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Abstract— This paper extends the projected Hamilton’s prin-
ciple (PHP) formulation of nonsmooth mechanics to include
systems with nonconservative forcing according to a projected
Lagrange-d’Alembert principle (PLdAP). As seen with the
conservative PHP, the PLdAP treats mechanical systems on
the whole of their configuration space, captures nonsmooth
behaviors using a projection mapping onto the system’s feasible
space, and offers additional smoothness (relative to classical
approaches) in the space of solution curves. Examining im-
plications of the PLdAP for fully actuated optimal control
problems, we prove that to identify optimal feasible trajectories
it is sufficient to find unconstrained trajectories according to an
alternate set of optimality conditions. Focusing on the control
problem expressed in the unconstrained space, we approximate
optimal solutions with a path planning method that dynamically
adds and removes impacts during optimization. The method is
demonstrated in determining an optimal policy for a forced
particle subject to a nonlinear unilateral constraint.

I. INTRODUCTION

Control generation for nonsmooth mechanical systems
is typically a difficult task, with challenges arising from
systems’ sensitivity to impact events. Impacts result from
the presence and enforcement of unilateral constraints, and
admit a variety of modeling approaches [1]. Two dominant
modeling techniques are the use of measure differential
inclusions (MDI) that capture impacts with complementarity
conditions, and the use of hybrid system (HS) models that
capture impacts in terms of guard conditions and reset
maps. Use of each MDI and HS models has yielded a
wealth of controls results in terms of both stability [2], [3]
and optimality [4], [5]. One property these models lack,
however, is their automated generation according to physical
principles.

In contrast to MDI and HS are variational methods for
impact mechanics [6], which generate impact models ac-
cording to principles of least action. In previous works [7],
[8], we have advanced a specific variational model that uses
a differentiable, nonsmooth projection mapping to describe
impact behaviors. As discussed in [7], [8], the dynamical
system that governs “unprojected” trajectories is a switched
system without resets [9] exhibiting solutions that are at
minimum C1. Thus, the projected variational representation
enables one to use methods typically reserved for switched
systems, or even smooth systems, to address nonsmooth
problems. Upon generating solutions for the unprojected
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system, recovering feasible, nonsmooth solutions requires
only an application of the projection mapping.

In this work, we extend the projected variational ap-
proach to incorporate nonconservative forcing according to
a Projected Lagrange-d’Alembert Principle (PLdAP). This
extension enables the formulation and analysis of optimal
control problems under the PLdAP model. Similar to a
previous result for conservative systems, we will show that
first order optimality remains unaffected upon application of
the projection mapping. That is, optimality of an unprojected
trajectory is sufficient to imply optimality of its projected
counterpart. This is a critical result, implying that we can
treat optimization tasks in the unprojected space and, once
solved, project them back to the feasible space while main-
taining optimality. Motivated by this property, we outline the
generation of optimal controls for unprojected trajectories
using a finite dimensional path planning technique. There
is no parallel to this technique for classical nonsmooth
system models, and thus our results demonstrate the use
of the PLdAP to solve nonsmooth problems with methods
otherwise unavailable.

The structure of this paper is as follows. In Section II, we
will review existing variational principles for forced nons-
mooth mechanics [10], [11] and the conservative projected
variational mechanics of [7], [8]. The section builds to the
construction of the PLdAP, for which we specify conditions
that yield forced solutions equivalent to the classical nons-
mooth case. Section III discusses a standard optimal control
problem, and the invariance of optimality through application
of the projection mapping. The following Section IV outlines
one particular strategy for solving the problem posed in
Section III, generating optimal control designs through the
use of path planning techniques. As an example of this
approach, we include optimization results for a particle
impacting a nonlinear collision surface. Finally, we present
conclusions and future directions in Section V.

II. VARIATIONAL FORCED NONSMOOTH
MECHANICS

In this section, we review the derivation of conservative
and forced nonsmooth Lagrangian mechanics from varia-
tional principles. Initially, we present the classical approach
seen in [6], [10], [11], which utilizes a nonsmooth path space.
Next, we review the projected Hamilton’s principle [7], [8]
for conservative nonsmooth mechanics, and its extension to
the PLdAP for the inclusion of external forces. Finally, using
a comparison of respective dynamics, we provide conditions
for equivalence between the varied approaches.



A. Nonsmooth Mechanics via a Nonsmooth Path Space

To begin our discussion of nonsmooth mechanics, we es-
tablish the following system model (the same used in [7], [8])
for the remainder of the paper. Consider a mechanical system
with configuration space Q (assumed to be an n-dimensional
smooth manifold with local coordinates q) and a Lagrangian
L : T Q→ R. We will treat this system in the presence of a
one-dimensional, holonomic, unilateral constraint defined by
a smooth, analytic function φu : Q→R such that the feasible
space of the system is C = {q ∈ Q |φu(q) ≥ 0}. We assume
C is a submanifold with boundary in Q. Furthermore, we
assume that 0 is a regular point of φu such that the boundary
of C, ∂C = φ−1

u (0), is a submanifold of codimension 1 in
Q. Physically, ∂C is the set of contact configurations. When
present, nonconservative external forces are represented with
an exterior force field F : R→ T ∗Q.

