
Robotic Puppets and the Engineering of
Autonomous Theater

Elizabeth Jochum?, Jarvis Schultz, Elliot Johnson, and T.D. Murphey

Northwestern University,
Evanston IL USA

Abstract. This paper outlines the design of software for embedded con-
trol of robotic marionettes using choreography. In traditional marionette
puppetry, the puppets often possess dynamics that are quite different
from the creatures they imitate. Puppeteers must therefore understand
and leverage the inherent dynamics of the puppets to create believable
and expressive characters. Because marionettes are actuated by strings,
the mechanical description of the marionettes either creates a multi-scale
or degenerate system—making simulation of the constrained dynamics
challenging. Moreover, marionettes have 40-50 degrees of freedom with
closed kinematic chains. Generating puppet choreography that is mimetic
(that is, recognizably human) results in a high dimensional nonlinear
optimal control problem that must be solved for each motion. In perfor-
mance, these motion primitives must be combined in a way that preserves
stability, resulting in an optimal timing control problem. Our software
accounts for the efficient computation of the 1) discrete-time dynamics
that preserve the constraints and other integrals of motion, 2) nonlinear
optimal control policies (including optimal control of LTV systems), and
3) optimal timing of choreography, all within a single framework. We
discuss our current results and the potential application of our findings
across disciplines, including the development of entertainment robots and
autonomous theater.

Keywords: Robotic Puppets, Control and Art

1 Puppets Manipulated By Machines Manipulated by
Engineers

Creating autonomous machines that have artistic or aesthetic functions has been
a subject of inquiry since antiquity. The merging of control theory with artistic
practice has shifted the approach of artists and engineers away from creating
systems that merely imitate artful or expressive gestures towards those in which
the actions or behaviors are directly related to the environment and the system

? This material is based upon work supported by the National Science Foundation un-
der award IIS-0917837. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

2 E. Jochum et al.

dynamics. Ideally, this research will contribute to a deeper understanding of the
relationship between art and the behavior of dynamical systems. However as the
experiments in this book demonstrate, it can be difficult to differentiate those
features which distinguish artistic function from utilitarian function. Rather than
precisely defining what makes a work of art artful —itself an elusive task that
has occupied art historians and aesthetic philosophers for centuries [1–3] —it
can be advantageous to use an established art form or practice as the basis for
criteria and evaluation of experiments. The aesthetic frameworks of established
art forms such as dance [4], musical composition [5], or puppetry [6] provide
external referents that enable researchers to measure the degree to which systems
are able to generate artistic behaviors or artifacts.

Out project uses marionette puppetry as a testbed for exploring the au-
tomated synthesis of control strategies for complex, highly-dynamic, underactu-
ated systems. Marionette puppetry has a unique approach to creating expressive,
mimetic behaviors that approximate human gestures and behaviors using a range
of abstracted motions that indicate —but do not replicate —recognizably hu-
man motions. In performance, puppets acquire a grace and agility not often seen
in animatronics, themselves automated systems that aim at mimicry but whose
movements are typically heavy, slow, and perfunctory. The goal of our project is
to emulate the control technique of human puppeteers and to develop automated
puppets while maintaining the natural dynamics of marionettes. Controls strate-
gies that preserve the marionette’s dynamics are important as puppets create
the illusion of life through the art of indication rather than precise mechanical
reproduction. We anticipate that our robotic marionette platform will allow for
a wider, more artistic range of automated motions for entertainment robots.

Artists and engineers have long experimented with developing efficient meth-
ods for simulating highly articulated rigid body systems [7–12]. However, these
efforts have typically focused on designing stable physical motions rather than
on control calculations. This paper focuses on the question of how to both sim-
ulate and control an arbitrarily complex rigid body system while maintaining
scalability and convergence of the resulting numerical routines. Recognizing the
potential of this research for entertainment, industrial, and medical applications,
we use a robotic marionette system (seen in Fig. 1) as an example of a complex
system that requires carefully embedded control that can handle many degrees
of freedom. String marionettes are interesting because they partly resist the pup-
peteers attempts to direct them: puppeteers are forced to compromise with the
dynamics of the underactuated puppet to create recognizable representations of
human motion. A control-based analysis of string puppetry prompts the ques-
tion of whether or not puppets can be programmed to perform autonomously—a
question that has been considered with great vigor by theater artists [13–16] and
is of increasing relevance given contemporary theatrical productions that com-
bine animatronic technology with marionette control systems, such as Global
Creatures’ How To Train Your Dragon (2012) and King Kong (2013).

This project is a collaboration with Georgia Tech, the Atlanta Center for
Puppetry Arts, and Walt Disney Imagineering/ Disney Research. Disney Imag-

Robot Puppets 3

(a) (b)

Fig. 1: The robotic marionette system in (a) is actuated by small wheeled robots
that run on the underside of a tarp. The goal is to use motion captured from the
dancers in (b) as reference data for the marionettes. Software must transform
the dancers’ motion into dynamically admissible motion for the marionettes and
combine these motions together using choreography.

ineering has played a central role in developing the hardware platform. While
the use of animatronics is widespread in film, museums, and theme-parks its
influence on live performance has been largely negligible. The absence of an-
imatronics from theater stages can be attributed to the tremendous technical
difficulties and safety risks posed by combining massive robots alongside human
performers. However the more likely explanation for their absence is that an-
imatronics lack the human-feeling and artistry found in the live performance
of direct-contact puppetry. When compared to marionettes, traditional anima-
tronics are heavy, slow, and expensive. Robotic marionettes promise to be both
more agile and less costly, and could potentially expand the possibilities for auto-
mated theatrical performances. For example Global Creatures 2013 production
of the stage musical King Kong combined traditional puppetry techniques with
automated marionette control to manipulate a six-meter tall silverback gorilla
alongside human performers. While the partially-automated performance sig-
naled a new paradigm for robotic puppets, the refined gestures and expressive
behaviors still relied heavily on real-time operation by human puppeteers [17]. In
this case, the reliance on human puppeteers indicates the tremendous technical

4 E. Jochum et al.

challenges of automating a process that, through training, happens intuitively
for humans.

