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Abstract—This paper focuses on detecting and localizing a
surface feature on an otherwise uniform surface using kinematic
data collected during an exploratory procedure. Assuming
that characteristics of the feature shape and surface shape are
known, a surface feature is detected by performing least squares
estimation calculated via impulsive hybrid system optimization.
The optimization routine is based on an adjoint formulation
which allows the algorithm to be computationally efficient and
scalable. This algorithm is also shown to perform well with
the presence of measurement noise and model noise, both in
simulations and experiments.

Note to Practitioners—Traditionally, tactile sensing focuses on
using collocated tactile sensors to recognize objects. However, it
is not always practical to place tactile sensors at the location
of contact. We demonstrate a new way to detect and localize
surface features using the dynamical response of a robotic finger
or sensor. This approach facilitates tactile object identification in
scenarios where tactile sensors might not be practical.

Index Terms—tactile estimation, feature detection, feature
localization, hybrid optimal control.

I. INTRODUCTION

SURFACE feature detection plays an important role in
haptic exploration—the use of tactile data for sensing and

estimation—for object identification. People are quite good
at detecting and recognizing objects using tactile sensing [1].
For instance, reaching into a bag to find a key among other
items is a task that most people can accomplish readily. The
same task is challenging for a robot; in addition to the ability
to search and take out the key, the robot needs to know
what measurements (e.g., collocated tactile sensing in the
form of force measurements at the fingertips, kinematic data
from joints, etc.) mean in terms a computer can express and
analyze. A distinct feature of a key is the row of edges on
the key blade. This suggests that an object can be identified
using the sense of touch by detecting the object’s geometrical
features—e.g., corners, edges, and their ordered relationships
to each other. Moreover, just as is often done in image
processing, restricting the identification to a subset of physical
characteristics detection and localization can be expected to
be more robust than identification of a complete physical
description of the key. Lastly, restricting to a subset makes
identifying equivalence classes easier; it may be desirable to
classify two objects that have the same features in the same
order as the same type of object, regardless of whether they
disagree in other aspects of their description.
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T. Murphey is with the Department of Mechanical Engineering, Northwestern
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Fig. 1. A surface feature is defined by geometric discontinuities. The symbols
ϕi represent the surface contours away from discontinuities. The symbols µi
represent the coefficient of friction between changes in friction. The goal is
to identify the existence and location of these discrete changes in the surface.

These considerations motivate detecting and localizing fea-
tures based on measurement data. One of the core questions
is how to define a feature in terms of the dynamics of the
sensor; these dynamics can be quite complex if the sensor
is a hand or some other complex object. A feature such as
an edge, corner, ledge, or abrupt change in friction may not
have uniquely defined parametric properties. For instance, a
ledge may be defined by an abrupt change in height, but how
abrupt, how high, etcetera, may not be known a priori. Indeed,
identifying all signals that have a detectable change in height
over a short spatial distance as ledges is probably preferable
for purpose of classification of features. Motivated by this
observation, in the present paper we define tactile features
in terms of the impulsive and hybrid dynamics they induce in
the sensor dynamics and then search through the continuous-
time measurements (i.e., either analog signals or interpolated
discrete-time measurements) looking for impulses and hybrid
transitions that can be mapped to a given feature description.
As we will see in Section III, this characterization of features
has the advantage of identifying a given feature under many
different noise levels.

Given that the amount of uncertainty in a measurement
depends on the surface one is interacting with, and given that
the surface is likely not known a priori and one would like
to use the same calculation regardless of the surface, it is
natural—though not necessary—to pose the estimation as a
least-squares estimation so that the variance of the estimate
does not need to be known ahead of time. There are, of course,
other choices one could make, but we use a least-squares
formulation because it yields a computationally tractable al-
gorithm that does not need information about probability
distribution functions we do not expect to have.

In this paper, detection and localization of a surface feature
based on kinematics of a sensor (e.g., joint configurations of
a robotic finger) is presented. A surface feature is defined by
a distinct dynamical response of a sensor or finger when the
surface feature is encountered. A macro geometrical change in
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Fig. 2. Example of surface feature detection: Noisy measurement trajectories of a simple robotic finger with three revolute joints are recorded when tracing
a surface with a slope. The dark dashed line is the actual surface while the dark grey line in (a) is the set of measurements and the light grey line in (b) is
the (noisy) curvature. The surface profile is reconstructed using forward kinematics from the smoothed noisy joint trajectories. It is not trivial to compute a
meaningful curvature plot from the surface profile in (b) to detect a surface feature.

the contour of a body or a micro change that forms different
surface textures (Fig. 1) will result in a change in the dynamics
of the sensor. In other words, a surface can be segmented into
regions based on features (e.g., flat, curved, smooth, rough,
etc.) found on the surface in which each feature corresponds to
a transition between unique dynamical modes. By identifying
the boundary of each dynamical mode, we can localize these
regions and hence, the corresponding features.

Although the environment is usually in three dimensions,
in this work, features are detected using a two-dimensional
line model because when kinematic data are collected using a
sensor, the path the sensor traced always forms a submanifold
that is two-dimensional. Assuming that the path is generated
by another algorithm (e.g., [2]), the algorithm presented in
this paper analyzes the kinematic information gathered to gain
insights on the path (i.e., surface profile) traced by the sensor.
Specifically, the approach involves two components. First a
relaxation of the hybrid optimization is performed to identify
how many impulses and/or changes in dynamics are present
and then a hybrid optimization is performed to localize the
features. In Section III and IV this algorithm is also shown
to perform well with the presence of measurement noise and
model uncertainties in experiments.