In the conservative case, the approach seen in [6], [10]
specifies that variational impact mechanics follow from uti-
lizing a space-time formulation of Hamilton’s principle. In
addition to including reparameterizations of time in the space
of admissible variations, the principle also makes use of
nonsmooth paths in the admissible space C. Let us limit our
discussion to nonsmooth paths containing a single collision,
though this generalizes easily to the case of multiple isolated
collisions. For our purposes, we need only know that paths
q(t) ∈C in this space are piecewise C2 and they contain one
singularity at time ti at which q(ti) ∈ ∂C. With these details
regarding the path space in mind, the actual statement of
Hamilton’s principle can remain as commonly seen

δ

∫ TF

0
L
(
q(t), q̇(t)

)
dt = 0, (1)

for some final time TF ∈ R+. This principle yields the
following relevant1 stationarity conditions when considering
admissible variations in the path space. For all t ∈ [0,TF ]\ti,
the system obeys

DELL(q, q̇, q̈) = 0, (2)

where DELL : Q̈ ⊂ T (T Q) → T ∗Q is the Euler-Lagrange
derivative. Here Q̈ denotes the set of second derivatives
d2q/dt2 of paths q(t), and DELL is expressible coordinate-
wise as

(DELL)i =
∂L
∂qi −

d
dt

(
∂L
∂ q̇i

)
.

Further, at t = ti the system must satisfy[
∂L
∂ q̇

q̇−L
]t+i

t−i

= 0, (3)

and [
−∂L

∂ q̇

]t+i

t−i

·δq(ti) = 0, (4)

1We have excluded one stationarity condition of the principle, a redundant
energy evolution equation. For full details see the aforementioned references.

for all variations δq(ti) ∈ T ∂C. Qualitatively, equation (2)
indicates the system obeys the standard Euler-Lagrange
equations everywhere away from the impact time, ti. At the
time of impact, equations (3) and (4) imply conservation of
energy and conservation of momentum tangent to the impact
surface, respectively. Unsurprisingly, these are the standard
conditions describing an elastic impact.

As seen in [10], [11], extending the aforementioned prin-
ciple to include nonconservative forces and their associ-
ated virtual work is straightforward. Maintaining use of the
same path space, a space-time formulation of the Lagrange-
d’Alembert principle is stated with the common expression

δ

∫ TF

0
L
(
q(t), q̇(t)

)
dt +

∫ TF

0
F(t) ·δq(t)dt = 0. (5)

As for the relevant stationarity conditions following from this
principle, the external forcing plays no role in the impact
equations (3) and (4) which remain unchanged. On the
continuous time intervals away from impact, (2) is replaced
by

∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= F. (6)

These are the standard forced Euler-Lagrange equations.

B. Nonsmooth Mechanics via Projections

In response to the complexity of the path space used in
the aforementioned principles, [7], [8] pursue an alternative
variational approach. The principle therein uses a path space
of curves on the whole of Q, a feature held in common with
the traditional Hamilton’s principle for smooth dynamics.
Nonsmoothness, rather than built directly into the path space,
is captured with a projection mapping P : Q→C. Specifically,
using a projection P in the set of mappings

P = {P : Q→C | P(P(z)) = P(z), P is C0 on Q,

P|C(z) = z, P|Q\C is a C2-diffeomorphism},

[7], [8] examine the projected Hamilton’s principle

δ

∫ TF

0
L
(
P(z(t)),P′(z(t))ż(t)

)
dt = 0, (7)

where z(t) ∈ Q and P′ signifies the Jacobian of P. Notice
that trajectories z(t) are defined on the whole of Q and
potentially enter the infeasible space Q\C, making them
nonphysical. However, in the analysis to come we shall
relate them with physically meaningful trajectories q(t) ∈C
using their image through projection map P. The stationarity
conditions resulting from variations δ z(t) in (7) are

∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= 0, (8)

for all t ∈ [0,TF ]\ti, and[
−∂L

∂ q̇
P′
]t+i

t−i

= 0, (9)



where all instances of ∂L
∂q and ∂L

∂ q̇ are evaluated at
(P(z(t)),P′(z(t))ż(t)) and all instances of P′ are evaluated
at z(t).