Controlling marionettes is a very challenging technical problem: string mar-
ionettes have many degrees of freedom, have mechanical degeneracy due to the
strings, are very lowly damped, and are highly constrained. However, human
puppeteers have demonstrated a reliable ability for controlling string marionettes
and solving these high-dimensional motion planning problems—puppeteers con-
vincingly imitate human motion using marionettes—so we know the problems
are solvable.

Part of this project involved the authors working with professional puppeteers
to formally understand how they prepare for performance and what decisions
they make during performances. Working alongside puppeteers at the Center
for Puppetry Arts in Atlanta, Disney Research, and the Denver Puppet The-
ater provided an opportunity to discover, in practical terms, how puppeteers see
their jobs as a combination of algorithmic concerns (e.g., how does one organize
motion) and design concerns (e.g., how does one produce mechanical objects
that are easily manipulated to produce desired motions). Puppets are complex
mechanisms —controlling them involves constant trade-off between mechanical
capacity and sophistication of expression. Puppeteers emphasize three phases
of motion imitation —Imitate, Simplify, Exaggerate —that represent the need
to capture a motion, to then simplify it for reliable mechanical reproduction,
and then exaggerate it for performance. Puppeteers also make strategic deci-
sions about how to build a puppet that will be amenable to certain motions and
how to best coordinate the physical relationship between the puppeteer and the
performing object. Puppeteers coordinate the timing of a motion so they can
interact with other puppeteers, sometimes collaborating to control a single mar-
ionette or groups of puppets, ensuring that the marionettes remain animated
throughout the performance. Scripts of puppet plays describe the action using
four parameters: temporal duration, agent, space, and motion (i.e., when, who,
where, and what). These motions are grouped and executed according to counts
that specify when each motion begins and ends. During rehearsals and perfor-
mance, the puppeteer makes decisions about the use of force, dynamics, and
movement qualities that determine the expressive characteristics and the overall
visual effect, handling complex choreographic sequences and solving problems of
uncertainty, often before they arise. These are the processes that we set out to
understand.

Using a control-based analysis, we aim to understand how puppeteers man-
age complexity and uncertainty and apply these insights to autonomous theater
productions and optimization problems in other critical areas. Our current hy-
pothesis is that choreography plays a critical role in how puppeteers manage
complexity, and that the study of marionette choreography will further our un-
derstanding of other complex applications, such as embedded control of pros-
thetics (briefly discussed at the end of this article). Our goals are to synthesize
motion control for complex systems. To that end, choreography provides a way of
categorically identifying useful and recognizable motions (e.g., walking, running,

Robot Puppets 5

waving, reaching) that can be combined together in phrases. How one combines
and orders these motions determines the stability and smoothness of transitions
between motions.

This paper is organized as follows: Section 2 introduces marionette puppetry
and articulates the distinct technical challenges of generating recognizable and
artistic motions using marionettes. Section 3 describes typical analytical ap-
proaches in dynamic simulation and optimal control and the specific software
requirements these approaches create. Section 4 discusses which special consid-
erations should be taken into account when working in discrete time. Section 5
illustrates our software approach and briefly discusses examples of systems that
the software automatically optimizes successfully. Section 6 discusses the rele-
vant features of the current framework and the broader impacts for automated
puppetry and the engineering of autonomous theater.

2 Puppets: Aesthetic and Mechanical Considerations

From antiquity to the present, artists and engineers have sought to create me-
chanical figures that generate expressive and lifelike behaviors [18, 13]. Puppets
are part of this lineage, and are representatives par excellence of humanity’s in-
satiable thirst for bringing ordinary object to life through motion. As art and
technology scholar Chris Salter has observed, the histories of performing ma-
chines and robotic art have often involved a continual mingling between mimetic
aspects (that is, objects that are imitative of lifelike behavior in appearance) and
machinic aspects (electromechanical behavior that, though animate, is not an-
thropomorphic) rather than a disambiguation [19]. That is, human artists are
interested in designing machines that emulate aspects of human creativity. Be-
fore the advent of computing and electronics, the approach was to design objects
that appeared lifelike and imitated human actions, such as the 18th century hu-
manoid automata built by Jacques de Vaucanson and Henri-Louis and Pierre
Jaquet-Droz [20]. Puppets are the progenitors to these and other attempts to
create mechanical life, and are part of a lineage that extends to present-day
animatronics.

Puppets can take the shape of realistic or abstract figures, and are designed
for use in theatrical settings. A puppet is generally defined as a material ob-
ject that makes temporal use of sources of power that exist outside of itself,
and that are not its own attributes [13, 21]. Animatronics are puppets that are
electronically controlled through various actuators (electrical, hydraulic, pneu-
matic), however the absence of a human performer and repetitive or open-loop
performance means that they are not typically regarded in the same way that
human-powered puppets are. Setting aside for a moment the question of human
agency, we recognize that the main purpose of a puppet is movement: to estab-
lish a meaningful presence the puppet relies on motions to create a character or
presence that is both recognizable to the spectator and conveys a certain artistic
truth. The puppet’s power of expression is therefore not determined by how well
it precisely mimics human behavior, but rather by its ability to abstract human

6 E. Jochum et al.

motions and offer an artistic projection of those motions and behaviors. In other
words, the goal of puppetry motion is not to copy but to create. As Kingston et
al. have also observed, a puppets primary purpose is to communicate through
motion [6].

Puppeteers are extremely inventive, and have developed numerous methods
for controlling (often called “manipulating”) and constructing expressive, moving
objects. String marionettes are dynamically unique among puppets, and more
than other types of puppets have the potential to teach us about optimal control.
Unlike glove puppets or rod puppets which are controlled through direct, corpo-
real contact (hands-on, hands-in), string marionettes are operated from above by
a varying number of strings. For humanoid puppets, these strings are usually at-
tached to the puppet’s head, torso, shoulders, arms, and legs, and can be strung
to generate specific actions based on the specifications of the choreography. The
strings can be manipulated with a variety of controls—the most common is the
multi-stringed wooden control or “airplane” (crossbar) mechanism. This tech-
nique is used in Asian and European puppetry forms, and puppeteers can opt
to vary the string lengths and attachment points according to the needs of each
production or scene. The precision of the puppet’s motions is relative to the
control of the figures—the longer the strings, the weaker the impetus, which re-
sults in softer, less precise movements [13]. Puppeteers can control marionettes
at ground level working alongside the puppet and in full view of the audience,
or from a position high above the stage from a bridge and out of the audi-
ence’s sight lines. In either arrangement, the puppeteer must learn to balance
the dynamics of the puppet against the need to execute expressive choreography
that convincingly imitates—but does not replicate—human motions. Because
string marionettes resist the puppeteer’s attempts to direct them, puppeteers
have developed highly-evolved strategies for generating sequences of complex
motions—this is what is known as marionette choreography. Because of their
dynamics, string marionettes are arguably the most difficult type of puppet to
operate. This also makes them a good testbed for a control-based analysis.

