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Abstract— This paper presents an algorithm for active search
where the goal is to calculate optimal trajectories for au-
tonomous robots during data acquisition tasks. Formulating
the problem as parameter estimation enables us to use Fisher
information to create an explicit connection between robot
dynamics and the informative regions of the search space.
We use optimal control to automate design of trajectories
that spend time in regions proportional to the probability of
collecting informative data and use acquired data to update
the probability closed-loop. Experimental and simulated results
use a robotic electrosense platform to localize a feature in one-
dimension. We demonstrate that this method is robust with
respect to disturbances and initial conditions, and results in
successful localization of the feature with a 100% experimental
success rate and a 34% reduction in localization time compared
to the next best tested controller.

I. INTRODUCTION

Acquiring information is a fundamental capability for
sensing systems navigating unknown environments. Whether
an autonomous vehicle traversing unfamiliar terrain or an
animal looking for prey, collecting environmental data re-
duces to two central questions: where are the informative
areas of the search domain, and given these areas how should
the system make decisions about what actions to take? The
interplay between these ideas drives the need for active
search.

Active search should enable the sensing system to dynam-
ically choose trajectories based on the current knowledge of
the state, or lack thereof. Current active search algorithms
attempt to minimize uncertainty or maximize information.
However, because these metrics rely on optimizing expected
observations, these methods are typically computationally
expensive [1]. Using the South American weakly electric fish
as a motivating biological example, we solve this problem
more effectively than current techniques.

Figure 1a shows an electric fish, Apteronotus albifrons,
and Fig. 1b demonstrates the fish’s unique sensing modality
involving a self-generated electric field (reviews: [2], [3]).
The fish has electroreceptors along the surface of its skin that
are sensitive to changes in the electric field due to external
objects. The electric fish demonstrates the importance of
considering how the sensing modality effects the spatial
distribution of sensory data. The voltage perturbation profile
on the surface of the body (the electric image) is non-unique
with respect to the distance of the object from the sensor, as
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shown in Fig. 1c; it is not possible to uniquely determine
object position from noiseless sensor measurements. The
sensing range is also quite small– the fish has to be relatively
close to an object to localize it. Additionally, the movement
of the sensors involve the dynamics of the entire animal.
Consideration of sensor dynamics and efficiency of the
sensing trajectory when planning control for exploration is
therefore especially important for the electric fish [4], and
many other near field sensors, e.g. tactile sensors, ultra-
shortwave sonar, and underwater image sensors (e.g. [5]).

We formulate an active search solution for general fea-
ture identification problems. This type of problem involves
resolving the uncertainty of environmental parameters using
noisy measurements. We do not take into account uncertainty
in pose or process noise. Parameters are variables in the
model of the system or environment. Examples include
location, size, length, or conductivity of some feature which
defines the map. In the example in Section III the parameter
we estimate is the position of a submerged sphere.

The standard approach to search strategy in many active
mapping problems involves defining a scalar metric over the
entire search domain and then choosing a movement which
minimizes that metric. Metrics such as entropy, variance,
or A-, D-, E-optimality [1], [8]–[11] are often used. For
example, one could represent the probabilistic belief as a
distribution and calculate the control option that best mini-
mizes the expected entropy. However, these technique can be
computationally expensive, as an expected measurement has
to be calculated for every update, and calculations increase
exponentially with the number of parameters [1].

Rather than use a metric that requires calculation and
propagation of the current belief of the uncertain parameter,
we use Fisher information. Fisher information quantifies the
ability of a random variable, in this case a measurement, to
estimate an unknown parameter [12]. Fisher information is
generally thought of only in parameter space, however, we
extend the traditional understanding of Fisher information to
the spatial domain, as the observation model depends on the
spatial location of the sensor and parameter. As Section II-
C will show, Fisher information predicts that the locations
where the ratio of the derivative of the expected signal to
the variance of the noise is high will give more salient data,
and thus will be more useful for estimation.

For our method, we express the Fisher information in
terms of the measurement model (a function of sensor
location and parameter value) and the parameter. Fisher
information is generally defined with respect to an estimated
or known value of the parameter. However, we define a
probabilistic model over the parameter of interest (target



(a) The black ghost knifefish, Apteronotus albifrons. Photograph courtesy
of Per Erik Sviland.

