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Abstract— A switched system is defined by a family of vector
fields together with a switching law which chooses the active
vector field at any time. Thus, the switching law encoding the
switching times and the sequence of modes may serve as a
design parameter. Switching time optimization (STO) focuses
on the optimization of the switching times in order to govern the
system evolution to a desired behavior described by some cost
function. However, it is rare that a STO problem can be solved
analytically leading to the use of numerical approximation
methods. In this contribution, we directly start with applying
integration schemes to approximate the system’s state and
adjoint trajectories and study the effect of this discretization. It
turns out that in contrast to the continuous time problem, the
discretized problem loses differentiability with respect to the
optimization variables. The isolated nondifferentiable points
can be precisely identified though. Nevertheless, to solve the
STO problem, nonsmooth optimization techniques have to be
applied which we illustrate using a hybrid double pendulum.

I. INTRODUCTION

Switched systems consist of a family of vector fields, that
define differential equations describing the system’s continu-
ous dynamics, together with some switching law taking into
account discrete events, i.e. instantaneous switches between
the different vector fields. The dynamics of a switched
system is described by hybrid trajectories which are solutions
to the currently active differential equation at every point of
time.

Regarding control purposes, switched systems cannot only
be controlled by feedforward or feedback controls, but also
by the switching law itself. The switching law encodes the
switching times and the sequence of active vector fields, the
so called modes. Both provide additional design parameters,
but in this contribution, we focus on the switching time
optimization (STO) and assume the mode sequence to be
fixed. Switching time optimization of hybrid dynamical sys-
tems has been studied in various settings and from different
perspectives in the last years (cf. among others [1–8]).

As in ordinary optimal control, numerical techniques have
to be applied to approximate solutions of STO problems.
While most approaches compute necessary optimality con-
ditions first and perform a discretization afterwards (often
implicitly when solving the state / adjoint system by some
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black box numerical integrator), in our work, we start with
a discretization of the time continuous STO problem. Anal-
ogous adjoint equations for the discretized problem can be
derived and, furthermore, this approach enables us to study
the effects of this discretization. Unlike the ordinary smooth
optimal control problem, where differentiability of the dis-
crete time control problem is inherited by the continuous time
problem, the STO problem in discrete time will in general,
although in a very structured way, be nondifferentiable.

This paper is organized as follows: starting with a short
introduction to switching time optimization in continuous
time in Section II, we briefly recall some important facts
from [9] on discretized STO problems in Section III. This
forms the basis for the major contributions of this paper: in
Section IV we analyze the existence of smooth or nonsmooth
optimal values despite nonsmooth cost functions and give
examples for both cases. A subgradient method tailored to
our particular nonsmooth optimization problem is presented
in Section V. Finally, the optimization is performed for two
examples and we conclude with an outlook to future work
in Section VI.

II. SWITCHING TIME OPTIMIZATION IN
CONTINUOUS TIME

In this contribution, we focus on switched autonomous
dynamical systems, i.e. there are instantaneous switches
between the autonomous vector fields. Switching is not
assumed to be state-dependent, neither do we consider dis-
crete jumps in the states. This naturally leads to hybrid
trajectories which are continuous, but only piecewise smooth
w.r.t. time. However, the STO problem is smooth, i.e. the
cost function is differentiable w.r.t. the switching times under
reasonable assumptions that are specified below. Even in the
simplest case of two vector fields and one single switching
point, nondifferentiability in the discretized setting can occur,
therefore we restrict to the following basic problem setting
in the remainder of this paper.

Problem 2.1: Let X ⊂Rn be a state space with x0 ∈X .
Let T,τ ∈R with 0≤ τ ≤ T , f1, f2 ∈C1 and ` ∈C1, m ∈C1.
Then we consider the following problem

min
τ

J(τ) =
∫ T

0
`(x(t), t)dt +m(x(T )) (1)

w.r.t.

ẋ(t) =
{

f1(x(t)) t < τ

f2(x(t)) t ≥ τ
and x(0) = x0. (2)

Here, the hybrid trajectory is in fact a function of the
switching time τ as well. Its derivative w.r.t. τ for t ∈ (τ,T )



is given by (cf. [1])

dx(t)
dτ

= Φ(t,τ)( f1(x(τ))− f2(x(τ))), (3)

with Φ(t,τ) being the state transition matrix of the au-
tonomous linear system ż = ∂ f2(x(t))

∂x z.
Derivatives of the cost function w.r.t. the switching time

can be computed by means of costate (also called adjoint)
differential equations, as it has been proven in several works
(cf. e.g. [1, 3, 7]). We recall from [7]:

Lemma 2.1: Let f1, f2 and ` be as in Problem 2.1. Define
the costate by

ρ̇(t) =−
(

d f2

dx
(x(t))

)T

ρ(t)−
(

d`

dx
(x(t))

)T

(4)

ρ(T ) =
dm
dx

(x(T ))T .