Lastly, a comment on the impact of this work on sensor
choices is called for. A tremendous amount of work in
tactile sensing has, reasonably, focused on collocated tactile
sensors—sensors that are at the point of contact, typically
measuring forces as a function of time. The present work
illustrates that this approach may not be necessary in cases
where high-quality kinematic sensing is available and when
object identification will focus on surface features. This re-
laxation of requirements is helpful in cases where collocated
force sensors are not practical to implement or will not be
physically robust. If such sensors are available, then the fusion
of collocated tactile force data with kinematic data would be
called for; this fusion problem is not discussed in this paper,
but would be a natural next step in the work.

The rest of this paper is organized as follows: Section
I-A presents recent works on tactile object identification and
surface feature detection, and discusses contributions of this
paper by comparing this work with other related works.
Section I-B establishes the notation used in this paper. An

overview of the surface feature detection algorithm is given in
Section II. This algorithm has two components, feature type
estimation and feature localization, which are explained in
Section II-A and Section II-B. The computational complexity
of this algorithm is discussed in Section II-C. Section III shows
results of implementing the algorithm in simulations when
measurement data are noisy. Section IV discusses experimental
results. Section V summarizes the findings of this work and
discusses future research directions beyond this paper.

A. Related Works & Contributions

Object identification based on surface feature detection is
relatively mature in the context of robotic vision. However,
vision-based identification possesses limitations that can be re-
solved by tactile object identification. As a result, exploratory
procedures that benefit from both visual and touch feedbacks
were developed [3], [4].

Robotic haptic exploration includes sensor design [5]–[7],
control and exploration algorithms [2], [8]–[10], and data
interpretation [11]–[18]. Two types of measurement data are
usually available from robotic haptic exploration: geometric
data (e.g., joint trajectories) [8], [9] and tactile sensor data
(e.g., contact normal, forces, contact locations, etc.) [11]–[14],
[18]. This work focuses on data interpretation using geometric
data only.

In some works, tactile sensor data is used to detect surface
features by treating the data as a type of “tactile image” so
that image processing techniques could be exploited [12]–[14],
[18]. In contrast to vision-based machine learning methods,
Kikuuwe et al. [15] derived an impedance perception algo-
rithm that estimates local surface properties such as normal
direction, stiffness and friction coefficient of flat and convex
cylindrical surfaces based on an end-effector’s positions and
forces applied on the end-effector. More recently, Ibrayev et al.
[11] derived a model matching method which can recognize
closed-form surfaces and triangular meshes by searching a
lookup table. Lastly, Okamura et al. [16] presented a curvature-
based method to detect and recognize surface features using
an estimate of local surface curvature. The curvature-based
method is effective when the measurement trajectories are
deterministic or when the noise level in the measurement
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Fig. 3. Suppose that a robotic finger traces a surface and collects data as shown in (a). A data filtering-based method estimates whether a discontinuity in
the surface is encountered at the current step (red dot in (b)) based on data gathered in previous steps. The difference between a feature and noise in data is
unclear at this point. In (c), a clear picture of a slope is seen when data for the entire time window are considered in a smoothing-based method. Hence, a
feature is considerably more salient when more data is included, so this paper focuses on detecting discontinuities over windows of data.

trajectories is relatively low. However, when the noise level
is very high (Fig. 2(a)), it will not be trivial to compute the
curvature from the constructed surface profile (Fig. 2(b)) to
detect a surface feature.

The work in this paper is in contrast to all of the afore-
mentioned research in that it directly uses a description of
the dynamics of the sensor in the characterization of surface
features. Simulation results in Section III show that the surface
feature detection algorithm presented in this paper is able to
localize a surface feature even when the noisy measurement
trajectory shown in Fig. 2(a) is used.

For the purpose of feature detection, a data smoothing
method is preferable to a data filtering method in handling
noisy data. A data filtering method, such as multiple hypoth-
esis testing [19], estimates the likelihood of a feature at a
given time based on data gathered in previous steps. On the
other hand, a data smoothing method estimates the likelihood
that a feature was encountered based on data gathered for an
entire time window including data encountered later in time.
As illustrated in Fig. 3, because the algorithm in this paper
considers data for the entire time window, it is less sensitive
to data noise.

In addition to its noise tolerance, the algorithm presented
here is computationally efficient and scalable. Numerous re-
searchers [9], [20], [21] have applied Bayesian techniques
to localize an object through touch interactions. Although
Bayesian methods are known to produce a good estimate given
enough computational resources, computational complexity of
a Bayesian model usually grows exponentially in the amount
of data considered. Consider a simple surface feature detection
algorithm where two possible modes exist, “finger on feature”
or “finger not on feature”. Using a nominal Bayesian model,
the computational complexity is 2n where n depends on the
number of data collected over a fixed time window. Suppose
that the temporal data density is increased by a factor of 10
in order to gain a higher resolution of a surface feature for a
more precise localization. The computational complexity of a
Bayesian model grows to 210n. (Methods such as the multi-
scan Markov Chain Monte Carlo data association technique
[22] reduce the computational load, but are still comparatively
expensive to compute.) Lastly, the Bayesian approach gener-
ally assumes that uncertainty characteristics are known ahead
of time, which as discussed earlier is undesirable in the context
of feature identification.

The method presented here performs a least squares estima-
tion [23] that has linear dependence on temporal data resolu-

tion. As a result, it benefits from increased temporal resolution
of data without a superlinear increase in the computational
cost.

B. Notation

The trajectory, x(x0, τ1, τ2, ..., τN , δ1, δ2, ..., δN , t), is ab-
breviated as x(t), and xi(t) refers to a segment in x(t) when
t ∈ [τi, τi+1].

A derivative is written as Df(·). The derivative of a function
f(·) with respect to the n-th argument is written as Dnf(arg1,
arg2, ...), and the derivative of a function f(·) with respect to
an argument named arg is written as Dargf(·).

An operator M applied to U is written as M ◦ U . A
linear operator is written in matrix representation using square
brackets such as M ◦V = [M ]V and M ◦ (V,U) = V T[M ]U .