(b) A coronal view of the electric fish showing its self-generated electric
field in 2D. The object (in gray) perturbs the electric field (black lines) and
the isopotential lines (orange). Modified from [6], Fig. 2.

(c) A 1D model of the voltage perturbations along the red line in (b) using
the equations presented in Chen et al. [7]. We assume a 1-inch diameter,
non-conductive sphere, 7 cm away from the sensors.

(d) The Fisher information of the signal in (c). Maximally informative
areas of the search domain are at x = ±0.05. Active search decisions
should take this into account.

Fig. 1: Electric field perturbation and Fisher information for the electic fish.

location in the later example). We use a Bayesian model
to update the probability based on collected measurements.
In order to produce a continuous map of relevant and non-
relevant search locations in the search domain, we take the
expected value of the Fisher information with respect to
the Bayesian-updated PDF of the parameter. We call this
distribution the expected information distribution (EID). This
formulation and expectation of the Fisher information allows
us to connect the current knowledge of the parameter of
interest to the informative regions of the search space, and
ultimately to the sensor dynamics.

The next question is how to efficiently use the EID to
plan and execute movement necessary for search. There are
several factors which make this a nontrivial problem for both
biological and robotic systems: 1) A sensor cannot move
instantaneously to the areas where the EID is maximal and
2) there is a tradeoff between completeness of coverage
and time and energy spent during exploration [13]. The
simplest, commonly used, approach would be a greedy-type
search strategy, where the sensor moves in the direction
which locally maximizes the search metric [14]–[16], in our
case the EID. This approach, while computationally simple,
ignores sensor dynamics and convergence rates and accuracy
often suffer due to local minima. We explicitly demonstrate
this comparison in Section III.

We have therefore developed a search strategy which in-
volves solving for a continuous, finite time horizon trajectory
that takes into account the global structure of the EID.
This approach involves two components: first, defining an
objective function dependent on both control effort and the

concept of ergodicity relative to our EID [17], and second,
using the objective function in infinite-dimensional trajectory
optimization [18]. In this context, ergodicity is a way of
relating the time-averaged behavior of the search trajectory
to the EID. A maximally ergodic trajectory with respect to
a spatial distribution is one for which the percentage of time
spent in any region in space is equal to the measure of
that region. This means that the sensor should spend more
time collecting measurements in areas that are more likely
to contain relevant data. Thus, we can calculate a continuous
trajectory that optimally samples the EID that is guaranteed
to be dynamically feasible, while balancing control effort.

In this work we consider a one-dimensional search do-
main. Our method, however, readily extends to higher di-
mensional search domains such as R2 or SE(2) [19], as well
as higher dimensional parameter spaces. Nevertheless, even
in one dimension, we demonstrate significant improvement
in performance over other approaches in Section III.

A. Motivation

The long term motivation of our work is three-fold. Our
first motivation comes from understanding the science of
biological electrolocation, in particular how this sensing
modality is connected to motion during search. The sens-
ing modality that we use in modeling and on our robot
involves the same fundamental physics used by the electric
fish, providing a valuable platform for comparison against
biology and our methods involving Fisher information and
ergodicity represent a first step towards a hypothesis of the
basic concepts important in biological search. Our second
motivation comes from an application-driven engineering



perspective. Electrosensing technology is highly adaptable
for low velocity, highly motile vehicles operating in cluttered
environments [10], and the distribution of sensors on the
robot allows for omnidirectional sensing. Lastly, the main
contribution of this paper is developing theory for robotic
probabilistic search and estimation.

II. SEARCH ALGORITHM

A. Problem Definition and Notation

We developed an algorithm for an active search method
with the goal of estimating an unknown environmental
parameter, θ. We assume a single dimensional search domain
X ⊂ R. The algorithm assumes that we have a measurement
model v = Υ(θ, x) + δ, where v is the measurement and the
sensor location, x, is deterministic. Υ(·) is a function of
sensor location and parameter and δ represents zero mean
noise with variance σ2. The Fisher information is defined
over x and θ, and is calculated offline.

An overview of our method is shown in Algorithm 1.
The algorithm is written in terms of iterations of the search
trajectory execution, not single measurements. The algorithm
is initialized with an initial sensor position x(0), voltage
measurement V0(0), and an initial distribution (uniform)
representing the probability of the parameter value p(θ).