Then, J′(τ) has the following form,

J′(τ) = ρ(τ)T [ f1(x(τ))− f2(x(τ))]. (5)
This result is extended to several switching times and differ-
ent vector fields in [1]. In particular it follows that the cost
function is differentiable for any set of disjoint switching
times. In [3], the special case of coinciding switching times
is studied, to which we will refer later in our analysis.

Formulas for the second order derivative have been derived
in [7] and [8]. Lemma 2.1 can be used to develop gradient-
based optimization techniques for the computation of an
optimal switching time τopt = argminτ J(τ). Such numerical
techniques are based on solving the state equation (2) and
the adjoint equation (4) in alternation to generate a descent
direction for the next iteration. A feasible step size can be
generated e.g. by the Armijo rule (cf. [3] or [7]). In case of
multiple switches, the algorithm presented in [3] also deals
with coinciding switching points.

III. DISCRETIZED SWITCHED SYSTEMS

In most applications, e.g. when facing highly nonlinear
dynamics, it is impossible to solve either the state (2)
or the adjoint equation (4) analytically. Thus, numerical
methods have to be applied to approximate a solution.
While the approaches cited in Section II implicitly use a
numerical integration method in the optimization algorithms,
in this contribution, we directly start with a discretization
of Problem 2.1. Then we can analyze the influence of the
discretization regarding differentiability of the cost function.

Problem 3.1: Let ∆t = {t0, t1, . . . , tN} be a discrete time
grid with t0 = 0, tN = T and τ ∈ [ti, ti+1] for some i ∈
{0, . . . ,N}. Let X ⊂ Rn be the state space with x0 ∈X ,
f1, f2 ∈ C1 and ` ∈ C1. Then we consider the following
problem,

min
τ

Jd(τ) =
N

∑
k=0

Ψk(xk)≈
∫ T

0
`(x(t))dt +m(x(T )) (6)

w.r.t.
K
(
{tk}N

k=0,τ,{xk}N
k=0
)

= 0, (7)

f1 f2

t0 t1 ti τ ti+1 tN

x0 x1 xi x∗ xi+1 xN

ρ0 ρ1 ρi ρ∗ ρi+1 ρN......

......

......

Fig. 1. Notation for discretization as used in the integration schemes and
for the definition of discrete adjoints.

a system of algebraic equations resulting from the discretiza-
tion of (2).
The discretized trajectory xd = {xk}N

k=0 is an approximation
of the exact solution, i.e. xk ≈ x(tk) for k = 0, . . . ,N, and
it also depends on the switching time τ . Note that τ is
still allowed to vary continuously in [0,T ]. If existent, the
derivative of (6) is given by

Jd
′(τ) =

d
dτ

Jd(τ) =
N

∑
k=0

DΨk(xk) ·
d

dτ
xk . (8)

Assuming continuously differentiable functions Ψk for k =
0, . . . ,N, the crucial part is the derivative of the discrete
trajectory. For simplicity, we restrict to explicit one-step
integration schemes in the following, although it has to
be emphasized that qualitatively identical results arise for
implicit schemes.

We discretize (2) by an explicit one-step scheme, i.e. (7)
has the following form

F =


xk+1−F1(xk, tk, tk+1) = 0 k = 0, . . . , i−1,

x∗−F1(xi, ti,τ) = 0 and
xi+1−F2(x∗,τ, ti+1) = 0,

xk+1−F2(xk, tk, tk+1) = 0 k = i+1, . . . ,N−1.

(9)

F1 and F2 denote the schemes for the different vector fields
f1 and f2 that switch at time τ (cf. Fig. 1). Thus, it holds τ ∈
[ti, ti+1] for some i∈ {0, . . . ,N}. It can be seen that {xk}N

k=0 is
continuous w.r.t. τ . For the derivative w.r.t. τ , the following
holds

d
dτ

xk+1 =


0 for k = 0, . . . , i−1,

D1F2(x∗,τ, ti+1) ·D3F1(xi, ti,τ)
+D2F2(x∗,τ, ti+1),

D1F2(xk, tk, tk+1) · d
dτ

xk for k = i+1, . . . ,N−1.