II. SURFACE FEATURE DETECTION ALGORITHM

We assume that a submanifold of a surface with features
can have N segments separated by N − 1 geometrical dis-
continuities. This submanifold will typically be the path the
sensor traces during exploration. When a robotic finger is in
contact with different surface segments, the dynamics of the
finger vary because of the constraint imposed by the surface.
Each surface segment corresponds to one dynamical mode of
the finger’s dynamics. At a geometrical discontinuity, although
the path is continuous, impulses are observed in the velocities
(in the real physical system, these impulses will generally be
slightly smoothed and form very high curvature regions where
the amount of curvature will depend on material properties
of the surface and sensor). These impulses act as markers
for the locations of geometrical discontinuities which define
a surface feature. By estimating the impulse times from the
kinematic data, we find the joint configurations at these times
and localize a feature using forward kinematics [24].

The algorithm presented in this paper uses an impulsive
hybrid system optimization to localize the impulses and thus
the features. However, this optimization requires the exact
number of surface segments and their order. Hence, the feature
detection algorithm has two components: (a) feature type
estimation—is there a ledge, and (b) feature localization—
where is the ledge. Using kinematic data gathered, the first
component of the detection algorithm estimates the number
of surface segments, their types and their sequence through
a relaxation of the impulsive hybrid system optimization.
The second component localizes the surface segments using
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impulsive hybrid system optimization. The two components
of this feature detection algorithm are explained in detail in
Section II-A and Section II-B. The computational complexity
of this algorithm is discussed in Section II-C.

A. Feature Type Estimation

The first component of the surface feature detection algo-
rithm is performing a relaxation of the impulsive hybrid system
optimization to estimate the number of surface segments and
their types and sequence based on the kinematic data gathered
[25]. This step also provides the initial guess of impulse
times for the impulsive hybrid system optimization during
feature localization (Section II-B). The relaxation of the hybrid
optimization is performed by solving a non-linear optimal
control problem with the following cost function:

arg min
x(s),u(s)

J(·) =

∫ tf

t0

l(x(s), u(s), s)ds

l(·) =
1

2
(x(s)− xr(s))TQ(x(s)− xr(s))

+
1

2
(u(s)− ud(s))TR(u(s)− ud(s)) (1)

where x(·) is the model trajectory which includes both position
and velocity trajectories, xr(·) is the measurement trajectory
consisting of kinematic data, u(·) is the model control signal,
and ud(·) is the desired control signal. The signal x(t) is
subject to the following dynamic constraint:

ẋ(t) = V (t) +

N−1∑
i=1

ui(t)Fi(x(t), t) + (1−
N−1∑
i=1

ui)FN (x(t), t)

V (t) =
[
01, . . . , 0M , v1(t), . . . , vM (t)

]T
(2)

where Fi is the i-th dynamical mode of a robotic finger on
the i-th type of surface, N is the total number of possible
surface profile types, and M is the total number of states
(trajectories) expected to have impulses. M is usually half of
the total number of states because impulses only occur in the
velocity trajectories when the path is continuous. Note that if
one constrains ui such that

∑N
i=1 ui = 1, ui ∈ {0, 1}, and vi

to be delta functions, then optimizing this system over (ui, vi)
is equivalent to the hybrid/impulsive optimization. We relax
the optimization, allowing ui and vi to violate these constraints
to make the computation a standard, smooth optimal control
problem.

The control signal, u, in (1) includes both ui and vi.
Information about “active” feature type and their sequence
is captured by ui. When uk(t) is 1, the k-th feature type
is “active” (i.e., the k-th feature is traced by the sensor at
time t). The other signals, ui(t) where i 6= k, will be close
to 0 because at anytime, only one feature can be “active”.
Another set of control signals, vj , capture the information
about impulses. These vj will remain 0 until an impulse
occurs. Following this construction of the control signals, the
desired control signals, ud, in (1) are chosen to be 0 for all ui.
However, the ud corresponding to Fk(·) is 1 to make the k-th
dynamical mode the default mode (typically the “flat” surface
mode). The desired control signals for all vi are 0 so that they
remain 0 until an impulse occurs.
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Fig. 4. The optimized control signals show that the dynamics of this system
switches from the first dynamical mode to the second dynamical mode, and
then back to the first dynamical mode. The switching between modes occurs
near 0.06 s (when F2 becomes greater than F1) and and 0.17 s when F1

becomes greater than F2 again.
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Fig. 5. The optimized control signals, v1(t) and v2(t), show two impulses
(spikes, as measured by having maxima that exceed a user-specified threshold
of 1/2 the maximum value) near 0.08 s and 0.21 s.

The technical details of solving this optimal control problem
are left to the paper by Caldwell et al. [25]. Figure 4 and 5
show an example of the optimized control signals. (The details
of the parameters used in optimization to obtain these plots
using experimental measurement data is presented in Section
IV.)

Figure 4 shows the optimized control signal, u1(t) and 1−
u1(t), for surface type detection and sequencing. This plot
shows that the dynamics of this system switches from the first
dynamical mode to the second dynamical mode, and then back
to the first dynamical mode. Figure 5 shows the optimized
control signals, v1(t) and v2(t), for impulses. In this figure,
two impulses (spikes) are observed near 0.08 s and 0.21 s.
These impulse times serve as initial guesses for the impulsive
hybrid system optimization in feature localization, discussed
next.

B. Feature Localization

The rest of the surface feature detection algorithm involves
using impulsive hybrid system optimization to localize a
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feature detected in the former part of the algorithm. This
section features the main mathematical contribution of this
paper—impulsive hybrid system optimization. This optimiza-
tion utilizes Newton’s method [26] to perform least-squares
estimation. An adjoint formulation is used to compute the first-
order and second-order derivatives of the cost function. The
results are stated below, and sketches of proofs are provided.