At each iteration, the PDF p(θ) is updated as defined in
Section II-B, given the previously measured signal Vi(t)
and trajectory xi−1(t). The expected value of the Fisher
information, defined in Section II-C, is then taken with
respect to the distribution p(θ), yielding the EID. The EID,
is then used to calculate the optimally ergodic control for
the subsequent search strategy of the sensor over sampling
time T . This strategy is executed, collecting measurements.
The algorithm terminates when the standard deviation of the
PDF representing object location, SD(θ), is smaller than a
chosen tolerance ε. Note that for noisy systems ε will be
bounded away from zero.

Algorithm 1
1: Init. p(θ) to a uniform distribution
2: Init. x(0),V0(0),Υ(θ, x), ε
3: Calculate the Fisher Information I(θ, x) using Eq. (6)
4: while SD(θ) > ε do
5: Update pi(θ) given Vi(t) according to Eq. (1)
6: Calculated the EID using Eq, (7)
7: Calculate optimally ergodic control ui(t)
8: Execute trajectory xi(t), measuring Vi+1(t)
9: i=i+1

10: end while

B. Probabilistic Model and Bayesian Update

The PDF p(θ) at every iteration i of Algorithm 1 is
updated using a Bayesian rule:

p(θ|Vi(t), xi(t)) = ηp(Vi(t)|xi(t), θ)p(θ), (1)

where p(θ) is the probability calculated at the previous
iteration, η is a normalization factor, and p(V i(t)|xi, θ) is
the innovation.

In order to calculate the innovation, we first find the
difference between the expected value of the signal v calcu-
lated given the measurement model and the measured signal
V i(tj) at every time step tj along the trajectory. Defining

ej(θ) = V i(tj)− E[v|xi(tj), θ] (2)

as the error for each time step, we can calculate the prob-
ability of observing the measured signal dependent on the
parameter value. The probability of observing v given the
parameter θ is calculated as follows:

p(V i(tj)|θ, xi(tj)) = p(ej(θ)) (3)

where the probability is defined by a zero mean distribution
with variance σ2 (zero error corresponds to the highest
probability of a correct estimate). The innovation for the
entire sampling trajectory at that iteration is the product of
the probabilities for each sampling time tj ,

p(Vi(t)|θ, xi(t)) =
T∏
j=1

p(Vi(tj)|xi(tj), θ). (4)

C. Fisher Information

The formal definition of Fisher information using [12] for
estimating a parameter θ is:

I(θ, x) =

∫
v

(
∂p(v|θ)
∂θ

)2
1

p(v|θ)
dv. (5)

When the objective is to estimate a parameter from a
random variable v ∼ N (θ, σ2), the Fisher information
reduces to I = 1/σ2 [12]. However in our case, as our
observation v is a random variable dependent on a function
of the parameter θ, assuming Gaussian noise, the Fisher
information for estimation of θ can be simplified to

I(θ, x) =

(
∂Υ(θ, x)

∂θ
· 1

σ

)2

. (6)

∂Υ(·)/∂θ is the partial derivative of Υ(·) with respect to the
parameter. The Fisher information, I(θ, x) can be thought
of as the amount of information a measurement provides
at location x for a given estimate of θ (based on the
measurement model). For example, Fig 1d shows the Fisher
information for the voltage perturbation transect in Fig 1c
for a particular value of θ over the entire search domain.
Since the value of θ is represented as a PDF as in Section
II-B, we can take the expected value of I(θ, x) with respect
to p(θ) to determine the EID, Φ(x), over the search domain.
The expected value is calculated as follows:

Φ(x) =

∫
θ

I(θ, x)p(θ) dθ. (7)

D. Ergodic Optimal Control

1) Ergodic Metric: Ergodicity is a statistical concept
which relates the time-averaged behavior of a trajectory
to a spatial distribution. The time-averaged behavior of a
trajectory can be expressed as a distribution over the spatial
domain by calculating the percentage of time the trajectory
spends at each point x [17].



(a) An image of the SensorPod robot with excitation electrodes at either
end and sensors that run axially down the pod.

(b) Top view of a model of the SensorPod showing its electric field. The
object (in gray) perturbs the electric field lines (red) and the isopotential
lines (black).

(c) A 1D model of the voltage perturbations along the blue line in (b)
given a 1-inch diameter non conductive object located as shown

(d) The Fisher information of the signal in (c), highlighting that the
globally maximally informative area of the search domain is at x = 0
with smaller maxima at x = ±0.1.