The inclusion of nonconservative forces in the projected
principle is no more complicated than the classical case.
Using the path space of curves z(t) ∈ Q, the projected
Lagrange-d’Alembert principle is stated

0 =δ

∫ TF

0
L
(
P(z(t)),P′(z(t))ż(t)

)
dt

+
∫ TF

0
F(t) ·P′(z(t))δ z(t)dt = 0.

(10)

Regarding the relevant stationarity conditions from this prin-
ciple, in the same manner as in the classical approach the
external forcing plays no role in the impact. In this case
this means equation (9) still holds. On the continuous time
intervals away from impact, (8) is replaced by

∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= F, (11)

where again all instances of ∂L
∂q and ∂L

∂ q̇ are evaluated at
(P(z(t)),P′(z(t))ż(t)).

C. Establishing Equivalence between Classical and Pro-
jected Principles

Having constructed the projected principles (7) and (10),
we now concern ourselves with conditions by which they
adopt a physical meaning. That is to say, we present con-
ditions on P by which solutions z(t) of (7) or (10) will
yield feasible q(t) = P(z(t)) that are stationary solutions of,
respectively, (1) or (5). As mentioned in [7], [8], connecting
the classical and projected principles in this way transforms
the system dynamics from those of a hybrid system with
resets (involving jump discontinuities in velocities q̇(t)) to
those of a switched system without resets (with trajectories
that are at least C1). The higher degree of smoothness
in solutions that is gained under this transformation is a
property we will leverage during optimal control design.

For the conservative case, we offer the same conditions
determined in [8]. Therein, the class of systems is restricted
to simple mechanical systems with a Euclidean configuration
space. That is, unless stated otherwise we assume Q = Rn

and

L(q, q̇) =
1
2

q̇T M(q)q̇−V (q), (12)

where M(q) is a symmetric positive definite mass matrix
and V (q) is a potential function. Under these assumptions
we have the following sufficient conditions for equivalence
in classical and projected principles.

Lemma 1: (From [8]) Given the following:
• a Lagrangian of the form (12) on Q = Rn,
• a projection P ∈ P that provides the boundary Ja-

cobian2 P′(z(t+i )) = R(z(ti)). The desired linear map3

2This is the Jacobian of P with limits evaluated on the “Q\C side” of the
boundary ∂C. Given the definition of P , both P and its Jacobian are the
identity on the “C side” of the boundary.

3If it’s not apparent from its structure, R defines the unique solution
q̇(t+i ) = R(q(ti))q̇(t−i ) to elastic impacts for the Lagrangian (12).

R : ∂C→ GLn(R) is defined as

R(z(ti)) = I−2
M−1 (φ ′u)

T
φ ′u

φ ′uM−1 (φ ′u)
T , ∀z(ti) ∈ ∂C, (13)

where all instances of φ ′u and M−1 are evaluated at the
argument z(ti) and I signifies the n×n identity matrix,

solutions z(t) of (8) and (9) necessarily yield that q(t) =
P(z(t)) satisfies (2), (3), and (4).

Proof: The equivalence between the continuous dynam-
ics, i.e. z(t) satisfying (8) and q(t) = P(z(t)) satisfying (2),
is trivial. Given the structure of L and the Jacobian in (13),
one can directly compute that z(t) solving (9) is sufficient to
provide

P′(z(t+i )) ·δ zi = δ zi, (14)

for all δ zi ∈ Tzi∂C, and[
−L
(
P(z),P′(z)ż

)]t+i

t−i
= 0. (15)

Thus q(t) = P(z(t)) is a solution to (3), and (4).
Given that nonconservative forcing does not influence

the impact equations, we immediately obtain the following
corollary.

Corollary 2: Given the conditions of Lemma 1, solutions
z(t) of (11) and (9) necessarily yield that q(t) = P(z(t))
satisfies (6), (3), and (4).

Proof: The equivalence between the continuous dynam-
ics, i.e. z(t) satisfying (11) and q(t) = P(z(t)) satisfying (6),
is trivial. As the forcing F does not enter into the impact
equations, the arguments regarding (3), (4) and (9) remain
the same.

III. NONSMOOTH OPTIMAL CONTROL
TASKS

In this section we examine the task of optimal control
design for the mechanical systems of Section II. Specifically,
we define optimization problems in which we seek feasible
configuration/control force pairs that minimize a given cost
function. For a given subset of these control design problems,
those pertaining to fully actuated mechanical systems, we
determine equivalence between the optimality conditions of
the classical and projected systems. This ensures that optimal
controllers determined for the PLdAP equations of motion
(11) and (9) remain optimal after projecting solutions back
to a feasible path.