(10)

Here, we use the slot derivative notation, i.e. D1F2(·, ·, ·) is
the partial derivative of F2 w.r.t. its first argument, D2F2(·, ·, ·)
is the derivative w.r.t. the argument in the second slot and
so forth. For τ ∈ (ti, ti+1), d

dτ
xk+1 for k = 0, . . . ,N − 1 is

continuous, if F1 and F2 are continuously differentiable,
which is a reasonable requirement on an explicit integration
scheme. Now we study the case when τ coincides with a grid
point, say τ = ti+1. Therefore, we look at the left and right



limits: while we have limτ→ti+1
τ>ti+1

d
dτ

xi+1 = 0, because switching

happens afterwards, in general, we have

lim
τ→ti+1
τ<ti+1

d
dτ

xi+1 = lim
τ→ti+1
τ<ti+1

D1F2(x∗,τ, ti+1) ·D3F1(xi, ti,τ)

+D2F2(x∗,τ, ti+1) 6= 0 (11)

and thus, d
dτ

xi+1 and therefore all d
dτ

xk+1 for k > i are nondif-
ferentiable for τ = ti+1. Although (11) has to be checked for
each integration scheme and each system individually, most
likely the nondifferentiability of xk, (k = i+1, . . . ,N) at time
grid points is existent for a system with arbitrary switching
vector fields. As we saw in (8), d

dτ
xk is part of the discrete

cost function derivative and thus, nondifferentiability of the
discrete trajectory generally leads to nondifferentiability of
Jd . The iterative relation of the derivatives at neighboring
trajectory points gives rise to a transition operator

Φ(k +1,k) := D1F2(xk, tk, tk+1) (12)

for k ∈ {i+1, . . . ,N−1}. We define Φ(k,k) := 1 and for l >
k + 1, Φ(l,k) := Φ(l, l−1) · . . . ·Φ(k + 2,k + 1) ·Φ(k + 1,k).
Thus, for k ∈ {i+1, . . . ,N−1} one receives the propagation
scheme

d
dτ

xk+1 = Φ(k +1, i+1) · d
dτ

xi+1,

which is reminiscent of (3) in the continuous time setting.
We define the discrete adjoints recursively by

ρk = DΨk(xk)+ρk+1 ·Φ(k +1,k)

for k = N, . . . , i + 1, with boundary value ρN = DΨN(xN).
Thus, the adjoints are continuous w.r.t. τ , if the DΨk and
the transition operator are continuous, which is reasonable
to assume. With the help of the adjoints, the discrete cost
function derivative can be written as

Jd
′(τ) =

N

∑
k=0

DΨk(xk)
d

dτ
xk

=
N

∑
k=i+1

DΨk(xk) ·Φ(k, i+1) · d
dτ

xi+1 = ρi+1 ·
d

dτ
xi+1.

So it can be nicely seen that although the adjoint itself is
continuous, its argument, i.e. d

dτ
xi+1 leads to nondifferentia-

bility of Jd . In fact, if τ = ti for i ∈ {0, . . . ,N}, d
dτ

xi+1 and
therefore Jd

′ can only be defined by either the left or the
right limit as defined in (11).

Example 3.1 (Explicit Euler): The explicit Euler scheme
for a switched system for k ∈ {0, . . . ,N−1} is given by

Fj(xk, tk, tk+1) = xk +(tk+1− tk) · f j(xk), j = {1,2}

and on the switching interval with x∗ and τ in the appropriate
arguments. For τ ∈ (ti, ti+1) we receive

d
dτ

xi+1 = f1(xi)+
d
dx

f2(x∗) · (ti+1− τ) · f1(xi)− f2(x∗)

with x∗ = xi + f1(xi) · (τ − ti). Thus, at τ = ti+1, d
dτ

xi+1
switches from zero to f1(xi)− f2(xi+1). What is the ef-
fect on the next node xi+1 (and thus on all the following

nodes)? From (10) we know that d
dτ

xi+2 = (1 + (ti+2 −
ti+1) ∂

∂x f2(xi+1)) d
dτ

xi+1 and hence,

lim
τ→ti+1
τ<ti+1

d
dτ

xi+2 =
(

1+(ti+2− ti+1)
∂

∂x
f2(xi+1)

)
· [ f1(xi)− f2(xi+1)] ,

but for the limit from the right we receive by shifting the
index in (9)

lim
τ→ti+1
τ>ti+1

d
dτ

xi+2 =
(

1+(ti+2− ti+1)
∂

∂x
f2(xi+1)

)
· f1(xi+1)

− f2(xi+1).