Fig. 2: Electric field perturbation and Fisher information for the SensorPod.

The metric used in our trajectory optimization will be the
distance of the time-averaged trajectory from being ergodic
with respect to the distribution Φ(x). This distance can be
quantified by defining a norm on the Fourier coefficients of
both distributions [17]. This norm is the sum of the weighted
squared distance between the Fourier coefficients of the spa-
tial distribution, φk, and those of the distribution representing
the time-averaged trajectory, ck(x(t)). The ergodic metric
will be defined as E(x(t)), as follows:

E(x(t)) =
K∑
k=0

Λk|ck(x(t))− φk|2, (8)

where K is the number of basis functions and Λk is a
weighting factor [17]. When E(x(t)) = 0, the statistics of
the trajectory perfectly match those of the distribution Φ(x).

2) Trajectory Optimization: For a general, one dimen-
sional system with dynamics ẋ(t) = f(x(t), u(t)) the goal
is to solve for the continuous trajectory which minimizes an
objective function based on both the ergodic metric and the
control effort, defined as

J(x(t), u(t)) = QE(x(t)) +

∫ T

0

1
2Ru(τ)2dτ, (9)

where Q and R are scalar parameters defining the relative
importance of minimizing ergodicity vs. control effort. Min-
imization of this objective function is accomplished using
an extension of the projection-based trajectory optimization
method presented in [20]. For details, see [18].

III. EXPERIMENTAL AND SIMULATED EXAMPLE

A. Model
The SensorPod (see Fig. 2) is a robotic electric fish that is

inspired by the sensing capability of the electric fish in water.
The SensorPod has two excitation electrodes that create an
oscillating electric field, and 35 voltage sensors along the
body. These sensors allow detection of voltage changes in
all three spatial dimensions, and sample at 100 Hz.

We model the standard deviation of the measurement
noise, σ, to be 100µV , on the order of the noise level of
the sensors in the SensorPod. The SensorPod is attached to
4-DOF gantry (x, y, z,Θ) which has a maximum speed of
2.2 m/s and can be accurately controlled to <1 mm. It is
confined to a tank that is 1 by 2 meters and 1 meter deep.
We assume a fixed angle Θ.

The task is to estimate the location α of a submerged
object using the SensorPod. Chen et al. [7] describe the
effects of spherical objects located in an electric field as

Υ(α, x) = χ
r3E(α) · (x− α)

|x− α|3
. (10)

In this expression x is the location of the SensorPod, r
the radius of the sphere, E(α) the electric field vector at
the object’s location, and χ a conductivity contrast factor.
Υ(α, x), assuming Gaussian noise, will serve as the mea-
surement model for Algorithm 1. Note that the measurement
model of the fish and SensorPod differ as the orientation of
the generated electric fields are perpendicular, as shown in
Figs. 1b and 2b. The formulation of the EID is applicable to
any differentiable measurement model.



Fig. 3: Configuration for experimental and simulated trial. SensorPod, target
and distractor object locations are measured from the center of the tank.
Target object is in green, distractor in pink. yd and y are fixed for all trials.

The design of the gantry system allows us to use a kine-
matic model of the SensorPod, i.e. the equations of motion
are simply ẋ(t) = u(t). For the present work, the kinematic
model and one dimensional search space enable comparison
with other search methods in Section IV. However, it should
be noted that the method presented is applicable to dynamic,
nonlinear systems as well.

B. Experimental Design

The SensorPod moves through the water along a straight
line along the x axis as shown in Fig. 3. Two non-conductive
spheres of 1-inch diameter are placed in the tank at fixed
distances from the line of motion of the SensorPod. The
closer sphere, green in Fig. 3, is the target object. The pink
sphere is a distractor object. The target object was placed
at a fixed distance of y = 0.2 meters from the SensorPod
line of motion, and the distractor at yd = 0.25 meters
for all trials. Placing the distractor object further from the
SensorPod line of motion has two effects; both the magnitude
of the voltage trace and the rate of change are decreased.
Because of this, the voltage signal from the distractor ball is
similar but not identical to that of the target object. Figure
4 shows a simulated voltage profile measured across the
search domain for both objects at the indicated positions
along the x-axis. A minimum distance between objects was
maintained, allowing us to model the two voltage signals
as additive in the measurement model. In general, however,
signals due to multiple objects are not additive [21].

