq. (2)

The Fourier coefficients of the basis functions along a tra-
jectory q(t), averaged over time, are calculated by evaluating
the basis along q(t),

cm,n,p(q(t)) =
1

T

∫ T

0

Fm,n,p(q(t))dt. (3)

Previous implementations of the ergodic metric [1], [19]
use basis functions that return real results. The standard
transform over SE(2) may return imaginary results, so some
care must be taken when choosing the norm used in Eq. (1),
as the norm must be differentiable. We will use the standard
Euclidean norm for complex numbers on the difference of
the coefficients, i.e.√

Re(cm,n,p − µm,n,p)2 + Im(cm,n,p − µm,n,p)2

where Re(·) and Im(·) designate the real and imaginary
parts of a number, respectively.

IV. TRAJECTORY OPTIMIZATION

The problem of generating a continuous-time optimally
ergodic trajectory is formulated using the projection-based
trajectory optimization method presented in [24]. The opti-
mization is initialized with an initial trajectory and termi-
nation criteria. Using the projection-based method allows us
to define a local quadratic model of the ergodic objective
function at each iteration of the optimization, which can
then be used to calculate the steepest descent direction for
use in iterative first-order optimization methods, using linear
quadratic techniques.

The following sections define the equations for the system
dynamics and the ergodic objective function which will
be minimized, as well as a summary of projection-based
trajectory optimization.

A. Dynamics

The dynamics of a general nonlinear dynamic sensor can
be expressed as follows:

q̇(t) = f(q(t), u(t)) q(t0) = q0,

where q(t) ∈ SE(2) represents the state and u(t) ∈ Rm the
control inputs with dimension m.



B. Objective Function

An objective function J(·) is defined in terms of the metric
for ergodicity in Eq. (1) plus the integrated magnitude of the
control, which takes as an argument the curves q(t), u(t),

J(q(t), u(t)) =γE(q(t)) +

∫ T

0

1

2
u(τ)R(τ)u(τ)dτ. (4)

In this equation, γ ∈ R and R(τ) ∈ Rm×m are arbitrary
design parameters which affect the relative importance of
minimizing ergodicity vs. control effort in the optimization
problem.

C. Descent Direction

In order to use first-order iterative optimization methods
such as steepest descent, a descent direction must be calcu-
lated at every iteration.

Lemma 1: The steepest descent direction ζi(t) =
(zi(t), vi(t)) for the objective function at iteration i is the
solution to the linear quadratic problem

arg min
ζi

∫ T

0

aT zi + bT vi + 1
2zi(τ)TQn(τ)zi(τ)

+ 1
2vi(τ)Rn(τ)vi(τ)dτ,

subject to żi(t) = A(t)zi(t)+B(t)vi(t), zi(0) = z0 where
A(t) = D1f(qi(t), ui(t)) and B(t) = D2f(qi(t), ui(t)). In
this problem

aT (τ) =γ

M,N,P∑
m,n,p=0

Λm,n,p

[
2

(∫ T

0

1

T
Fm,n,p(qi(t))dσ−

φm,n,p

)
◦ 1

T
DFm,n,p(qi(τ))

]
, and

bT (τ) =R(τ)ui(τ).

Proof: Projection-based optimization involves project-
ing each update onto the feasible trajectory manifold, there-
fore the objective function at every iteration can be written
as a function of a feasible trajectory ηi(t) = (qi(t), ui(t))
[24],

J(ηi(t)) =

γ

M,N,P∑
m,n,p

Λm,n,p

∣∣∣∣∣
∣∣∣∣∣ 1

T

∫ T

0

Fm,n,p(qi(τ))dτ − φm,n,p

∣∣∣∣∣
∣∣∣∣∣
2

+

∫ T

0

1
2ui(τ)R(τ)ui(τ). (5)

The steepest descent direction ζi(t) is obtained by mini-
mizing a quadratic model of the form

ζi(t) = arg min
ζi(t)∈TηiT

DJ(ηi(t)) ◦ ζi(t) + 1
2 〈ζi(t), ζi(t)〉 , (6)

where TηiT is the tangent space of the trajectory manifold.
The first term in Eq. (6) is obtained by taking the

directional derivative of (5) in the direction ζ(t). Simple

manipulation of the derivative results in:

DJ(ηi(t)) ◦ ζi(t) =∫ T

0

γ

M,N,P∑
m,n,p

Λm,n,p

[
2

(∫ T

0

1

T
Fm,n,p(qi(σ))dσ − φm,n,p

)

◦ 1

T
DFm,n,p(qi(τ))

]
◦ zi(τ) +R(τ)ui(τ) ◦ vi(τ)dτ.

a(t) and b(t) are defined as the quantities operating on zi(t)
and vi(t), respectively.

Following [24], the second term in Eq. (5) is defined as

1
2 〈ζi, ζi〉 =

∫ T

0

[
1
2zi(τ)TQn(τ)zi(τ) + 1

2vi(τ)Rn(τ)vi(τ)
]
dτ

Where Qn is a arbitrary positive semi-definite matrix and Rn
is positive definite. Using the identity for Qn and Rn results
in steepest descent. The constraint is obtained by linearizing
the dynamics, as the descent direction is constrained to be
in the tangent space of the trajectory manifold.

Given the directional derivative, we can now define the
first order optimality condition as consequence of Lemma 1.

Theorem 1: The necessary condition for optimality of an
ergodic trajectory on SE(2) is |DJ(ηi(t)) ◦ ζi(t)| = 0

Note that while the optimization problem in Eq. (4) is
not written in the form of a Bolza problem, by using the
projection operator defined in [24] and constraining calcu-
lations at each iteration of the optimization to the tangent
space of the constraint, the quadratic model for Eq. (4)
is a Bolza problem. The solution is therefore found using
standard Riccati differential equations [24], [25]. For a more
detailed treatment of the formulation of an ergodic trajectory
optimization, see [1].