In general, these two limits do not coincide. Thus, {xk}N
k=0

is nondifferentiable at τ = ti+1. However, when reducing the
time steps, i.e. in particular ti+1− ti → 0, the discrete case
( d

dτ
xi+1) matches the continuous, in which the limit is

lim
t→τ
t>τ

d
dτ

x(τ) = f1(x(τ))− f2(x(τ)).

Example 3.2 (Hybrid double pendulum): We discretize
the STO problem for a hybrid double pendulum by
an explicit Euler scheme and study the effects on the
smoothness of the original problem. The model of the
pendulum consists of two mass points m1, m2 on massless
rods of length l1, l2. The motion of the pendula are described
by two angles, ϕ1 and ϕ2 (cf. Fig. 2). The standard double
pendulum is turned into a hybrid system by introducing two
different modes: M1: The outer pendulum is locked w.r.t.
the inner pendulum with angle θ , i.e. the system behaves
like a single pendulum with a special inertia tensor. M2:
Both pendula can move freely as in the standard case.

In M1, the following energy terms for the kinetic energy
K and potential energy V are valid

K1(ϕ1, ϕ̇1) =
1
2
(m1l2

1 +m2r2) · ϕ̇2
1

V1(ϕ1) = (m1 +m2)gl1 cos(ϕ1)+m2gl2 cos(ϕ1 +θ −π)

with distance r of outer mass to origin r2 = l2
1 + l2

2 −
2l1l2 cos(θ). The position of the outer mass can be updated
according to ϕ2 = ϕ1 + θ − π and it naturally follows that
ϕ̇1 = ϕ̇2. In M2, the system is defined by

K2(ϕ1,ϕ2, ϕ̇1, ϕ̇2) =
1
2

(
ϕ̇1
ϕ̇2

)T
·(

(m1 +m2)l2
1 m2l1l2 cos(ϕ1−ϕ2)

m2l1l2 cos(ϕ1−ϕ2) m2l2
2

)
·
(

ϕ̇1
ϕ̇2

)
V2(ϕ1,ϕ2) = m1gl1 cos(ϕ1)+m2g(l1 cos(ϕ1)+ l2 cos(ϕ2)).

In both cases, the equations of motion are derived by the
Euler-Lagrange equations d

dt
∂Li
∂ q̇ −

∂Li
∂q = 0 for Li(q, q̇) =

Ki(q, q̇) − Vi(q, q̇) (i = 1,2) with q = (ϕ1,ϕ2) being the
configurations and q̇ = (ϕ̇1, ϕ̇2) the corresponding velocities.
We focus on the scenario, when the system switches a single
time from M1 to M2. One can check that the energies of
M1 and M2 coincide in a switching point xτ = (ϕ1,ϕ1 +θ−
π, ϕ̇1, ϕ̇1) and thus we will have energy conservation along
the entire hybrid trajectory. We assume that the velocities
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Fig. 2. Left: Sketch of the locked double pendulum: in mode 1, the outer
pendulum is locked w.r.t. the inner pendulum with angle θ . In mode 2, the
system is a normal planar double pendulum. Right: Cost function evaluations
and its derivative for a switched trajectory of the pendulum: while J is
continuous w.r.t. switching time τ , nondifferentiable points occur when τ

coincides with a node of the discrete time grid (red dots). This is caused
by the approx. trajectory, which is nondifferentiable w.r.t. τ at those points.

directly before and after the switch are the same, i.e. ϕ̇
−
1 =

ϕ̇
+
1 = ϕ̇

+
2 . As a cost function we choose J(τ) = m(x(T )) =∥∥∥∥(ϕ1(T )

ϕ2(T )

)
−qfinal

∥∥∥∥2

to minimize the distance to a given final

point. This is an algebraic cost function as considered in
Problem 3.1. The final point qfinal = (−1.5487,−1.9733) is
chosen such that the optimal value is τ∗ = 0.33. We ap-
proximate the switching time derivative Jd

′(τ) by evaluating
the corresponding formula for d

dτ
xi+1 and the appropriate

discrete adjoints. In Fig. 2 (right) the nondifferentiable points
of Jd

′(τ), i.e. points in which the left hand and right hand
side derivatives do not coincide, can be clearly seen.