A. Optimal Control Problems for Nonsmooth Mechanical
Systems

As in [12], [11], we consider the optimal control of
mechanical systems as defined in terms of a cost functional J
that is the integral of a performance metric K : T Q×T ∗Q→
R. That is, for a given trajectory q(t) and control force F(t)
the cost J is calculated as

J(q,F) =
∫ TF

0
K(q(t), q̇(t),F(t))dt. (16)



Consider the task of moving a nonsmooth mechanical sys-
tem between prescribed initial and final conditions during
which a prescribed number of collisions, Nc, will occur.
Undoubtedly, the inclusion of a priori knowledge of Nc in
the task statement is undesirable and restrictive. We use it
in this section to avoid considerations of mode insertion and
deletion [13] when determining optimality conditions. Spec-
ifying the number of discrete events is an assumption used
similarly in other works concerning hybrid optimality [14],
[15]. Following the analyses in this section, we will abandon
use of a given Nc when solving optimization problems in the
next section. In terms of the classical equations of motion
in subsection II-A, minimization of this cost during the
aforementioned task requires solving the following classical
system optimal control problem (CSOCP):

Minimize J(q,F),

s.t. Dynamics (6) a.e. in [0,TF ]

Impact eqs (4), (3) at ti ∈ (0,1), i ∈ (1, . . . ,Nc),

(q(0), q̇(0),q(TF), q̇(TF)) = (qI , q̇I ,qF , q̇F),

where the phases (qI , q̇I), (qF , q̇F) signify the given initial
and final conditions, respectively.

In the same manner as for the action functionals of Section
II, given a projection P ∈P we can use the optimization
problem above to induce an optimization problem in terms
of trajectories z(t) on the full configuration space Q by
substituting q(t) = P(z(t)) into the cost functional J. To
represent this substitution, let us establish the notation

K̃(z, ż,F) = K(P(z),P′(z)ż,F),

J̃(z,F) = J(P(z),F),

=
∫ TF

0
K̃(z(t), ż(t),F(t))dt.

Using these terms, the projected system optimal control
problem (PSOCP) is stated:

Minimize J̃(z,F),

s.t. Dynamics (11) a.e. in [0,TF ],

Impact eqs (9) at ti ∈ (0,TF), i ∈ (1, . . . ,Nc),

(z(0), ż(0),z(TF), ż(TF)) = (zI , żI ,zF , żF),

where we have used (zI , żI), (zF , żF) to signify induced
boundary conditions. In terms of P and (qI , q̇I), the in-
duced initial conditions can be represented as (zI , żI) =
(P−1(qI),(P′(zI))

−1 q̇I). These expressions hold similarly for
the final conditions, simply with the index F substituted for
I. Given that these induced conditions involve the inverses
of P and P′, and these maps are known to be only local and
not global isomorphisms, the values of (zI , żI ,zF , żF) are not
unique. This is an issue of practicality that we revisit when
solving optimization problems in the next section.

Having defined an optimization problem for the unpro-
jected coordinates z(t), we would like to ensure that its
extremals remain optimal through the projection P. That
is, we wish to show that minimizers (z,F) of the PSOCP
yield (P(z),F) as solutions of the original problem on

C ⊂ Q. While future work will surely involve deriving this
sufficiency in terms of general hybrid minimum principles
[16], herein we demonstrate this only for a subset of the gen-
eral case. That is, moving forward in comparing optimality
conditions, we work under the assumption of full actuation
as described in the next subsection.

B. Fully Actuated Optimal Control Problems

Though it hasn’t been apparent in our notation thus far,
many control problems involve additional constraints on
the control force F . These constraints can be a result of
saturation, resulting in limits on the produceable magnitude
of F , or underactuation, resulting in limits on the distribution
of T ∗Q reachable by F . In the following analysis we assume
that neither of these limitations is present, and the absence
of the latter has a significant impact on the structure of the
specified optimization problems.

For a fully actuated system, at any configuration q the con-
trol authority exists to provide any desired F ∈ T ∗Q. For the
control of smooth mechanical systems, this means that every
C2 path is realizable. Further, a smooth system’s dynamics as
defined by the Euler-Lagrange derivative represent a map to
the control force F required to produce a given q. Formally,
given a C2 path q(t) the control force F that produces that
path is precisely

F(q, q̇, q̈) = DELL(q, q̇, q̈). (17)

Notice we’ve written F explicitly as a function of q and its
derivatives. Regarding optimal control design, this mapping
allows one to embed the constraining equations of motion
into the cost function and transform the problem into one
strictly in terms of the path q(t). By examining the respective
spaces of solution curves for our classical and projected
nonsmooth mechanical systems, we can perform this same
transformation on their optimal control problems when sys-
tems are fully actuated.