3 Typical Approach

In this section we discuss typical analytical approaches to optimal control and
the types of software infrastructure these approaches assume. We start with a
discussion of how one might describe the dynamics of a mechanical system and
then discuss computing optimal controllers for that system.

3.1 Dynamics

Marionettes are subject to the physics of the world: they swing and sway ac-
cording to the forces of gravity and the interplay between the different bodies
—individual units such as the torso, forearms, and legs —in the marionette. This
interplay between the bodies falls within the realm of dynamics and simulation,
where the dynamic description comes from a physics-based understanding of

Robot Puppets 7

puppet motion. When computing dynamics we are typically trying to compute
equations of the form

ẋ = f(x, u) (1)

where x = (q, q̇) and q ∈ Q describes the configuration of the system. For rigid
body systems, it has historically been convenient to write down the rigid body
system in Newton-Euler coordinates (i.e., Q = SE(3)n, where n is the number
of rigid bodies in the system. This yields a state space of dimension 12n that
is subject to constraints. For a typical humanoid marionette, for instance, the
marionette alone (no actuators) has 10 rigid bodies, so the state space would
be more than 120 dimensions. If one includes string actuation in the degree
count, that adds one degree of freedom for each string’s length and an additional
element of SE(3) for each string endpoint (treating the inputs as “kinematic
inputs” [22]). For a typical marionette with 6 strings of variable lengths, this
brings the total nominal dimension of the state space up to 12 · 10 + 2 · 6 + 12 ·
6 = 204. Naturally, we don’t want to be solving for feedback controllers in a
204 dimensional space if it can be avoided. To avoid such high dimensions, we

(a) (b)

Fig. 2: Simulation of complex rigid bodies can take advantage of the mechanical
topology of the system. For instance, a marionette is being simulated in (a) using
a tree structure representation of the humanoid form in (b) and representing the
constraints by cycles in the graph (see [23]).

don’t want to represent Eq. (1) as Newton-Euler equations and instead insist on
working in generalized coordinates. In the case of the marionette, this reduces the
dimension of the state to 2m, where m is the number of generalized coordinates.
This yields 22 configuration variables for the marionette itself and another 18
degrees of freedom for the string actuators (6 strings with endpoints moving in

R2 × R), yielding 80 states. By utilizing a kinematic reduction [24, 25] we can
reduce the state of the actuators down to 18 because they are fully actuated.

8 E. Jochum et al.

This gives us equations of motion of the following form:

ẋa = u

ẋp = f(xp, xa) (2)

where xa is the kinematic configuration of the actuators and xp = (qp, q̇p) is
the dynamic configuration and velocity of the marionette itself. (For details on
this, see [22].) This leaves us with a much smaller, more manageable system to
work with that only has a total of 62 dimensions in its state space. Crucially, the
strings are modeled as holonomic constraints, relating the lengths of the strings
to the dynamic configurations, of the form

h(xa, qp) = 0 (3)

which must be maintained during simulation and control. Assuming for the mo-
ment that Eqs (2) and (3) can be stably simulated in an efficient manner, how
do we then construct the differential equation and constraints in a systematic
manner? The standard way to do this is based on Featherstone’s early work
[12] on articulated body dynamics. This work was largely used in the context
of animation and digital puppetry, where the requirements are substantially dif-
ferent than embedded control. For example, animation requires a simulation to
“look right” only once, while controlled physical systems must be repeatable.
Recursive approaches to calculating dynamics [26, 12] take advantage of special
representations of mechanical systems that allow the values needed for simula-
tion to be calculated quickly and avoid redundant calculations. The work in this
paper is based on the methods presented in [23] (based on [12]). Here, systems
are represented as graphs where each node is a coordinate frame in the mechan-
ical system and the nodes are connected by simple rigid body transformations
(typically translations along and rotations about the X, Y , and Z axes, though
any rigid body screw motion can be used). Transformations are either constant
or parameterized by real-valued variables. The set of all variables establishes the
generalized coordinates for the system. Figure 2 is an example of a simulated
marionette. The graph description can include closed kinematic chains, but in
practice the graph is converted to an acyclic directed graph (i.e. a tree) and aug-
mented with holonomic constraints to close the kinematic chains. This approach
leads to fast calculations of f(·, ·) in Eq. (2) and h(·) in Eq. (3). Moreover, one
can use the same structure to efficiently calculate the linearization [27], which is
critical to nonlinear optimal control calculations, discussed in the next section.

3.2 Nonlinear Optimal Control

Controlling marionettes involves choosing how the strings must be operated in
order to achieve some desired trajectory. For instance, if we wish a marionette
to generate a walking motion, the strings must pull the limbs in such a way
that the body of the marionette indicates walking. The choice of string motions
will, of course, depend on the physics-based description of the marionettes. For

Robot Puppets 9

instance, if the masses of the legs are very high, we might have to pull on the
strings differently than if the masses were very low. Optimal control plays a
significant role in determining the outcome because it provides an algorithmic
means of choosing string lengths and endpoint positions in a manner that takes
the physics-based description of the marionettes into account. Optimal control
typically starts out with a cost function of some sort, often of the form