We assess performance using failure rate and time to
completion. We define failure as either exceeding 100 sec-
onds before completion per trial, or converging to an object
location greater than 1-cm from the correct value. This
corresponds to an estimate more than twice the standard
deviation used as our termination criterion.

We performed a Monte Carlo simulation for each control
algorithm presented in section IV. We executed ten trials with
the position of the target object at 11 equally spaced locations
along the domain. For each of these 11 target locations,
10 locations for the distractor ball were randomly chosen,
all at least 25 centimeters from target. 110 trials allowed
significant separation of the results from different controllers
while remaining tractable in simulation. In all trials, the
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Fig. 4: The voltage perturbation for two objects in the domain. The target
object has a peak voltage of ±0.35 mV, and the distractor object has a peak
voltage of ± 0.19 mV.

SensorPod position is initialized to x, y = 0. For each of
the algorithms, measurements were made at 100 Hz along
the trajectory. In simulation, Gaussian noise with standard
deviation of 100µV was added to the measurement model.

For the simulated trials, our time horizon and update
frequency were set to 1 second. In addition, we were able
update the probability function, p(α) after every measure-
ment. In order to limit sloshing of the water in experiment,
which negatively affects sensor readings, we had to limit the
velocity of the SensorPod. Therefore, for the experimental
trials we designed our ergodic trajectories with a time
horizon of 8 seconds and set the weight on the control
in the objective function (Eq. 9) accordingly. This gave us
qualitatively similar trajectories to the simulated trials, as
seen in Fig. 6, but with lower velocities.

1) Comparison of Fisher information and minimum en-
tropy controllers: We use a single-step control algorithm
to compare two versions of a minimum entropy metric to
the metric we developed using Fisher information (not using
trajectory optimization). The single-step control involves
optimizing a metric to select a control action from a set
of 100 predefined velocities over a fixed time horizon. We
compare two versions of a standard minimum entropy metric
and the metric using Fisher Information we developed.

For both minimum entropy methods, we use
arg maxu

∫
B(b, z, u)(x′) logB(b, z, u)(x′)dx′ [11] to

define the objective function, where B(b, z, u) is the belief
after executing control u and observing z given the current
belief b. We assess two different methods of calculation
of the expected observation for this approach. For entropy
controller #1 (EC1), the decrease in entropy after each
potential control action is calculated using the expected
observation given the maximum value of p(α). Entropy
controller #2 (EC2) calculates the decrease in entropy for
a given control action, where the expected observation is
calculated for a weighted average of all possible object
locations, weighted proportionally to p(α).

Finally, the Fisher information greedy controller (FG),
calculates the integral over the EID for each control action.
In all three cases, the metric is calculated for all potential
control actions, and the action that maximizes the metric
(minimal entropy or Fisher information) is chosen.
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Fig. 5: Results for Monte Carlo simulation, where distractor location is
randomly chosen for 11 fixed target locations. The ergodic controller has a
0% failure rate for all locations and the fastest average time to completion.

2) Comparison of ergodic trajectory optimization and
greedy controllers: We evaluate the effectiveness of the ap-
proach in Algorithm 1 using the SensorPod in simulation and
experimentally. In particular, we compare the performance of
our ergodic algorithm (ER) to three versions of a standard
greedy approach to solving this type of problem. All four
are different ways of planning a search movement to sample
the distribution Φ(x), allowing us to compare the use of
a continuous ergodic search strategy to greedy approaches.
The Fisher information greedy (FG) controller was the same
one used in the previous claim. The discrete control action
that maximizes the amount of Fisher information observed,
defined by the EID, is chosen. The locally greedy controller
(LG) takes a single step in the direction of the gradient of
the EID at a fixed velocity of 4 cm/s at every update. The
globally greedy controller (GG) calculates a trajectory to
move to the location of the EID maximum. We also included
a random walk (RW) controller that implements a step with
a random velocity at every update.

IV. RESULTS AND DISCUSSION

Claim 1: Fisher information results in better performance
than min-entropy: In table I, we compare the order of
computation, the time required to perform all necessary
calculations to select the optimal control action at each
iteration, and success rate. These comparisons were only
performed in simulation using Matlab.