1) Problem Definition: Mathematically, the dynamical sys-
tem of a robotic finger in contact with a surface is a nonlinear
impulsive hybrid system of the form

ẋ(t) = fi(x(t), t) for τi < t < τi+1 (3)

where i ∈ {1, 2, 3, ..., N} and x(τ+i ) = xi,0. Each fi(·) is at
least C2 in x and C1 in t. The number N is the total number of
dynamical modes (surface segments). These dynamical modes
are separated by N − 1 distinct impulses for the total time
horizon from τ1 = t0 to τN+1 = tf . The i-th impulse time
is τi, and the impulse magnitude at τi is δi. At each impulse
time, M out of a total of n states experience impulses whereby
each impulse corresponds to a geometrical discontinuity on a
surface. Hence, δi is an M -length vector. Note that δi is not a
function of time, t, and δ and τ are independent of each other.
The dynamical mode sequence and the number of impulses are
known from the first part of the algorithm in Section II-A.

The goal is to simultaneously solve for the N −1 unknown
impulse times and the M unknown impulse magnitudes, δi, at
each τi by minimizing a cost function which is defined as

J(·) =

∫ tf

t0

l(x(s), s)ds (4)

where l(·) = 1
2 (x(s) − xr(s))

T(x(s) − xr(s)). The model
trajectory is represented by x(·), and the reference trajectory,
xr(·), is the smoothed continuous measurement signal.

2) Optimization Method: The optimization starts with first-
order iterations (i.e., steepest descent) and then transitions
to Newton’s method (which converges quadratically [26]).
At each iteration, we choose a descent direction zk =
−[H]−1[DJ(·)]T . H is a positive definite matrix and DJ(·)
is the gradient defined as follows:

DJ(·) = (Dτ1J(·), ..., DτiJ(·), Dδ1J(·), ..., DδiJ(·)).

In steepest descent, H = I where I is the identity matrix. In
Newton’s method, H is the Hessian of the form

H = D2J(·) =

(
D2
τJ(·) DτDδJ(·)

DδDτJ(·) D2
δJ(·)

)
.

In many cases, D2J(·) will not be positive definite. For
these cases, a quasi-Newton’s method [26] is implemented.
The Hessian is decomposed into a matrix containing eigen-
values, λ, and a matrix with corresponding eigenvectors, P .
The eigenvalues which are close to zero or negative are
replaced with one. Then, the Hessian is reconstructed using
the original matrix of eigenvectors, P , and the modified matrix
of eigenvalues, λ∗, such that H = Pλ∗P−1. This modification
results in using steepest descent in eigenvector directions
with negative eigenvalues and Newton’s method in eigenvector
directions with positive eigenvalues.

After a descent direction is calculated, the Armijo line
search algorithm is then performed to further reduce the step
size as needed without changing the impulse times’ order [27].

3) Derivatives of Cost Function: The first-order and
second-order derivatives of the cost function, J(·), with respect
to impulse times and impulse magnitudes are required to
compute the gradient and the Hessian of J(·). The proofs
are analogous to those in the work of Tarvers et al. [28],
and a sketch of the proof is provided following each theorem
statement. More detailed derivations can be found in the
conference proceeding [29]. The adjoint formulation allows
the derivation of both the first-order and second-order deriva-
tives, and the integrations required are independent of the
number of impulses being optimized over. This reduction in
computational burden results in real-time or near real-time
calculations for the example system in Section IV.

First-Order Derivatives of Cost Function:
Lemma 1: The first-order derivative of a cost function, J(·),

with respect to an impulse time, τi, is

DτiJ(·) = ψ(tf , τi) ◦Xi + l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i )

Xi = (fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i )) (5)

where the first-order adjoint operator, ψ(·), is found by inte-
grating the following differential equation backwards along τ
from tf :

∂

∂τ
ψ(t, τ) = −D1l(x(τ), τ)− ψ(t, τ) ◦D1f(x(τ), τ)

ψ(t, t) = 0. (6)

Proof: First, write (3) in integral form and differentiate
the equation with respect to τi. Then, rewrite the result in
differential form:

∂

∂t
Dτix(t) = D1fi(x(t), t) ◦Dτix(t)

Dτix(τi) = fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i ). (7)

When t ≥ τi, equation (7) can be represented as a state
transition matrix operating on an initial condition:

Dτix(t) = Φ(t, τi) ◦Dτix(τi) (8)

where Φ(·) is the state transition matrix for the linearization.
When t < τi, changes in τi will not affect x(t) because x(t)
is in the past relative to τi. Therefore,

Dτix(t) =

{
0, t < τi

Φ(t, τi) ◦Xi, t ≥ τi
Xi = (fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i )). (9)

Next, take the derivative of (4) with respect to τi and
substitute (9) into the equation:

DτiJ(·) =

∫ tf

τi

D1l(x(s), s) ◦Dτix(s) ds

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ) (10a)

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ds ◦Xi

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ). (10b)
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The last two terms in (10b) come from applying Leibniz rule.
The integrand is integrated from τi to tf because Dτix(t) = 0
up until t = τi as stated in (9). Now, define

ψ(t, τ) =

∫ t

τ

D1l(x(s), s) ◦ Φ(s, τ) ds. (11)

Note that (11) is the integral representation of (6). Lastly,
substitute (11) into (10b):

DτiJ(·) = ψ(tf , t) ◦Xi + l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ).

Lemma 2: The first-order derivative of a cost function, J(·),
with respect to impulse magnitudes, δi, is

DδiJ(·) = ψ(tf , τi) ◦∆i

where ∆i has the form

∆i = Dδix(τ+).

In general, Dδix(τ+) is the linearization of the transforma-
tion from the impulses’ vector space to the x(·) trajectories
configuration space.