J =

∫ tf

t0

L(x(t), xref(t), u(t))dt+m(x(tf), xref(tf)) (4)

where L(·) represents a weighted estimate of the error between the state and the
reference state (which is potentially not a feasible trajectory for the system) such
as in the imitation problem mentioned above. We can minimize this cost function
subject to the dynamics in Eqs. (2) and (3) by using iterative descent methods.
In particular, one uses the equivalence between the constrained minimization
and the unconstrained minimization of the objective function composed with a
differentiable projection P(·) onto the constrained subspace. That is, the two
minimizations

min
v∈W⊆V

g(v) = min
v∈V

g(P(v))

(where V is the vector space and W is the differentiable submanifold of ad-
missible vectors) are equivalent [28]. The projection operator P(·) comes from
computing a feedback law (discussed in more detail in the next section). In par-
ticular, if one interprets the “gradient” descent algorithm as starting at some
nominal trajectory ξ = (x(t), u(t)) and solving for a descent direction ζ = (z, v)
that optimizes the local quadratic model

ζ = arg min
ζ
Dg(ξ) ·DP(ξ) · ζ + ‖ζ‖2,

then one must only solve a standard time-varying LQR problem. This means
that one must be able to compute the time-varying linearization

ż = A(t)z +B(t)v (5)

where A(t) = ∂f
dx (x(t), u(t)) = D1f(x(t), u(t)) and B(t) = ∂f

du (x(t), u(t)) =
D2f(x(t), u(t)). One has to be able to do so for arbitrary trajectories in the
state space, potentially including infeasible trajectories (in the case of linearizing
about the desired trajectory). Solving for the descent direction involves comput-
ing the Riccati equations

Ṗ +A(t)TP + PA(t) +Q− PB(t)R−1B(t)TP = 0. (6)

If we additionally want to guarantee quadratic convergence, then we can find a
descent direction by solving a different LQR problem

ζ = arg min
ζ
Dg(ξ) ·DP(ξ) · ζ + ‖ζ‖2D2J

10 E. Jochum et al.

where

D2J(ξ) · (ζ1, ζ2) = D2g(ξ) · (DP(ξ) · ζ1, DP(ξ) · ζ2)

+Dg(ξ) ·D2P(ξ) · (ζ1, ζ2). (7)

The second derivative D2P(·) requires that we be able to also calculate ∂2f
dx2 ,

∂2f
du2 , and ∂2f

dxdu . The details of this approach can be found in [28] and elsewhere,
but for our purposes we should be able to compute Eqs. (2), (3), (4), (5), (6),
and (7) in software. The difficulty of this approach is that we are representing
the optimal control problem in continuous time while the actual computations
are in discrete time. We will discuss this further in Section 4 and we see that it
is only when we perform optimal control calculations in discrete time that we
arrive at convergence of the algorithms that provide motion imitation.

3.3 Choreography and Hybrid Optimal Control

In [29–31] we developed an optimal control interpretation of puppet choreogra-
phy. In particular, we formalized choreography as a sequence of modes that can
be pieced together to form a script of motions. Each mode has its own dynamics,
creating a system with dynamics

ẋ = f(x(t), u(t)) = fi(x(t), u(t)) t ∈ (τi, τi+1)

where each i corresponds to a different mode of the system. To optimize such a
system, one needs to be able to minimize an objective function J with respect to
the switching times τi of the system. For a gradient descent algorithm, one must
be able to compute the derivative ∂J

∂τi
—the derivative of the cost function with

respect to the switching times—which depends on the switching time adjoint
equation

ρ̇+A(t)T ρ+
∂L

∂x
= 0 (8)

along with a boundary condition at ρ(tf) (see [32–35]). This adjoint equation
only needs to be computed once to compute all the derivatives of J . If one wants
to compute the second derivative of J , e.g. to utilize Newton’s method, then the
second-order switching time adjoint equation

Ṗ +A(t)TP + PA(t) +
∂2L

∂x2
+
∑
k

ρk
∂2fk

∂x2
= 0 (9)

along with its boundary condition P (tf) must be solved [33]. This adjoint equa-
tion, along with a solution to Eq. (8), needs to be computed only once to ob-
tain all the derivatives of J . Note that the second-order switching time adjoint
equation is the same as the Riccati equation in Eq. (6) except that the Riccati
equation has a different final term. Indeed, both Eq. (8) and Eq. (9) only require
first and second derivatives of fi with respect to the state, so those are all that
are needed for software; hence, the choreographic optimization requires the same
software capabilities as the smooth optimization described in Section 3.2.

Robot Puppets 11

4 Discrete time with scalability

As previously mentioned, the continuous representation of dynamics found in
Eq. (1) is not what we actually use to do computations. Moreover, when there
are constraints, such as those seen in Eqs. (2) and (3), standard methods such
as Runge-Kutta methods fail to preserve the constraints. Typically one would
use solvers designed for Differential Algebraic Equations (DAEs) that project
the numerical prediction onto the set of constrained solutions defined by the
constraint in Eq. (3). We have found, however, that for high-index DAEs such
as the marionette a tremendous amount of “artificial stabilization” is required
to make the simulation of the DAE stable. This artificial stabilization—which
typically takes the constraint h(q) as a reference and introduces a feedback law
that “stabilizes” the constraint—changes the dynamics of the system, and if the
feedback gain is high, this often creates a multi-scale simulation problem that
is incompatible with real-time operation. As an alternative, we consider vari-
ational integrators [36–42]. Variational integration methods use the stationary
action principle as a foundation for numerical integration that does not involve
differential equations. This approach has several advantages such as guarantees
about conservation of momenta, the Hamiltonian, and the constraints, as well
as guaranteed convergence to the correct trajectory as the time step converges
to zero. More importantly, variational integration techniques exactly simulate a
modified Lagrangian system where the modified Lagrangian is a perturbation of
the original Lagrangian. The Discrete Euler-Lagrange (DEL) equations are

D1Ld(qk, qk+1, k) +D2Ld(qk−1, qk, k) = Fk (10)

h(qk+1) = 0 (11)

where Ld is a discretized form of the Lagrangian and Fk is an external force
integrated over the k time step. This forms a root solving problem in which,
given qk−1 and qk, one solves for qk+1. Alternatively, one can utilize the discrete
Legendre transform to define the discrete generalized momentum pk, and then
convert the root solving problem of Eq. 11 into a one-step rootsolving problem
where given the pair (qk, pk) one implicitly solves for the next timestep pair
(qk+1, pk+1). Repeating this rootsolving procedure forms the basis of simulation.
Using this method, we can (using a recursive tree description similar to the one
described in Section 3.1), simulate the marionette in real-time using time steps
of 0.01 s without adding any sort of numerical heuristics, such as artificial stabi-
lization. Let’s say we start from the DEL equations and assume, by application
of the implicit function theorem, that the solution exists and is locally unique
[43]. Once we have made a choice of state (we choose xk = (qk, pk)), we have an
update equation of the form

xk+1 = fk(xk, uk)

just as we would if we had started from a differential equation. That is, the
general form of the discrete time equation we wish to optimize is in principle no
different in the variational integrator case than it is in the standard ODE case.