IV. ANALYSIS OF NONSMOOTHNESS

Fig. 2 (right) shows a typical behavior for a large class
of systems: nondifferentiable points occur at all time grid
points except for the optimal switching time point, at which
the derivative DJd smoothly crosses zero (in Example 3.2,
this happens at τ = 0.33). We will first explain this effect
for scalar and higher dimensional systems, but afterwards
introduce an example which has a nondifferentiable optimal
point, i.e. a kink at the minimum of Jd .

Let us first consider the one-dimensional case. The fol-
lowing lemma will be helpful.

Lemma 4.1: Let f be at least C1(R) and convex, while
g is a C(R) function only, i.e. there exist isolated non-
differentiable points. We assume that at such points – one
of them be x0 – a left hand side and a right hand side limit
of the difference quotient exist but do not coincide. Then,
f ◦ g is differentiable in x0 ∈ R if and only if f has an
(unconstrained) extremum in g(x0).

Proof: Assume first that f is extremal in y0 := g(x0),
i.e. f ′(g(x0)) = 0. Then we consider the one sided difference
quotient of f ◦g to which we are allowed to apply the chain
rule, since one sided limits of both functions exists.

lim
x↑x0

( f ◦g)(x)− ( f ◦g)(x0)
x− x0

= f ′(g(x0)) · lim
x↑x0

g(x)−g(x0)
x− x0

=0

Analogously, this holds for the limit from the right. Thus
both directional derivatives coincide and so they define the
derivative of f ◦g at x0 to be zero. If we now assume this last

statement to be true, the only solution of this one dimensional
equation

f ′(g(x0)) · lim
x↑x0

g(x)−g(x0)
x− x0

= f ′(g(x0)) · lim
x↓x0

g(x)−g(x0)
x− x0

is f ′(g(x0)) = 0. So g(x0) is a critical point of f and because
f is assumed to be convex, it is an extremum.

Back to discretized STO problems, we see that the in-
terplay of the discretized cost functions Ψk with the discrete
trajectory as a C0-function of τ may or may not cause nondif-
ferentiable optimal points. Whenever there is an admissible
τ ∈ [0,T ] that generates a discrete trajectory which minimizes
Ψ(xd) = ∑

N
k=0 Ψk(xk) as an unconstrained optimum, this will

be the minimizer of Jd = Ψ(xd(τ)) as well and it will be
smooth regardless of a possible nonsmoothness of xd(τ) at
that point.

In higher dimensions (but the same situation as in
Lemma 4.1), it still holds that if g(x0) ∈ Rn is an un-
constrained extremum of f : Rn → R on Rn, then f ◦ g
is differentiable in x0 with D( f ◦ g)(x0) = 0. In addition,
there are further chances of differentiability in x0 despite
nondifferentiability of g in this point, since D( f ◦ g)(x0) =
D f (g(x0)) ·Dg(x0) = 0 may be also achieved if the deriva-
tives are orthogonal to each other. However, this does not, of
course, generally exclude the existence of nonsmooth optima
in higher dimensional switched systems.

In the following we present a simple one-dimensional
example which does not fulfill the requirements of Lemma
4.1 such that the optimum is nonsmooth. Although this is a
cooked up example, it shows that nonsmoothness at optima
may occur in more complex control systems as well and has
to be accounted for in the optimization.

Example 4.1: Consider the switched linear system

ẋ =

{
Ax t ≤ τ

Bx t > τ

with A = 0.2 and B = −1.5 and initial point x0 = 10.1.
We take a rough discretization of the time interval [0,2]
by ∆t = {0,1,2}. The discrete trajectory xd = {x0,x1,x2}
together with xτ at the switching point is generated by
an explicit Euler scheme (Fig. 3). Fig. 4 shows that the
minimum of xN(τ) is at τ = t1 = 1. For the cost function,
only a final point cost is considered, such that (6) reduces to

Jd(τ) = ΨN(xN(τ)).

We choose ΨN(x) = (x+10)2 which is smooth and convex,
but its extremum at x =−10 is not in the image of xN(τ) for
τ ∈ [0,2] (see Fig. 4). The resulting Jd(τ) is given in Fig. 5.
Obviously, it has a minimum in τ∗ = 1 but it is nonsmooth
there, so J′d(τ

∗) = 0, the usual optimality condition, does
not hold.