For the classical forced nonsmooth mechanics of the La-
grangian (12), let us consider solutions with a single impact.
Similar to the results of subsection (II-A), when desired
one can easily generalize the following to multiple isolated
impacts. For given boundary conditions and control forces
F(t) that are C0 for all t ∈ [0,TF ]\ti (control discontinuities
are allowed at the impact time, but nowhere else), solutions
q(t) of the dynamics (6), (3), and (4) must belong to the
space of curves

Qsol = {q(t) : [0,TF ]→C |(q(0), q̇(0)) = (qI , q̇I),

(q(1), q̇(1)) = (qF , q̇F), q(t) is C0, piecewise C2,

∃ one singularity in q(t) at ti, q(ti) ∈ ∂C,

q̇(t+i ) = R(q(ti))q̇(t−i )}.

Given a trajectory q ∈Qsol, one can reconstruct F(t) for all
t ∈ [0,TF ]\ti using (17). Keeping this in mind, we can restate
the fully actuated CSOCP as

Minimize J(q,F(q, q̇, q̈)),

s.t. q ∈Qsol.



This problem is expressed entirely in terms of the trajectory
q, and all of the original CSOCP’s constraints are built into
the single requirement q ∈ Qsol. We exclude the proof for
brevity, but under our given assumptions on C and L one can
show Qsol is a smooth manifold4. This allows us to derive
first order optimality conditions for the CSOCP simply by
examining variations δq∈ TqQsol of solutions q∈Qsol. This
yields the following lemma, in which we make regular use
of slot derivative notation (DiK signifying the derivative of
K w.r.t. its ith argument):

Lemma 3: Given a fully actuated nonsmooth mechanical
system with a Lagrangian of the form (12) on Q =Rn, a pair
(q,F) is a stationary point of J iff
• F = F(q, q̇, q̈) as in (17),
• away from impact, q satisfies

0 =D1K +D3K ·D1F− d
dt

(D2K +D3K ·D2F)

+
d2

dt2 (D3K ·D3F) ,

(18)

for all t ∈ [0,TF ]\ti,
• at the impact time ti, q satisfies

0 = −D3K ·D3F ·R(q)+D3K ·D3F, (19)

0 =

[(
D2K +D3K ·D2F− d

dt
(D3K ·D3F)

)
· q̇−K

]t+i

t−i

+D3K ·D3F ·R′(q) · (q̇(t−i ), q̇(t−i )), (20)

0 =

([
−D2K−D3K ·D2F +

d
dt

(D3K ·D3F)

]t+i

t−i

−D3K ·D3F ·R′(q) · q̇(t−i )

)
·δq(ti), (21)

for all variations δq(ti) ∈ T ∂C.
Proof: These stationarity conditions follow directly

from analysis of dJ · δq = 0 for all variations δq ∈ TqQsol.
The cost J, as a result of using F from (17), is a function
of (q, q̇, q̈) and one must integrate by parts twice. At the
impact time, substitutions are made in accordance with the
relation δq(ti) = −q̇(ti)δ ti for all δq(ti) /∈ T ∂C, as well
as δ q̇(t+i ) = R′(q(ti)) · (q̇(t−i ),δq(ti))+R(q(ti))δ q̇(t−i ). The
conditions (19), (20), and (21) are respectively associated
with the variations δ q̇(t−i ) ∈ T (T Q), δ ti ∈ R, and δq(ti) ∈
T ∂C.

Now consider the projection-based approach for the La-
grangian (12). Given a C2 path z(t), the control force F̃
associated with that path is

F̃(z, ż, z̈) = DELL
(

P(z),
d
dt

P(z),
d2

dt2 P(z)
)
. (22)

We’ve introduced the tilde notation to distinguish this map-
ping from (17). If we maintain the prior assumption on F (it
is C0 for all t 6= ti) then solutions z(t) of the dynamics (11)

4Qsol is actually a submanifold of the path space used for the extended
Hamilton’s principle in [10].

and (9) must belong to the space of curves

Zsol = {z(t) : [0,TF ]→ Q |(z(0), ż(0)) = (zI , żI),

(z(TF), ż(TF)) = (zF , żF), z(t) is C1, piecewise C2,

∃ one singularity in ż(t) at ti, z(ti) ∈ ∂C}.

Similar to the CSOCP, we can now recast the PSOCP as

Minimize J̃(z, F̃(z, ż, z̈)),

s.t. z ∈Zsol.