12 E. Jochum et al.

Fig. 3: Software using variational integrators as the basis for simulation can ac-
curately predict marionette motion using comparatively large time steps. In this
case, the time step is dt = 0.01s.

More importantly, the fact that fk is implicitly defined by the DEL equations
does not affect whether the linearization is implicitly defined. In fact, one can
calculate an exact linearization of the DEL equations, including constraints and
closed kinematic chains [27]. So we may wish to know what the discrete-time
version of Eqs. (6) and (7) are. (These can be found in [44].) The difficulty is
that one cannot linearize Eq. (1) directly because that is the infinitesimal lin-
earization; to get a discrete-time linearization one would nominally have to solve
the state transition matrix (STM) locally over the time step. Approximating
the STM leads to a linearization that does not respect the constraints, leading
to a local optimal controller that essentially fights the constraints. In contrast,
taking variations directly with respect to xk yields an algebraic calculation for
the linearization and higher-order derivatives with respect to the state. As with
variational integration, the key to linearization is to take variations with respect
to the discrete state rather than the continuous state. For nonlinear optimal
control in the discrete time setting, we need to know if the resulting projection
operator (as discussed in Sec. 3.2) is in fact a projection and whether it is differ-
entiable. To see that such a projection is valuable, consider Fig. 4 [45], where a
planar double pendulum trajectory is being optimized. The initial guess for the
optimal solution is the “zero” solution, the optimal solution is the solid black
line, and the first iteration of Newton’s method using the projection operation
is the dotted line. Hence, one step of Newton’s method almost solves the global
optimization in this case. Naturally, that will not always be the case, but this
is an indication of how much generating a differential projection operation can
help. Let ξ = (x, u) be a desired, potentially infeasible, curve in the space the
trajectories reside in and let ξ = (x, u) be feasible trajectories. The continuous

Robot Puppets 13

! " # $ % &
!!'&

!

!'&

!
"

(

(

! " # $ % &
!"

!

"

)*+,(-./

!
#

*0!

*0"

12)*+34

Fig. 4: Projection-based variational optimization of a planar double pendulum
[45]

time projection operator is defined by ξ = P(ξ) such that

x(t0) = x(t0)

ẋ = f(x, u)

u = u−K(t)(x− x)

where the feedback gain K(t) comes from solving the Riccati equation in Eq. (6).
One can verify that P(·) is a projection and that it is C∞ if f is C∞. What do
we do if we are using Eqs. (10) and (11) instead of Eqs. (2) and (3)? Then the
discrete projection operator Pd(·) is ξd = Pd(ξd) such that

x0 = x0

xk+1 = fk(xk, uk) (12)

uk = uk −Kk(xk − xk)

where the discrete time feedback gain Kk comes from solving a discrete time
Riccati equation. To see that it is a differentiable projection, we introduce the
following Lemma.

Lemma 1. Pd(·) is a projection.

Proof. We need to show that the projection satisfies the property Pd(ξ̄d) =
Pd(Pd(ξ̄d)). First we calculate several terms of (a, b) = Pd(α, µ) and get a0 =
α0, b0 = µ0 − K0(a0 − α0) = µ0, a1 = f0(a0, b0) = f0(α0, µ0), and b1 = µ1 −
K1(a1 − α1). Now calculate several terms of (x, u) = Pd(a, b) and find that
x0 = a0 = α0, u0 = b0 −K0(x0 − a0) = b0 = µ0, x1 = f0(x0, u0) = f0(α0, µ0) =
a1, and u1 = b1 − K1(x1 − a1) = b1 − K1(a1 − a1) = b1. By induction we
find Pd ◦ (α, µ) = Pd ◦Pd ◦ (α, µ). Hence, Pd(·) is a projection operation
from discrete-time representations of curves ξd to discrete-time representations
of trajectories ξd.

14 E. Jochum et al.

Next we need to calculate the derivative of Pd(·), starting with ξd = Pd(ξd)
(we are going to drop the d from ξd for notational convenience).

δξ = DPd(ξ̄) ◦ δξ̄
So, by Eq. (12), we get

δx0 = δx̄0

δxk+1 =
∂fk
∂xk

δxk +
∂fk
∂uk

δuk = Dfk ◦ δξk
δuk = δūk −Kk(δxk − δx̄k).

where ∂fk
∂xk

is shorthand for ∂fk
∂x (xk, uk, k). (The same applies to ∂fk

∂uk
and Dfk.)

As in the continuous case, the derivative of the discrete projection is a discrete
linear system. The second derivative is also straightforward (here we let δξ̄1 and
δξ̄2 be two independent perturbations to ξ̄).

δ2ξ = D2P(ξ̄) ◦ (δξ̄1, δξ̄2)

which implies, again by Eq. (12), that

δ2x0 = 0

δ2xk+1 = D2fk ◦ (δξ1k, δξ
2
k) +Dfk ◦ δ2ξk

=
∂fk
∂xk

δ2xk +
∂fk
∂uk

δ2uk +D2fk ◦ (δξ1k, δξ
2
k)

δ2uk = −Kkδ
2xk.

Rewriting the second derivative, we get:

δ2xk+1 =
∂fk
∂xk

δ2xk +
∂fk
∂uk

δ2uk +D2fk ◦ (δξ1k, δξ
2
k)

=

[
∂fk
∂xk
− ∂fk
∂uk

Kk

]
δ2xk +D2fk ◦ (δξ1k, δξ

2
k).