V. SIMULATED EXAMPLE

We present a simulated example of the ergodic trajectory
optimization using a kinematic model for the sensor dynam-
ics. The state for this model is q(t) = (X(t), X(t), θ(t))
where X(t) and Y (t) are Cartesian coordinates and θ(t) is a
heading angle, measured from the X axis in the global frame.
The control is u(t) = (v(t), ω(t)) where v(t) is forward
velocity and ω(t) is the angular velocity. The dynamics of
the model are

q̇(t) =

cos (θ(t)) 0
sin (θ(t)) 0

0 1

 · u(t). (7)

We define the distribution of information over the search
domain as a PDF on SE(2). The algorithm was run for two
different information PDFs, for a time horizon of 10 seconds.
We define the information PDF as a unimodal Gaussian on
SE(2). PDF A is a Gaussian is defined on SE(2) with mean
X,Y, θ = 0 and covariance 0.1I where I is the 3×3 identity
matrix. PDF B is centered around X,Y = 0, θ = −π2 with
the same covariance. Plots of both PDFs are shown in Fig.
4 over X,Y , for two different values of θ.

Figure 3 shows optimized trajectories for both PDFs given
a particular initialization (plotted in gray). This initialization



Fig. 2: The trajectories along X , Y , and θ are plotted as functions of time for the trajectories shown in Fig 3. The initial trajectory is plotted in gray, the
optimized trajectory for PDF A in orange, and the optimized trajectory for PDF B in purple.

Fig. 3: Plot of the optimized trajectories for PDF A (orange) and PDF B
(purple), and initial trajectory for both optimizations (gray). The PDF is
depicted as contour lines over X,Y at the mean value of θ.

is similar to a uniform sweep-type search strategy. The
optimized trajectory for PDF A, where the Gaussian is
centered at X,Y, θ = 0, is plotted in orange. The optimized
trajectory for PDF B, where the Gaussian is centered at
X,Y = 0, θ = −π2 , is plotted in purple. Solid lines show
the path taken by all three trajectories, dots are plotted at
time intervals of 0.1 seconds. The trajectories along X(t),
Y (t), and θ(t) are plotted separately as functions of time
for the initial trajectory, optimized trajectory for PDF A and
optimized trajectory for PDF B in Fig. 2.

The initial trajectory in Fig. 3 passes very close to the
origin, but does not do so at an optimal orientation as
defined by either PDF. During the optimized paths for both
PDFs, however, the sensor moves through the origin at or
close to the optimal angles. The optimization method, while
not sensitive to local minima in the information PDF, is
subject to local minima with respect to the initial trajectories
(plotted in gray) used. We also ran optimizations for the same
two PDFs from a different initialization of the trajectory.
The trajectories along X(t), Y (t), and θ(t) and path for a
different initialization of the optimization are shown in Figs
5 and 6, respectively.

For both information PDFs, and both initial conditions,
in addition to position and orientation tending towards the

spatial mean of the distributions, the distribution of time
also changes. For both optimized trajectories, the markers
are more dense near the mean of the distributions.

Looking at the optimal trajectories, it is also possible to
see the effect of simultaneously optimizing over the position
and orientation, considering the dynamic constraints. In par-
ticular, all trajectories spend more time near the peaks of the
Gaussians in the X,Y space than at the optimal orientation.
Since the orientation is not independent of the motion of
the sensor, there is a balance between the need to move
forward, moving towards the origin where the probability of
information is highest, and orienting the sensor correctly. All
four trajectories however spend a relatively large percentage
of time at the correct orientation for the time in which they
are close to the origin. Note, however, that in this example
the maximum value of this normalized PDF is 0.25, so we
expect that an unconstrained ergodic trajectory would spend
only 25% of the total search time horizon in the state where
the PDF is maximal.

VI. DISCUSSION

With application to sensing modalities or tasks that rely
on both orientation and position of a mobile sensor with
respect to some target, we present a method of automatically
calculating trajectories on SE(2) for sensing tasks. We use
a metric on the ergodicity of a sensor trajectory with respect
to a distribution representing prior probabilistic information
density over the search domain. Infinite-dimensional trajec-
tory optimization is used, minimizing the deviation from

(a) PDF A: θ = −π/2 (b) PDF A: θ = 0

(c) PDF B: θ = −π/2 (d) PDF B: θ = 0

Fig. 4: PDF A, with mean X,Y, θ = 0, and PDF B, with mean X,Y =
0, θ = −pi/2, are shown as plots over X,Y for θ = (−π/2, 0).



Fig. 5: The trajectories along X , Y , and θ are plotted as functions of time for the trajectories shown in Fig 6.

Fig. 6: Plot of the optimized trajectories for PDF A (orange) and PDF B
(purple) and alternate initial trajectory for both optimizations (gray).

ergodicity, to generate trajectories which optimally search
a given information density.

The method is applied to a Gaussian distribution on
SE(2), yielding feasible resulting trajectories that match
the input distribution well in both position and orientation.
These examples present an early implementation of a control
strategy planning step for a closed loop search algorithm.
Further work will involve code optimization in order to
efficiently calculate the integrations necessary for calculation
of a larger number of coefficients over SE(2), and allow
extension to SE(3). Additionally, experimental implementa-
tion for closed-loop search using a robotic electrosense robot,
which has already been implemented along one dimension,
independently of orientation [18] is planned for future work.
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