Proof: Follow similar steps to deriving DτiJ(·). First,
write (3) in integral form, and differentiate the equation with
respect to δi to obtain

Dδix(t) = Dδix(τ+i )+

∫ t

τ+
i

D1fi(x(s), s)◦Dδix(s) ds. (12)

Rewrite (12) in differential form:
∂

∂t
Dδix(t) = D1fi(x(t), t) ◦Dδix(t) (13)

where the initial condition is Dδix(τ+i ). When t ≥ τi, (13)
can be represented as a state transition matrix operating on an
initial condition:

Dδix(t) = Φ(t, τi) ◦Dδix(τ+).

When t < τi, changes in δi will not affect x(t) because x(t)
is in the past relative to δi at τi. Hence,

Dδix(t) =

{
0, t < τi

Φ(t, τi) ◦∆i, t ≥ τi
∆i = Dδix(τ+). (14)

Next, take the derivative of (4) with respect to δi, and
substitute (11) and (14) into the resulting equation:

DτiJ(·) =

∫ tf

τi

D1l(x(s), s) ◦Dδix(s) ds (15)

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ds ◦∆i

= ψ(tf , τi) ◦∆i.

At this point, impulse times and impulse magnitudes can
be estimated using first-order optimization methods such as
steepest descent. To implement a second-order method to
obtain quadratic convergence, the second-order derivatives of
the cost and the cross derivatives of the cost with respect
to impulse times and impulse magnitudes are useful; this is
discussed next.

Second-Order Derivatives of Cost Function:
Theorem 1: The second-order derivative of a cost function,

J(·), with respect to an impulse time, τi, is

DτjDτiJ(·)
= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ

−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Xi δji + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

where δji is the Kronecker delta, and Xi,j is defined to be

Xi,j =

D1fi(x(τ+i ), τ+i ) ◦ fi(x(τ+i ), τ+i )

+D1fi−1(x(τ−i ), τ−i ) ◦ fi−1(x(τ−i ), τ−i )

−2D1fi(x(τ+i ), τ+i ) ◦ fi−1(x(τ−i ), τ−i )

+D2fi(x(τ+i ), τ+i )−D2fi−1(x(τ−i ), τ−i ), i = j

(D1fi−1(x(τ−i ), τ−i )−D1fi(x(τ+i ), τ+i ))◦
Φ(τi, τj) ◦Xj , i > j.

The second-order adjoint operator, Ω(·), is found by integrat-
ing (16) backwards along τ from tf :

∂

∂τ
Ω(t, τ) = −D2

1l(x(τ), τ)− ψ(t, τ) ◦D2
1fi(x(τ), τ)

−D1fi(x(τ), τ)T ◦ Ω(t, τ)− Ω(t, τ) ◦D1fi(x(τ), τ)

Ω(t, t) = 0. (16)

Note that in contrast to (9), the derivative of x(τi) with
respect to τj is

Dτjx(τi) =


0, i < j

f(x(τi), τi), i = j

Φ(τi, τj) ◦Xj , i > j.

When i = j, the derivative of x(τi) is taken with respect to
its argument τi, resulting in f(x(τi), τi).

Proof: First, take the derivative of (9) with respect to τj
and apply the fundamental theorem of calculus. The derivation
is similar to Dτix(·)’s, and thus, only the result is stated:

DτjDτix(t)

= Φ(t, τi) ◦Xi,j + φ(t, τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

φ(t, τ) =

∫ t

τi

Φ(t, s)D2
1fi(x(s), s) ◦ (Φ(s, τ),Φ(s, τ)) ds.

(17)

Next, take the derivative of (10a) with respect to τj , and
substitute (9) and (17) into the resulting equation:

DτjDτiJ(·)
= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ

−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Dτjx(τ+i ) δji

+

∫ tf

τ+
i

D1l(x(s), s) ◦DτjDτix(s)
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+D2
1l(x(s), s) ◦ (Dτjx(s), Dτix(s)) ds

= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ
−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Xi δji + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi) (18)

where the second-order adjoint operator, Ω(·), is defined as

Ω(t, τ) =

∫ t

τ

D1l(x(s), s) ◦ φ(s, τ))

+D2
1l(x(s), s) ◦ (Φ(s, τ),Φ(s, τ)) ds. (19)

Note that (19) is the integral representation of (16).
Theorem 2: The second-order derivative of J(·) with re-

spect to an impulse magnitude is

DδjDδiJ(·) = ψ(tf , τi)◦∆i,j+Ω(tf , τi)◦(Φ(τi, τj)◦∆j ,∆i)

where ∆i,j is defined as

∆i,j = DδjDδix(τ+i ).

Similar to Dδix(τ+), DδjDδix(τ+i ) is nonzero when the
impulses, δi, are defined in a different configuration space
from x(·).

Proof: The proof is omitted here because it follows
similar steps in the proof of DτjDτiJ(·).

Theorem 3: The cross derivative of J(·) with respect to an
impulse time and an impulse magnitude is

DδjDτiJ(·) =



Ω(tf , τj) ◦ (∆j ,Φ(τj , τi) ◦Xi), τi < τj

D1l(x(τ−i ), τ−i ) ◦Dδjx(τ−i )

−D1l(x(τ+i ), τ+i ) ◦Dδjx(τ+i )

+ψ(tf , τi) ◦∆Xi,j

+Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j , Xi), τi ≥ τj

where ∆Xi,j is defined to be

∆Xi,j =


0, τi < τj

−D1fi(x(τ+i ), τ+i ) ◦∆j , τi = τj

(D1fi−1(x(τ−i ), τ−i )

−D1fi(x(τ+i ), τ+i )) ◦ Φ(τi, τj) ◦∆j , τi > τj .

Proof: Proof follows the same steps as the proof of
DτjDτiJ(·), and it is omitted.

After computing these second-order derivatives for the Hes-
sian, impulse times and impulse magnitudes can be estimated
using a second-order optimization method such as Newton’s
method.