This is a discrete affine system, equivalent to a discrete linear system with an
input:

δ2xk+1 = Âkδ
2xk + B̂k

Âk =

[
∂fk
∂xk
− ∂fk
∂uk

Kk

]
B̂k = D2fk ◦ (δξ1k, δξ

2
k).

Hence, the projection operation Pd is twice differentiable with derivatives that
are represented by discrete-time linear difference equations, allowing us to apply
Newton’s method to optimal control problems.

5 Examples

We now consider the model of a humanoid marionette shown in Fig. 5. The mar-
ionette has 40 configuration variables and is actuated by 6 strings. The strings

Robot Puppets 15

Fig. 5: The 3D Marionette is actuated by six strings.

are modeled as holonomic constraints. Kinematic configuration variables—those
that we assume satisfy first-order dynamics where we control the velocity of
the variable directly—control the two-dimensional position of the end-point of
each string as well as the string length. There are no joint torques and only
slight damping applied to each dynamic configuration variable equally. In order
to indicate the real-time feasibility of the algorithms discussed in the previous
sections, we now provide some timing data for the marionette simulation in
Fig. 5 we have a system that has 22 dynamic degrees-of-freedom, 18 kinematic
degrees of freedom (corresponding to the actuation of the strings), and 6 total
holonomic constraints. To evaluate the continuous dynamics that would be used
in a standard integrator, one evaluation of f(x, u) requires 2.7 ms, while the first
derivative with respect to the state (i.e., the linearization) requires 24 ms and
the second derivative with respect to the state requires 400 ms. Note that this
does not indicate how long it will take to simulate a particular length of time
because the time step is not included here as we are not working in discrete time.
With the variational integrator from Eqs. (10) and (11) with a time step of 0.01
(no other parameters are needed when using variational integrators, even with
the degeneracies and constraints the strings introduce), the update step requires
5.53 ms while the first derivative with respect to the state (i.e., the exact dis-
crete linearization) takes 2.4 ms and the second derivative with respect to the
state takes 130 ms. This means that, at minimum, we can simulate and evalu-
ate controllability in real-time. Two optimizations are discussed in the following
subsections. The optimization in Sec. 5.1 uses a desired trajectory that was gen-

16 E. Jochum et al.

erated separately by simulating the system. Sec. 5.2 discusses an optimization
with a reference generated from motion capture data.

5.1 Desired Motion: Simulated Trajectory

A desired trajectory was generated by simulating the system forward in time. The
lengths of the arm and leg strings were varied sinusoidally to create a “walking”
motion. The configurations of the trajectory were saved. The rest of the state
(e.g, configuration velocity or discrete momentum) and the simulation inputs
were discarded and replaced with uniformly zero trajectories. This results in a
smooth desired trajectory that we expect the puppet to be able to track, but
remains an infeasible trajectory. The marionette was optimized to the desired
trajectory in both continuous and discrete time. Both optimizations successfully
converged to solutions that track the desired configuration very well. Conver-
gence plots for both optimizations are shown in Fig. 6. The source code for the
discrete optimization is distributed with trep at http://trep.googlecode.com in
the file /examples/puppet-optimization.py. Fig. 6 shows that the continu-

b

b

b

b b
b

b

0 2 4 6 8

102

100

10−2

10−4

|D
g
|

Iteration

(a) Continuous Time

b
b

b
b

b

b

b

b

b

0 2 4 6 8

102

100

10−2

10−4

|D
g
|

Iteration

(b) Discrete Time

Fig. 6: Convergence plots for continuous and discrete time optimizations from a
simulated desired trajectory.

ous optimization initially converges drastically faster than the discrete one: it
tracks the desired trajectory almost perfectly after a single step. The discrete
optimization makes slow progress initially but converges quickly after about five
iterations. The discrete optimization takes 5:50s to finish. Each iteration takes
between 15 and 60 seconds depending on the descent direction type and number
of Armijo steps. Although the convergence plot is flattering for the continuous
optimization, there were numerous problems. Unlike the discrete optimization,
the continuous optimization was highly sensitive to the optimization parameters.
Large ratios between the maximum and minimum state cost cause the optimiza-
tion to fail. Additionally, for a successful continuous optimization, the terminal

Robot Puppets 17

conditions must be significantly relaxed. The discrete time optimization suffers
from neither of these problems.

Fig. 7: These three images show a single frame from the motion-capture opti-
mization. The left-most picture shows an RGB image recorded by a Microsoft
Kinect R©. The middle figure is the motion capture data found from the Kinect’s
depth map. The right-most figure is the optimized trajectory.

5.2 Desired Motion: Motion Capture Data

A more practical application of the trajectory optimization is finding trajectories
to track data acquired from a motion capture system. In this example, a desired
trajectory was generated using a Microsoft Kinect R© to record a student walking
in place. This process is illustrated in Fig. 7. In this case, the continuous opti-
mization was unable to converge. The discrete optimization converged success-
fully and found a trajectory that closely approximates the student’s movement.
Figure 8 plots the desired trajectory and optimization result for the angle of the
right elbow as an example. The trajectory found by the optimization tracks the
desired trajectory very well. However, a large amount of noise was introduced.
This is most likely caused by too large of a ratio between the weight of the con-
figuration portion of the state compared the discrete momentum portions and
the cost of the inputs.

18 E. Jochum et al.

0 2 4 6 8 10

0

−π

4

−π

2

θ

Time [s]

Optimized

Desired

Fig. 8: The optimal trajectory for the right arm elbow tracks the desired trajec-
tory well.