V. OPTIMIZATION

To solve a switching time optimization problem as Prob-
lem 2.1, we apply numerical optimization techniques to the
discretized Problem 3.1. In the previous section we showed
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Fig. 3. Trajectories for varying τ ∈ [0,2] of Example 4.1. The first trajectory
for τ = 0 is plotted in cyan, the following ones in blue, the trajectory
corresponding to τ = 1 in red (note that this one gives the minimal value
for xN+1). Trajectories for τ > 1 are plotted in black except for the last one
(τ = 2) which is green.
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Fig. 4. The final point of the discrete trajectory, xN , plotted as a function
of τ for τ ∈ [0,2], is nonsmooth at the grid point τ = 1.

that the discretized problem is nonsmooth. Therefore we
cannot apply ordinary methods for nonlinear optimization,
since those are known to fail for nonsmooth problems (cf.
e.g. [10]): convergence to wrong points, failure of the stop-
ping criteria or extremely inaccurate gradient approximations
may occur.

A simple method of smooth optimization is the method of
gradient descent [11]. For nonsmooth functions the gradient,
which does not exist everywhere, can be replaced by subgra-
dients. In the following we assume that the cost function is
convex, such that we can use the theory of ordinary subgradi-
ents. However, convexity cannot be assumed for discretized
STO problems in general, so it might be necessary to use
generalized subgradients as proposed e.g. in [12].

Definition 5.1 (Subgradient and Subdifferential, cf. [10]):
Let f : X → R be a convex function on the convex open set
X . A vector g ∈ Rn is called a subgradient of f in x ∈ X , if

f (y)− f (x)≥ gT · (y− x) ∀y ∈ X .

J
d
(τ
)

τ

Cost function evaluated for τ ∈ [0, 2]
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Fig. 5. Jd = Ψ(xN(τ)) has a nonsmooth point at the optimum, although
Ψ(x) = (x+10)2 itself is quadratic, thus smooth and convex.

The set ∂ f (x)⊂ Rn,

∂ f (x) = {g ∈ Rn |gT (y− x)≤ f (y)− f (x) ∀y ∈ X}

is called the subdifferential of f in x ∈ X .
The necessary and sufficient optimality condition for

convex nonsmooth functions is: x∗ ∈ X is a minimum
of f if and only if 0 ∈ ∂ f . For the directional deriva-
tive f ′(x;d) = inft>0

f (x+td)− f (x)
t with d ∈ Rn it holds that

f ′(x;d) = maxg∈∂ f (x) gT d for all d ∈Rn. If f is differentiable
in x, the subdifferential reduces to ∇ f (x) [12].

We apply the following algorithm, similar to subgradient
methods proposed in [10] or [13], to the discretized switching
time optimization problem1 with cost function Jd : [0,T ] ⊂
R→ R, Jd(τ) = ∑

N
k=0 Ψk(xk(τ)).

Algorithm 5.1 (Subgradient descent with projections):
Take an initial point τ(0), choose small values tolg, tolτ and
set k := 0.

1) Compute a subgradient g(k) ∈ ∂Jd(τk)
2) Stopping criteria: if ‖g(k)‖ ≤ tolg or ‖τ(k−1)− τ(k)‖ ≤

tolτ → stop!
3) Let d(k) =−g(k)/‖g(k)‖. Choose some appropriate sk ≥

0 and define τ(k+1) = P[0,T ](τ(k) + skd(k)).
4) Set k := k +1 and return to 1.

Note that in the previous section, we identified Jd to be
“piecewise-C1” ([10]), i.e. a gradient exists almost every-
where (and a directional derivative can be always given).
Thus, the probability that we have to compute a real sub-
gradient in step 1 of Algorithm 5.1 is zero, otherwise we
would take a directional derivative. However, in step 2, the
first stopping criterion (‖g(k)‖ ≤ tolg), which is common in
smooth optimization, does not take effect if the minimum is
a kink as in Example 4.1. Therefore, we add the second, very
simple stopping criterion. Advanced nonsmooth optimization
techniques such as bundle methods (cf. [10] for an early
reference; much research on these methods followed since
then) allow more sophisticated stopping criteria. In step 3,
P[0,T ] denotes a projection onto the feasible (convex) set
(cf. [13]), i.e. the interval [0,T ] in our case.