Just as Qsol, Zsol is a smooth manifold allowng us to
derive optimality conditions using variations δ z ∈ TzZsol of
solutions z ∈Zsol. The following lemma results:

Lemma 4: Given a fully actuated nonsmooth mechanical
system with a Lagrangian of the form (12) on Q =Rn and a
projection P∈P as in Lemma 1, a pair (z,F) is a stationary
point of J̃ iff
• F = F̃(z, ż, z̈) as in (22),
• away from impact, z satisfies

0 =D1K̃ +D3K̃ ·D1F̃− d
dt

(
D2K̃ +D3K̃ ·D2F̃

)
+

d2

dt2

(
D3K̃ ·D3F̃

)
,

(23)

for all t ∈ [0,TF ]\ti,
• at the impact time ti, z satisfies

0 =
[
−D3K̃ ·D3F̃

]t+i
t−i
, (24)

0 =

[(
D2K̃ +D3K̃ ·D2F̃− d

dt

(
D3K̃ ·D3F̃

))
· ż− K̃

]t+i

t−i

,

(25)

0 =

[
−D2K̃−D3K̃ ·D2F̃ +

d
dt

(
D3K̃ ·D3F̃

)]t+i

t−i

.δ z(ti),

(26)

for all variations δ z(ti) ∈ T ∂C.
Proof: These stationarity conditions follow directly

from analysis of dJ̃ · δ z = 0 for all variations δ z ∈ TzZsol.
The cost J̃, as a result of using F̃ from (22), is a function of
(z, ż, z̈) and one must integrate by parts twice. At the impact
time, a substitution is made in accordance with the relation
δ z(ti) =−ż(ti)δ ti for all δ z(ti) /∈ T ∂C. The conditions above
have a slightly simpler form than those of Lemma 3, primar-
ily due to the equality δ ż(t+i ) = δ ż(t−i ). The conditions (24),
(25), and (26) are respectively associated with the variations
δ ż(ti) ∈ T (T Q), δ ti ∈ R, and δ z(ti) ∈ T ∂C.

C. Equivalence between Classical and Projected Optimality
Conditions

Having established the structure of the first order optimal-
ity conditions for the CSOCP and PSOCP respectively, we
are able to provide the following theorem relating optimal
solutions.

Theorem 5: Given a fully actuated nonsmooth mechanical
system with a Lagrangian of the form (12) on Q = Rn, a
projection P∈P as in Lemma 1, and a stationary pair (z,F)



satisfying the optimality conditions of Lemma 4, the pair
(P(z),F) satisfies the optimality conditions of Lemma 3.

Proof: Much of the correspondence between optimality
conditions comes directly from the substitution P(z) = q.
Making this substitution in equations (22) and (23) yields
precisely equations (17) and (18). For the remaining optimal-
ity conditions associated with the impact time and configura-
tion, we make use of substitutions of the form P′(z(t−i )) = I,
P′(z(t+i )) = R(z(ti)), and q̇(t−i ) = ż(t−i ) = ż(t+i ), as well as

D2F̃ =D2DELL ·P′(z)+2D3DELL ·P′′(z) · ż,
D3F̃ =D3DELL ·P′(z),

where the arguments of DELL are implied as
(P(z), d

dt P(z), d2

dt2 P(z)). Appropriately inserting these
into (24), (25), and (26) yields the conditions (19), (20),
and (21).
Qualitatively, Theorem 5 provides that if one has determined
a stationary trajectory of the PSOCP, one can immediately
produce an associated stationary trajectory of the CSOCP by
using the projection P∈P . Notice, the Theorem is in terms
of sufficient conditions, but makes no claims of necessity as
P is not a global isomorphism.

IV. APPROXIMATE SOLUTIONS VIA PATH
PLANNING

In this section, we discuss a practical approach for approx-
imating solutions to the PSOCP. We argue that the additional
degree of smoothness provided by the space of curves Zsol,
relative to Qsol, facilitates a path planning approach to
optimization. While this approach does not guarantee that
solutions exactly satisfy the previous section’s optimality
conditions, it is simple to implement and can dynamically
add and remove impacts during the optimization. We demon-
strate the method on a forced planar particle system subject
to a nonlinear unilateral constraint.

A. Path Planning on a Subset of Z

Recall that, in the absence of any unilateral constraints,
the solution space for smooth Lagrangian systems is simply
the space of C2 curves on Q subject to specified boundary
conditions. Let us denote this space C 2(Q). Returning to the
definition of Zsol, notice its qualitative similarities to C 2(Q).
It is only that Zsol permits isolated jump discontinuities in
z̈ at impact events that differentiates the two5, and in fact
C 2(Q) ⊂Zsol. This comes in stark contrast to the classical
approach, for which C 2(Q) 6⊂Qsol as well as C 2(C) 6⊂Qsol.

Essentially, Zsol is a far more permissive space than
Qsol, a property we can leverage in the search for optimal
trajectories. Specifically, we propose the use of path planning
with trajectory splines as seen in other works on optimal
control [17], [18]. This entails constraining the search for
optimal trajectories to the space of cubic splines in Q, a finite
dimensional subspace of Zsol. As this approach does not

5Though we do not pursue it here, there are conditions on L and C
by which one can show there will be no jumps in z̈. For such systems
Zsol = C 2(Q).

search the whole of Zsol, solutions will likely be suboptimal
relative to the conditions (23), (24), (25), and (26). However,
the restriction to the space of splines transforms the PSOCP
from an optimization over an infinite dimensional trajectory
space to a finite dimensional problem solvable with direct
methods.