6 Conclusions

The robotic marionette project is an example system that forces us to create
software that can both simulate and control complex mechanical systems. The
marionettes play a vital role in driving the system development—they have me-
chanical degeneracies, closed kinematic chains, and are high dimensional, but
despite these features puppeteers are able to successfully and reliably control
them. Therefore, marionettes make a good testbed for understanding whether
or not our software is producing reasonable results. Evaluating the efficacy of
the control system can be determined immediately by observing whether or not
the motions and choreographic phrases are recognizable, smooth, and approxi-
mate the reference data. Viewed this way, we see how a control-based analysis of
an existing art form allows us to conceptualize new approaches in optimal con-
trol, and also increases the likelihood that such a system will be used by artists
to develop choreography for marionettes or other artificial, articulated bodies.
The techniques we use provide both optimal trajectories and control laws that
help stabilize those trajectories. Moreover, because we formulate the optimal
control problem using a differentiable projection, we can analytically guarantee
quadratic convergence locally around the optimal trajectory. It is also important
to note that the techniques we have applied to the marionettes are also appli-
cable to many other fields. For example, we have used these software techniques
for the tendon-articulated hand in Fig. 9 and can compute linearizations and
local LQR controllers for the hand. (This simulation capability is now being
used with prosthetic control in a collaboration with the Rehabilitation Institute
of Chicago.)

Robot Puppets 19

Fig. 9: The graph-based approach to calculating linearizations scales to complex
mechanical systems like this dynamic model of a tendon-articulated human hand
holding an object. The linearization at this configuration shows that the system
is locally controllable.

Puppeteers use marionettes in dynamic, expressive ways, so we presume that
extremely conservative motions based on a “quasi-static” approach or an inverse-
kinematics approach are unlikely to produce interesting, artistic motions. Pup-
petry privileges imitation over precise replication, but to be considered “artis-
tic” the imitation must rise above perfunctory or routine motions. Typically, the
artistic quality of puppetry has been assumed to be the result of the interpre-
tation and execution of the human puppeteer, but our automated marionette
platform provokes the question of whether or not human operation is essential
to a marionette’s expressiveness and theatrical value. Although we can produce
an optimal “imitation” of a human motion in the case of a simple walking mo-
tion captured by the Kinect sensor, we must first solve the calculations for the
full marionette for a variety of motions before we can claim that marionette
imitation can be defined as an optimization problem. We are currently working
on solving these problems. It remains to be seen whether or not a fully auto-
mated marionette can execute choreography in such a way that transcends mere
imitation and achieves artful or aesthetic resonance.

One potential application of the automated marionettes is live entertain-
ment and theater productions that utilize large-scale animatronics and auto-
mated performers. While Disney pioneered the technologies of animatronics,
enabling artists and engineers to partially realize their shared vision of creating
an autonomous theater, Creature Technology Company and Global Creatures

20 E. Jochum et al.

are developing sophisticated animatronics for use in live performance. The 2012
production based on Dreamworks’ animated film How To Train Your Dragon
and the 2013 King Kong are two recent productions that combine large scale
animatronics with human performers in a live production. Unlike traditional an-
imatronics, these shows are purposefully designed for international tours. The
demands of an international touring production present considerable challenges:
the animatronics must be able to perform reliably in a wide range of venues,
the choreography of these productions brings live actors into close contact with
heavy, dangerous machines, and audiences expect the machines to be as interac-
tive and agile as live performers. Perhaps not surprisingly, Global Creatures has
opted to work with expert puppeteers to develop choreography for large scale
animatronics in the shape of flying dinosaurs, dragons, and a six-meter tall silver-
back gorilla. The machines are controlled through a combination of marionette-
automation and tele-operated controls (known at Global Creatures as “voodoo
puppeteering”) [46]. A team of puppeteers works together to control a single
puppet (sometimes with a puppeteer seated in a chassis inside of the puppet),
while the marionette-automation enables these large puppets to execute expres-
sive choreography such as flying and aerial stunts—even scaling the side of a
replica of the Empire State building. This unique hybrid control system expands
the range and quality of motions that are available to the puppet, allowing the
puppeteer to develop choreography on a larger scale than has previously been
imaginable: animatronic choreography can now utilize the entire stage space.
The level of automation and sensing technologies used to control the puppets
further distance the human operator from the physical act of puppeteering, re-
sulting in increasingly automated performances that are not rote or perfunctory
but are rather perceived as lively and entertaining. This arrangement challenges
the notion that autonomous theater can only be pre-programmed or repetitive,
and reignites the debate of whether or not human operators are essential for live
theater performances.

In his famous essay What is Art? the Russian novelist Leo Tolstoy wrote
“To evoke in oneself a feeling one has once experienced and having evoked it in
oneself then by means of movements, lines, colours, sounds, or forms expressed
in words, so to transmit that feeling that others may experience the same feel-
ing—this is the activity of art.” As artists and engineers focus their attention
on emulating artistic process through the generation of performances and arti-
facts based on system dynamics and control theory, established art forms such
as music, dance, and puppetry provide important frameworks for modeling and
evaluating the aesthetic or artistic outcomes. The research projects discussed in
this volume are illustrative of the urge to understand and emulate the intangible
aspects of aesthetics while evaluating the tangible outcomes of these investiga-
tions. Whether it is through the creation of aesthetic or communicative gestures
[6], generating appealing or interesting musical compositions [5], or expressive
and engaging choreography [4], the goal is to generate aesthetic behaviors that
are emergent and are evocative of some human feeling. Whether the application

Robot Puppets 21

of control theory can engender similar aesthetic responses as works of art gener-
ated by human artists remains to be seen, but it is a question worth considering.

References

1. N. Goodman, Ways of Worldmaking. Indianapolis, IN: Hackett Publishing, Jan.
1978.

2. I. Kant, Critique of Aesthetic Judgement (1790). Oxford, UK: Oxford University
Press, Aug. 1911.

3. F. Schiller, On the Aesthetic Education of Man. Oxford, UK: Oxford University
Press, 1794.

4. A. P. Schoellig, H. Siegel, F. Augugliaro, and R. D’Andrea, “So you think you can
dance? rhythmic flight performances with quadrocopters,” in Control and Arts,
A. LaViers and M. Egerstedt, Eds. Springer-Verlag, 2013.

5. C. Huepe, M. Colasso, and R. F. Cádiz, “Generating music from flocking dynam-
ics,” in Control and Arts, A. LaViers and M. Egerstedt, Eds. Springer-Verlag,
2013.

6. P. Kingston, J. von Hinezmeyer, and M. Egerstedt, “Metric preference learning
with applications to motion imitation,” in Control and Arts, A. LaViers and
M. Egerstedt, Eds. Springer-Verlag, 2013.