Convergence of the algorithm, even though with a very low
rate ([10, 13]), is assured if the step sizes fulfill limk→∞ sk =
0 and ∑

∞
k=0 sk = ∞. A simple choice of step sizes that meet

this conditions is sk = 1/(k + 1). In case the optimal value,
J∗d is known (e.g. if the distance to a reference trajectory has
to be minimized, which is admissible for some τ ∈ [0,T ]) an
optimal choice of step sizes is given by

sk = ‖g(k)‖−1 · (Jd(τ(k))− J∗d ) (13)

(see e.g. [10]).
Example 5.1 (Nonsmooth optimum): We consider again

Example 4.1. As seen before (cf. Fig. 5) the cost function is
nonsmooth at the optimum. So ‖gk‖ will never come close
to zero, although the optimal solution is obviously given by

1The general statements hold for STO problems with multiple switches, of
course. However, since we apply the algorithm to the previously introduced
one-dimensional optimization problems, we omit to introduce a vector of
switching times here.
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Fig. 6. Algorithm 5.1 shows, as expected, a slow convergence when applied
to Example 5.1 with τ(0) = 1.7 and tolτ = 5 ·10−4.
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Fig. 7. Steps of the subgradient algorithm applied to Example 5.2 with
the optimal choice of step sizes and starting point τ(0) = 0.41.

τ∗= 1.0 in accordance with the nonsmooth optimality condi-
tions: zero (interpreted as a horizontal straight line supporting
the graph of Jd(τ) in τ = τ∗) is in the subgradient of Jd(1.0).
We apply Algorithm 5.1 with the simple choice of step sizes,
sk = 1/(k + 1) and choose tolerances tolg = tolτ = 5 · 10−4.
Starting with τ(0) = 1.7, the algorithm terminates after almost
2000 steps because the change in τ(k) is less than tolτ . The
best, i.e. minimal J(k)

d has already occurred at step 981. This
example shows the bad convergence of this simple algorithm
(also cf. Fig. 6) and the need for improvement, especially in
step size control. Assuming we knew the optimal value of
J, the optimal step size strategy (13) needs only six steps to
find the optimal switching time.

Example 5.2 (Hybrid double pendulum): As it has been
already seen in Example 3.2, the cost function chosen for the
hybrid double pendulum is smooth at the optimum (cf. again
Fig. 2), so the (normal) stopping criterion ‖gk‖ ≤ tolg of
Algorithm 5.1 may apply now. Recall that we had Jd(τ) =
ΨN(xN(τ)) =

∥∥(ϕ1,N ,ϕ2,N)T −qfinal
∥∥2 with qfinal generated

by the discretized trajectory with τ∗ = 0.33. Thus, we have
an admissible optimal solution and therefore, the optimal
costs are known to be J∗d = 0. We choose τ(0) = 0.41,
tolτ = 10−12, and tolg = 10−8. Taking optimal step sizes,
as explained above, the algorithm terminates after 27 steps
with ‖DJd‖= 6.01 ·10−9 and the optimal solution τ∗ = 0.33
up to machine precision (cf. Fig. 7).

VI. CONCLUSIONS
The numerical treatment of STO problems requires a

discretization of the switched system’s dynamics. It has
been shown that this discretization destroys the problem’s
smoothness. However, the discretized problem remains dif-
ferentiable almost everywhere and gradient formula based
on discrete adjoints have been proposed for the discretized
problem. Nevertheless, the nondifferentiable points forbid an
application of ordinary optimization techniques, since even
the optimal value may be at a kink of the discretized cost
function. We therefore proposed a simple subgradient method
which has been successfully applied to an example with a
nonsmooth optimum and to the STO of a hybrid pendulum.

In future work, more sophisticated nonsmooth optimiza-
tion techniques such as bundle methods have to replace
Algorithm 5.1 to improve convergence even for higher di-
mensional problems. On the one hand, the generalization to
several switching times τ̄ = (τ1, . . . ,τm), m > 0 is straight-
forward since the formula derived for the derivatives directly
apply to the partial derivatives ∂Jd

∂τi
for i = 1, . . . ,m. On the

other hand, if we do not forbid coinciding switching points
τi = τi+1, the nondifferentiability caused by these events (cf.
[3]), has to be taken into account as well. Thus, it would be
interesting to combine the algorithm proposed by Egerstedt
et al. [3] with our optimization method for discretized STO
problems.
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