C. Computational Complexity

As mentioned earlier, the algorithm presented in this pa-
per has linear dependence on temporal data resolution. An
increase in temporal data resolution is equivalent to taking a
smaller time step (i.e., more integration steps) when computing
integrations involved in the state and adjoint equations. As a
result, the computational complexity of this optimization based
algorithm only grows linearly with temporal data resolution.
Hence, this surface feature detection algorithm is able to reap

benefits of increased temporal resolution of data without a
superlinear increase in the computational cost.

The computational complexity of this algorithm is domi-
nated by integrations required to solve for the gradient and the
Hessian of the cost function. This algorithm utilizes an adjoint
formulation which greatly reduces the total number of integra-
tions required and hence, the computational cost. A dynamical
system with n states (including both the position and velocity
trajectories) and k impulses has n

2 impulse magnitudes at each
impulse time (i.e., k n2 impulse magnitudes in total) because
only the velocity trajectories experience impulses. Although
the gradient has n × k(1 + n

2 ) entries, the first-order adjoint
operator, ψ(·), that shows up in all entries of the gradient
reduces the total number of integrations to n independent of
the total number of impulses (features). Similarly , to compute
the Hessian which has n× (k(1 + n

2 ))2 entries, an additional
2n2 integrations (independent of the total number of impulses)
are required to compute the second-order adjoint operator,
Ω(·), and the state transition matrix, Φ(·), that appear in all
entries of the Hessian. Hence, for a system with n states,
the total number of integrations required at each optimization
step is n(2n+ 1) independent of the total number of features.
Accordingly, when the total time and the size of integration
time step is fixed, this localization method has the benefit
of zero increase in the computational complexity when the
number of features are increased.

III. SIMULATION WITH MEASUREMENT UNCERTAINTY

The feature localization component of the surface fea-
ture detection algorithm is implemented in simulations to
characterize its performance in the presence of measurement
noise. In simulations, a three-revolute-joint robotic finger was
modeled to trace a surface shown in Section I in Fig. 6.
This surface has three segments whereby each segment corre-
sponds to a dynamical mode, fi. The trajectory, x(t), includes
joint angles (θ1(t), θ2(t), θ3(t)) and joint angular velocities
(ω1(t), ω2(t), ω3(t)). After the robotic finger traced the sur-
face, the hybrid optimization was implemented to localize the
surface segments based on kinematics of the finger assuming
that the segment sequence is known. Note that all model

x

y

θ1

θ3

θ2

φ1

φ2
φ3

Trace
Direction

Fig. 6. Configuration of the robotic finger model used in simulation.
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parameters involved including masses and lengths of the finger
segments are chosen arbitrarily in the simulation. The ratio of
the total finger length with respect to the slope height (in y
direction) is 20:1.

Two types of measurement trajectories were considered:
without noise and with noise. To generate a noisy trajectory,
a measurement trajectory is simulated and sampled at 0.001
second intervals. Random noise sampled from a Gaussian
distribution with mean, µ = 0, and standard deviation, σ, is
added at each time step. Then, the noisy trajectory is smoothed
using a Gaussian filter (with standard deviation, σG = 5 rad)
before a spline is used to generate the continuous measurement
trajectory required by the optimization formulation. Figure 7
shows the comparison of a measurement trajectory with noise
(when σ = 0.1 rad (5.73◦)), a measurement trajectory without
noise and a smoothed measurement trajectory with noise for
the first joint angle, θ1(t).

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-0.2
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0.6

Time HsL

Fi
rs
t
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1
Hra
dL

With noise
Smoothed
Without noise

Fig. 7. Comparison of a measurement trajectory without noise, a mea-
surement trajectory with noise (σ = 0.1 rad (5.73◦)), and a smoothed
measurement trajectory with noise in the measurement of the first joint.

Both deterministic and noisy simulated measurement tra-
jectories have impulse times, τ = (0.247, 0.329), impulse
magnitudes δ1 = (0.249,−0.058, 4.074) (in the velocity)
at the first impulse time, and impulse magnitudes δ2 =
(−1.100, 0.102, 0.378) at second impulse time. The total time
horizon is from τ1 = 0 to τ4 = tf = 0.380 seconds.
Both algorithms for measurement trajectories with noise and
without noise are initialized to τ = (0.270, 0.350), δ1 =
(0.230,−0.030, 4.070), and δ2 = (−0.900, 0.200, 0.410). The
optimization algorithm is terminated when the norm of the
gradient, ||DJ(·)|| < 10−5.

Convergence: The optimization algorithm took sixteen it-
erations to converge when using measurement trajectories
without noise. The convergence plots for the logarithm of the
norm of the cost gradient (Fig. 8) show quadratic convergence
when the Newton’s method was applied after ten initial first-
order iterations. Figure 8 also shows that varying the noise
level did not drastically change the total number of iterations
for convergence. The average number of iterations taken is
seventeen when the standard deviation, σ, of the added noise
is 0.1 rad (5.73◦). This method converges even when the noise
level in the measurement trajectories is high (Fig. 7), discussed
next.

Fig. 8. Convergence plots for the logarithm of the norm of cost gradient
of a finger model when the measurement trajectories are (a) without noise
and (b) with noise. First ten iterations use steepest descent, and the remaining
iterations use Newton’s method.

Measurement Noise: The effect of measurement noise on
the standard deviation of the estimates was investigated using
Monte Carlo methods. For each noise level, thirty random
simulations are computed. The noise level is quantified by
the standard deviation of the noise added, σ. The largest σ
considered is 0.1 rad (5.73◦). A noise level above σ = 0.1 rad
results in frequent instability during optimization.
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Fig. 9. Effect of the standard deviation (SD) of measurement noise on the
SD of the estimated impulse times.