7. R. Smith, “Open Dynamics Engine,” 2008, http://www.ode.org.
8. ——, “Dynamics Simulation: A whirlwind tour (current state, and new frontiers),”

2004, http://ode.org/slides/parc/dynamics.pdf.
9. D. Baraff, “Linear-time dynamics using Lagrange multipliers,” in SIGGRAPH,

1996, pp. 137–146.
10. ——, “Fast contact force computation for nonpenetrating rigid bodies,” in SIG-

GRAPH, 1994.
11. ——, “Non-penetrating rigid body simulation,” in State of the Art Reports, 1993.
12. R. Featherstone, Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.
13. P. Francis, Puppetry. Palgrave Macmillan, 2012.
14. H. Kleist, “On the marionette theatre,” The Drama Review, vol. 16, no. 3, pp.

22–26, 1972.
15. E. G. Craig, On the Art of the Theatre. Routledge, 2009.
16. S. Kaplin, “A puppet tree: A model for the field of puppet theatre,” TDR, vol. 43,

no. 3, pp. 28–35, 1999.
17. E. Jochum, “King kong,” Theatre Journal, Dec. 2013, Johns Hopkins University

Press.
18. J. Burnham, Beyond modern sculpture: the effects of science and technology on the

sculpture of this century. New York, NY: George Braziller, June 1968.
19. C. Salter, Entangled: Technology and the Transformation of Performance. MIT

Press, 2010.
20. G. Wood, Edison’s Eve: a magical history of the quest for mechanical life. New

York, N.Y.: A.A. Knopf, 2002.
21. H. Jurkowski, Aspects of Puppet Theatre. Puppet Centre Trust, 1988.
22. E. Johnson and T. Murphey, “Dynamic modeling and motion planning for mari-

onettes: Rigid bodies articulated by massless strings,” in International Conference
on Robotics and Automation, Rome, Italy, 2007.

23. E. R. Johnson and T. D. Murphey, “Scalable variational integrators for constrained
mechanical systems in generalized coordinates,” IEEE Transactions on Robotics,
2010.

22 E. Jochum et al.

24. F. Bullo and A. Lewis, “Low-order controllability and kinematic reductions for
affine connection control systems,” SIAM Journal on Control and Optimization,
vol. 44, no. 3, pp. 885–908, 2005.

25. ——, Geometric Control of Mechanical Systems, ser. Number 49 in Texts in Ap-
plied Mathematics. Springer-Verlag, 2004.

26. Y. Nakamura and K. Yamane, “Dynamics computation of structure-varying kine-
matic chains and its application to human figures,” IEEE Transactions on Robotics
and Automation, vol. 16, no. 2, 2000.

27. E. Johnson and T. D. Murphey, “Linearizations for mechanical systems in gener-
alized coordinates,” in American Controls Conf. (ACC), 2010, pp. 629–633.

28. J. Hauser, “A projection operator approach to optimization of trajectory function-
als,” in IFAC World Congress, Barcelona, Spain, 2002.

29. P. Martin, E. Johnson, T. D. Murphey, and M. Egerstedt, “Constructing and
implementing motion programs for robotic marionettes,” IEEE Transactions on
Automatic Control, 2010, accepted for Publication.

30. M. Egerstedt, T. D. Murphey, and J. Ludwig, Hybrid Systems: Computation and
Control, ser. Lecture Notes in Computer Science. Springer-Verlag, 2007, vol. TBD,
ch. Motion Programs for Puppet Choreography and Control, pp. 190–202, eds. A.
Bemporad, A. Bicchi, and G. C. Buttazzo.

31. T. D. Murphey and M. E. Egerstedt, “Choreography for marionettes: Imitation,
planning, and control,” in IEEE Int. Conf. on Intelligent Robots and Systems
Workshop on Art and Robotics, 2007, 6 pages.

32. E. Johnson and T. D. Murphey, “Second-order switching time optimization for
nonlinear time-varying dynamic systems,” IEEE Transactions on Automatic Con-
trol, 2010, accepted for Publication.

33. T. Caldwell and T. D. Murphey, “Switching mode generation and optimal estima-
tion with application to skid-steering,” Automatica, 2010, in Press.

34. M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching times in
switched dynamical systems,” in IEEE Conference on Decision and Control, Maui,
Hawaii, Dec. 2003.

35. M. Egerstedt, Y. Wardi, and H. Axelsson, “Optimal control of switching times
in hybrid systems,” in IEEE Methods and Models in Automation and Robotics,
Miedzyzdroje, Poland, Aug. 2003.

36. E. Johnson and T. D. Murphey, “Scalable variational integrators for constrained
mechanical systems in generalized coordinates,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1249–1261, 2009.

37. K. Nichols and T. D. Murphey, “Variational integrators for constrained cables,”
in IEEE Int. Conf. on Automation Science and Engineering (CASE), 2008, pp.
802–807.

38. L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schroder, and
M. Desbrun, “Geometric, variational integrators for computer animation,” Euro-
graphics/ACM SIGGRAPH Symposium on Computer Animation, 2006.

39. A. Lew, J. E. Marsden, M. Ortiz, and M. West, “Variational time integrators,”
Int. J. Numer. Methods Engrg, vol. 60, pp. 153–212, 2004.

40. ——, “An overview of variational integrators,” in Finite Element Methods: 1970’s
and Beyond, 2004, pp. 98–115.

41. M. West, “Variational integrators,” California Institute of Technology Thesis, 2004.
42. A. Lew, J. E. Marsden, M. Ortiz, and M. West, “Asynchronous variational inte-

grators,” Arch. Rational Mech. Anal., vol. 167, pp. 85–146, 2003.
43. J. E. Marsen and M. West, “Discrete mechanics and variational integrators,” Acta

Numerica, pp. 357–514, 2001.

Robot Puppets 23

44. B. Anderson and J. Moore, Linear Optimal Control. Prentice Hall, Inc, 1971.
45. K. Snyder and T. D. Murphey, “Second-order DMOC using projections,” in IEEE

Int. Conf. on Decision and Control (CDC), 2010.
46. B. Paynter, “Robodinos: What could possibly go wrong?” Wired Magazine, 2009.