Description EC1 EC2 FG
Order (n) O(tn) O(tn2) O(t)

Update (µ± σ) (s) 1.23± 0.08 1150± 17 0.084± 0.010
Success (%) 60% 93% 100%

TABLE I: Data from 110 trials for each controller in simulation, where n
is the size of the parameter space and t is the time per iteration.

Claim 1 demonstrates the benefit of using Fisher informa-
tion over a more standard search metric such as minimization
of entropy. EC1, which calculates the change in entropy
considering the expected observation for the highest prob-
ability of the object location, was computationally efficient.

However, the algorithm had a success rate of only 60%,
often failing due to local minima or resulting in incorrect
localization of the distractor object, particularly for exper-
imental configurations where the SensorPod was initialized
closer to the distractor than the target (data not shown). The
entropy controller that calculated the expected minimization
of entropy based on the probability distribution (EC2) had
a good success rate, however computation time averaged
20 minutes per iteration. Finally, the algorithm that chose
control actions which maximized the Fisher information over
the EID (FG) was always successful and able to update the
trajectory in under a tenth of a second.

Claim 2: Ergodic trajectory optimization outperforms
other controllers using Fisher Information: The results in
simulation and experiment for success rate and average time
until completion, for successful trials only, are summarized in
Fig. 5 and Table II. Figure 6 shows the closed-loop optimally
ergodic trajectory algorithm with respect to the EID using the
Fisher information metric. The EID is shown as a density
in blue. A single trial is shown for both the simulated and
experimental system. Table II and Fig. 5 show that both

Description ER GG LG FG RW
Exp. Success (%) 100% 60% 50% – –

Exp. Time (s) 15.2 32.2 41.0 – –
Sim. Success (%) 100% 71% 66% 100% 99%

Sim. Time (s) 7.6 16.0 17.6 10.6 48.1

TABLE II: Data from experiment and simulation

in simulations and experiments, the ergodic controller with
Fisher information always successfully located the target ob-
ject, and on average more quickly than the greedy algorithms
and random walk.

When the target position was close to the SensorPod initial
position (α < 0.1 m), the algorithms perform comparably.
However for the greedy algorithms, the further the target was
from the initial starting point of the SensorPod, the more
likely the method was to fail or spend a large amount of
time in regions of local minima caused by the presence of
the distractor object. The ergodic controller, on the other
hand, localized the ball in essentially constant time and
with 0% failure rate. Our results demonstrate that the main
benefits of the ergodic trajectory optimization algorithm are
that the search strategy is essentially insensitive to the initial
conditions (i.e. whether or not the sensor happens to start
out closer to the distractor or target object) and robust in the
presence of disturbances.

Simulation and experimental results for time to completion
are dissimilar because of velocity constraints; experimental
trials mandated slower trajectories, updated every 8 seconds.
However, both of the ergodic trajectories were able to
complete the task with 100 % success rate. These exper-
iments demonstrate the benefit of performing a continuous
trajectory optimization using the ergodic metric on the Fisher
information: the Fisher information allows us to define a
measure over the entire search domain which predicts where
the most valuable measurements can be found, and the



Fig. 6: An example of closed-loop optimally ergodic search in simulation is
shown. The EID is shown as a density plot. The ergodic trajectory initially
sweeps a large area given the nearly uniform EID, exploring progressively
less of the domain as the uncertainty decreases.

ergodic trajectory optimization allows us to take advantage of
this global distribution, calculating a trajectory that samples
proportionally to the amount of Fisher information expected
in a given region.

V. FUTURE WORK

We are developing an implementation of this algorithm in
higher dimensional search domains. While not an issue in the
1D search domain, electrosense is orientation dependent. The
search algorithm will therefore be implemented in SE(2)
and SE(3) for more complex robot dynamics [22]. We also
plan to generalize the method to allow calculation of optimal
trajectories for multiple robots. Since Fisher information
is additive [12], we are also able to consider multiple
parameters by taking the expected value with respect to
multiple probability functions. In addition, a parameter of
interest does not have to be the location of an object within
the search domain; all that is required is a differentiable
observation model that relates the parameter of interest to
the search domain. For example, future work will involve
estimating the location of a sphere in two dimensions as well

as the radius of the sphere. Finally, we plan to extend the
ergodic control strategy to include time horizon and sampling
time optimization, allowing us to optimize the way in which
we formulate the receding horizon control problem, further
reducing localization time.
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