The optimization algorithm shows a linear increase in the
standard deviation of estimates when the standard deviation of
noise is increased (Fig. 9). Note that in Fig. 9, the trend lines
go through the origin, and thus reflect that the estimates are
unbiased. Also, note that the estimates at the second impulse
time are more sensitive to the noise than the estimate at the
first impulse time. This is expected because the derivatives in
the gradient and the Hessian are calculated using backward
integration. The estimate at the second impulse time includes
fewer points, and thus are more prone to be affected by outliers
in the noise. On the other hand, the estimate at the first impulse
time includes more points, and hence the effect of outliers in
the noise is reduced.
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IV. EXPERIMENTAL VALIDATION

The proposed surface feature detection algorithm is imple-
mented using experimental data, and the results are discussed
in this section. The experiments used kinematic data from a
PHANToM OMNI haptic device tracing surfaces. This device
has six degrees of freedom. But, in the experiments, only a
revolute joint at the base and a revolute joint on the arm are
free allowing the arm to move in a plane. The unused joints are
secured using strong adhesive tapes so that they are sufficiently
rigid. As a result, this device only has two remaining degrees
of freedom whereby x(t) = (θ1(t), θ2(t), ω1(t), ω2(t)). The
configurations and geometrical parameters for the model of
this device follows the work of Silva et al. [30]. The non-
geometrical parameters such as damping coefficients of motors
are determined using system identification.

In the experiments, the arm of the haptic device acts as
the “finger”, and the stylus’ tip is the “fingertip” that traces
a surface. Each joint is actuated based on a proportional
control law. The surfaces considered in the experiments are
shown in Fig. 14. The performance of this algorithm is
primarily illustrated using the ledge as an example. The feature
localization algorithm is also implemented on other surface
examples including a bump, a hole and a flat surface with two
different friction segments to show that the algorithm works
with multiple surfaces.

A. Example: Ledge

The results of the feature detection and localization algo-
rithm implemented for a ledge are presented in this section1.
Note that although the algorithm assumes a dynamical model
that is discontinuous (i.e., three distinct segments) and the
kinematic data gathered are continuous (i.e., the boundaries
of the three segments are less obvious), the algorithm is
able to provide reasonable estimates on the locations of these
boundaries.

1) Feature Type Estimation: The first component of the
detection algorithm involves a relaxation of the impulsive
hybrid system optimization using the following dynamics and
optimization parameters,

f(t) =
[
0, 0, u2(t), u3(t)

]T
+ u1(t)F1(t) + (1− u1(t))F2(t),

Q = 400 I, R = diag(500, 1, 1),

ud(t) = (1, 0, 0)T

where F1 is the dynamics of the stylus constrained to the
flat surface and F2 is constrained to the slanted surface. The
parameter values in Q and R are determined using simulated
data to obtain clear optimized control signals before they are
utilized in the optimization using the experimental data. The
optimized trajectory for this example is shown in Fig. 10.

Figure 4 and 5 from Section II-A show the optimized
control signals. Figure 4 shows that the dynamics of this
system switches from the first dynamical mode to the second
dynamical mode, and then back to the first dynamical mode.

1This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes a video of
the experiments and readme file. This material is 5.2 MB in size
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Fig. 10. Comparison of the optimized simulated trajectory and the measured
trajectory.

This result is consistent with the experiment whereby the
stylus moved from a flat surface to a slanted surface, and
back to a flat surface. In Fig. 5, two impulses (spikes) are
observed near 0.08 s and 0.21 s. These impulse times serve
as initial guesses for the impulsive hybrid system optimization
in feature localization.

2) Feature Localization: For the feature localization of
the detection algorithm, trials were run to understand its
performance against uncertainties in experiments.

Model Uncertainty: Experiments were conducted for a
range of slope angles. The smallest slope angle is 11.5◦. The
largest slope angle is 53.1◦. These angles are bounded above
by the ability of the haptic device tracing across the surface.
During the experiment, the stylus tip lost contact with the
surface for a short amount of time right after it encountered
the second corner. This momentarily contact lost was almost
unnoticeable, and it was viewed as random noise in this
analysis. Although the dynamical model of the haptic device
is not precisely determined, this surface feature detection
algorithm performs well. The algorithm converges for all
angles considered, hence indicating that this algorithm can
localize a reasonably wide range of ledges using kinematic
data alone. As shown in Fig. 11, the optimized impulse times
and impulse magnitudes produced a trajectory which closely
matches the measured trajectory for a surface with a slope at
36.9◦ angle.

Feature Size Sensitivity: Using the dynamical model of the
PHANToM OMNI haptic device, sensitivity of this algorithm
with respect to the size of a feature is studied in simulation
using Monte Carlo methods. Figure 12 shows the results of
the simulated experiments where at each of 8 slope angles,
40 random trials were performed using a procedure similar
to simulations in Section III. The Gaussian noise added has
mean, µ = 0, and standard deviation, σ = 0.005 rad (0.29◦).
As slope angle decreases, the standard deviation of the time
estimates increases superlinearly. This observation is expected
because as the impulse magnitudes decrease with decreasing
slope angle, the algorithm is more likely to mistake measure-
ment noise as impulses.

Partial Kinematic Information: The feature localization al-
gorithm was also implemented assuming that full information
of the kinematics of a robotic finger is not available. In
other words, the cost function of the least square estimation
considers only some of the finger’s configurations instead of
the full configurations. In this case, only the base angle of this



FEATURE LOCALIZATION USING KINEMATICS ..., SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

x HmL

y
Hm

L

Optimized
Initial guess
Measurement

Starting point: 
( x0, y0) 

Fig. 11. Comparison of the stylus tip’s trajectory computed from (a) measured
joint configurations, (b) the initial guess of impulse times and impulse
magnitudes: τ = (0.1, 0.2), δ1 = (−1,−1), and δ2 = (0, 1), and (c) the
optimized impulse times and impulse magnitudes: τ = (0.08, 0.17), δ1 =
(−1.26,−2.33), and δ2 = (0.24, 0.83).
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device is assumed to be available and used as the measurement
input to the algorithm. Figure 13 shows a comparison between
the estimated trajectory from an optimization using only the
measurement of the base joint and the estimated trajectory
from an optimization using the measurement trajectories of all
joints for a surface with slope angle of 36.9◦. Using partial
state information results in a less accurate feature localization
as expected. Nevertheless, this result suggests that even when
only the base angle of a sensor can be measured (e.g., whiskers
[31]), a feature can be detected and localized.