This choice, to transform the PSOCP using a restricted
trajectory space, clearly does not represent the state of the art
in optimal control. Our method does demonstrate, however,
fundamental advantages of the projected system approach.
There is no parallel to our search over splines for the
classical system. As mentioned, there is no useable subspace
of smooth curves in Qsol that can capture impact behavior.
Given this difference, the primary purpose of our finite
dimensional path planning is to demonstrate the recovery
of smooth system optimal control methods for nonsmooth
problems.

That said, in generality we specify the finite dimensional,
constrained PSOCP as follows. Consider a cubic spline
zcs(α) : [0,TF ] → Q where α is finite dimensional set of
parameters necessary to fully specify zcs on its domain
[0,TF ]. We optimize cost as it depends on α according to

Minimize Ĵ(α),

s.t. zcs(α) ∈Zsol,

where Ĵ(α) = J̃(zcs, F̃(zcs, żcs, z̈cs)). In our example to come
there is no closed analytical expression for the integral that
defines J̃. For such cases we recommend computing values
of J̃, and thus Ĵ as well, using numerical quadrature.

B. Relaxation of Final Boundary Conditions

Returning to the issue of unprojected boundary conditions,
recall that for a given (qI , q̇I) (resp. (qF , q̇F)) there exists
more than one associated (zI , żI) (resp. (zF , żF)). Specifically,
presuming qI /∈ ∂C there is the trivial (zI , żI)= (qI , q̇I) as well
as a second option6 (zI , żI) ∈ T (Q\C). Notice that if (zI , żI)
and (zF , żF) lie on the same side of ∂C only an even number
of crossings, and thus impact events, is possible. Similarly,
if (zI , żI) and (zF , żF) lie on opposite sides of ∂C an odd
number of impact events must result. Essentially, given a
pair of options for each (zI , żI) and (zF , żF), one’s choices
restrict parity in the number of resulting impacts.

As we seek to perform optimizations with no prior spec-
ifications regarding the number of impacts, we adopt the
following conventions. We always use the trivial initial con-
ditions (zI , żI) = (qI , q̇I). Further, we do not choose specific
values of the final conditions (zF , żF), but rather incorporate
their influence by appending a final cost to Ĵ. That is, we
use

Ĵ(α) = J̃(zcs, F̃(zcs, żcs, z̈cs))+KF‖eF‖2

where KF ∈ R+, ‖ · ‖ is the standard Euclidean norm, and
eF ∈ R2n is the final error

eF =
(
qF −P(zcs(TF)), q̇F −P′(zcs(TF))żcs(TF)

)
.

6This second case necessarily exists by the invertibility of P|Q\C , which
is guaranteed in the definition of P ∈P .
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Fig. 1. Optimization results for the forced particle with nonlinear constraint surface. (Left) Using the BFGS optimization method results in monotonic
cost reduction over 305 iterations. (Center) The interaction of C2 trajectory splines and discontinuities in P′′ (the Hessian of the projection) yields a jump
in horizontal forces at the impact event. Vertical forces are appropriately near zero. (Right) The optimal unprojected z(t) yields the optimal and feasible
q(t) upon application of the projection P. An unforced trajectory with equivalent initial conditions is also provided for reference.

The above convention signifies a relaxation beyond the
requirements of Zsol (as final boundary conditions are not
exactly met), but with the benefit of no constraints of any
kind on the number of impacts returned by our optimization.

Under relaxed final boundary conditions, we perform
optimizations over a space of s-stage cubic splines in Q.
We denote these splines zcs(z0, ż0, z̈0,ζ ) : [0,TF ]→ Q where
ζ ∈Rn∗s contains values of constant jerk that zcs exhibits on
s evenly spaced intervals of [0,TF ]. That is,

zcs(t) = {z(t) : [0,TF ]→ Q |(z(0), ż(0), z̈(0)) = (z0, ż0, z̈0),

z(t) is C2, piecewise C∞, ∀k ∈ {0, . . . ,s−1},
∀t ∈ [(k/s)TF ,((k+1)/s)TF ],

...z i(t) = ζ(k∗n+i)}.

The option remains for users, if desired, to parameterize
splines in terms of control points rather than constant jerk as
we have. In the definition above we enforce (z0, ż0) = (qI , q̇I)
so that only z̈0 and ζ remain as optimization variables. That
is, α = (z̈0,ζ ).

C. Example: Forced Particle with Nonlinear Unilateral Con-
straint

To demonstrate of our algorithm for the finite dimensional
PSOCP, we have generated locally optimal control inputs for
a planar particle mp impacting a nonlinear constraint surface.
This system is characterized by Q = R2 and

q =
[

x y
]T

,

M = mpI,
V (q) = gy,

φu = y− cosx.