B. Additional Examples

In addition to the ledge example, the localization method
was also implemented on three other types of surface—a
bump, a hole and a flat surface with two varying friction
segments—as shown in Fig. 14. Ten trials of data were
collected for each surface and the localization algorithm was
implemented for each set of data. A summary of the mean
and standard deviation of the estimates for each surface is
presented in Table I and Table II. These results suggest that
this algorithm is able to perform under a wide variety of
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Fig. 13. Comparison of the stylus tip’s trajectory computed from measured
joint configurations (gray), the optimized impulse times and impulse magni-
tudes using measurement trajectories of all joints (dashed), and the optimized
impulse times and impulse magnitudes using only measurement trajectory of
the base joint (black).

surface profiles. Note that a change in surface texture has the
same mathematical description as a change in surface shape,
and hence the same algorithm applies in both situations. Note
also that generally, impulse magnitudes have higher standard
deviations than switching times. In practice, although locations
of boundaries for each surface segment of a surface stay the
same, impulse magnitudes vary with small changes in the
set up such as small deviations in initial conditions, tracing
replicas of the same surface and using different devices of the
same model. Consistent with these practical scenarios, current
results show that time estimates (which represent the locations
of boundaries for each surface segment) are not as sensitive
to deviations in the set up as the impulse magnitudes.

V. CONCLUSION

An approach for detecting and localizing a surface feature
based on kinematic sensing during haptic exploration is pre-
sented in this paper. The algorithm utilizes impulsive hybrid
dynamical system optimization which performs a least squares
estimation to localize a surface feature. The algorithm, which
uses adjoint equations to compute first and second derivatives
for the estimate, is computationally efficient and scalable. It is
also shown to perform well in both simulation and experiment
when measurement noise and model uncertainty are present.
More broadly, this paper provides a preliminary framework to
define the robotic sense of touch based on hybrid optimization
techniques, without the use of collocated tactile sensors.

There are two substantial weaknesses involved in the ap-
proach discussed here. First, the use of the relaxation to esti-
mate the number of impulses involves the choice of arbitrary
parameters. Recent work in hybrid control suggests that the
same basic approach can be taken without using a relaxation-
based technique [32]; however, that approach does not cur-
rently allow for impulses and extending it to the optimizations
in this present work is an area of future research. Second, the
use of interpolation to generate smooth curves from measured
data is potentially problematic because smoothing splines
and other methods can introduce numerical artifacts. This is
a consequence of representing the optimization problem in
continuous time, where analyzing the smoothing problem is
considerably easier. Although we anticipate that both of these
weaknesses can be addressed in the future, they limit the
applicability of these techniques to a fully automated system.
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Fig. 14. Surfaces traced by the stylus of the PHANToM OMNI haptic device in experiments.

TABLE I
MEAN AND STANDARD DEVIATION (SD) OF TIME ESTIMATES FOR A LEDGE, A BUMP, A HOLE, AND

A FRICTION-CHANGING FLAT SURFACE.
Friction1 Ledge Bump Hole

Mean (s) SD (s) Mean (s) SD (s) Mean (s) SD (s) Mean (s) SD (s)
τ1 0.11118 0.01879 0.08302 0.00089 0.15245 0.01491 0.12442 0.00984
τ2 – – 0.17345 0.00213 0.24749 0.01552 0.17336 0.00487
τ3 – – – – 0.33084 0.01754 0.19696 0.01203
τ4 – – – – 0.40501 0.02891 0.21945 0.00847
1 Friction implies a flat surface with a change in coefficient in friction.

TABLE II
MEAN AND STANDARD DEVIATION (SD) OF IMPULSE MAGNITUDE ESTIMATES FOR A LEDGE, A BUMP, A HOLE,

AND A FRICTION-CHANGING FLAT SURFACE.
Friction1 Ledge Bump Hole

Mean (rad) SD (rad) Mean (rad) SD (rad) Mean (rad) SD (rad) Mean (rad) SD (rad)
δ1,1 0.13931 0.05466 -1.42034 0.15065 -0.80824 0.27309 -0.32228 0.24569
δ1,2 0.12632 0.14288 -2.36258 0.12621 -0.09322 0.34843 2.35943 0.48899
δ2,1 – – 0.10905 0.12035 -0.19338 0.33353 -1.17752 0.46690
δ2,2 – – 1.78068 0.68655 2.28606 0.79906 -0.88425 0.81428
δ3,1 – – – – 0.82455 0.17740 -0.80558 0.67795
δ3,2 – – – – 2.34246 0.74510 -1.15617 1.44109
δ4,1 – – – – -0.59041 0.27690 1.51281 0.35071
δ4,2 – – – – -0.43512 0.63792 0.57956 1.75373
1 Friction implies a flat surface with a change in coefficient in friction.
2 δi,j means the impulse magnitude at the i-th switching time for joint angle j.

In addition, note that this algorithm analyzes features in a
plane. One could extend this algorithm to understand three
dimensional features using the information provided by the
planar feature analysis. One simple example is to have the
sensor trace across a surface multiple times in different di-
rections to obtain boundaries of different feature regions on
the surface. Extracting three dimensional features from two
dimensional feature data is an area of future research.
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