To express this system in terms of the PLdAP and associated
dynamics, we use the global projection design of P ∈P
outlined in [8] (Sec. III B). We assume the particle is
fully actuated with F =

[
Fx Fy

]T . We seek approximate
solutions to the PSOCP when using the performance metric
K = ‖F‖2.

Approximate solutions were determined according to a
finite dimensional optimization as described in the previous
subsections IV-A and IV-B. We used system parameters

mp = 1 [kg], g = 10 [kg·m/s2], TF = 4 [s], and

qI =
[
−9π/2 21

]T [m],

qF =
[

11π/2 21
]T [m],

q̇I = q̇F =
[

0 0
]T [m/s].

Additionally we used s = 50 for the number of stages in our
path planning splines. Optimization was carried out using the
Bruno-Fletcher-Goldfarb-Shanno (BFGS) [19] algorithm for
unconstrained, nonlinear problems. Results, in of terms cost
reduction, optimal input forces, and optimal trajectories are
presented in Figure 1.

The observed convergence behavior (left plot), charac-
terized by monotonic decreases of irregular magnitude, is
not uncommon in nonsmooth optimization problems. For
future implementations, incorporating second-order methods
in place of BFGS might reduce the periods of relative small
reduction seen during iterations 20-90 and 120-305. Most
noticeable in the optimal control forces (center plot) is the
large artificial spike in horizontal force coincident with the
impact event. This results from the fact that the splines we
have used are C2 and there is a discontinuity in P′′ at impact.
Unless by chance the impact time was to coincide with the
end of one the spline’s stages, a jump in input force must
result. However, the optimization does find a trajectory for
which the applied vertical force is near zero. This leads to
optimal trajectories (right plot) in which the feasible q(t)
is characterized by a horizontally forced, free fall motion,
which is the expected solution for this problem.

For a closer examination of the optimization’s convergence
behavior, snapshots of iterative progress are provided in
Figure 2. Note that when initializing the optimization our
initial trajectory was simply the fixed point q(t) = qI for
all t ∈ [0,4]. From this starting guess, the Figure shows that
the optimization inserts an impact event in only 2 iterations.
Though we did not witness it in this particular example, we
emphasize that the path planning technique used can add and
remove impact events at will throughout the course of the
optimization. After an impact has been added, the majority
of the optimization (∼ 300 iterations) is spent repositioning
the impact location and smoothing the resulting q(t). Notice
that using the projection map designed in [8], it requires
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Fig. 2. Snapshots of the path planning optimization method as it converges after 305 iterations. After using a fixed point in space for an initial guess, the
method rapidly inserts an impact event after only 2 iterations (left, center). Remaining iterations are spent repositioning the impact location and smoothing
the overall trajectory (right).

an oscillatory motion in z(t) to obtain a parabolic shape
q(t). Tweaking projection designs to avoid this behavior may
reduce the number of iterations spent smoothing results.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The projected variational principle representation of non-
smooth mechanical systems permits nonconservative forcing
according to the PLdAP. We have identified sufficient con-
ditions by which solutions z(t) of the PLdAP are projected
to yield forced, feasible, nonsmooth trajectories q(t) on the
constrained space C. Further we have proven that, in fully
actuated cases, optimal trajectory-input pairs, (z, F̃), remain
optimal upon projection to the feasible space. Leveraging
additional smoothness of solution trajectories for the pro-
jected systems approach, we defined an optimal control
generation technique based on path planning with trajectory
splines. We have demonstrated the successful implementation
of this method on a nonsmooth forced planar particle system,
yielding approximate solutions to the PSOCP. This serves as
a first example of using projected variational principles to re-
claim smooth system control methods for use on nonsmooth
systems.

B. Future Works

In future explorations of the PHP and PLdAP formulations
of nonsmooth mechanics, we have a number of goals. We still
seek new projection designs, beyond the global projection of
[8], that may provide greater smoothness in solution trajec-
tories or handle compact configuration manifolds. We must
extend control analyses and algorithms to include underac-
tuation and feedback control. Additionally, the development
of the projection based approach for discrete time simulation
methods and stochastic system models still remains largely
open.
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[10] R. C. Fetecau, J. E. Marsden, M. Ortiz, and M. West, “Nonsmooth

lagrangian mechanics and variational collision integrators,” SIAM
Journal on Applied Dynamical Systems, vol. 2, pp. 381–416, 2003.

[11] D. N. Pekarek, “Variational methods for control and
design of bipedal robot models,” Ph.D. dissertation,
California Institute of Technology, 2010. [Online]. Available:
http://resolver.caltech.edu/CaltechTHESIS:05282010-094801935

[12] O. Junge, J. E. Marsden, and S. Ober-Blöbaum, “Discrete mechanics
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