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Abstract—An optimization-based estimation method is pre-
sented for determining mode transition times and model pa-
rameters for hybrid systems. First- and second-order optimality
conditions are derived, including cross-derivative terms between
transition times and parameters. Second-order optimization
methods are shown to provide superior convergence to correct
values in simulation, and to values within expected ranges
experimentally for traction estimation of a skid-steered vehicle.

Index Terms—calibration and identification, switched systems,
second-order optimization.

I. INTRODUCTION

MANY systems in robotics experience discrete tran-
sitions between distinct dynamic modes and depend

on potentially uncertain parameters. A method for robustly
estimating when transitions between modes in hybrid systems
occur, based on potentially coarse data, is necessary due to
modeling and parametric uncertainty in real-world systems.
Operation in unknown environments presents the additional
need for terrain parameter identification. This paper focuses
on efficient estimation of mode transition times and parameter
values using hybrid optimization techniques for nonlinear,
time-varying systems. It will be shown that these two problems
are nontrivially coupled.

The contribution of this paper is a simplified derivation
of the second order optimality conditions for optimization-
based simultaneous transition time and parameter estimation
for hybrid systems, which is extended to the cross-derivative
terms in the Hessian; this estimation method is validated
experimentally and in simulation, and estimation performance
is shown to degrade gracefully as a function of measurement
variance.

The least-squares optimization method presented relies on
calculation of the gradient and the Hessian of an objective
function with respect to both mode transition times and param-
eters. The objective function is a measure of the error between
a measured trajectory and estimated trajectory, calculated
using a hybrid model of the system with transition time and
parameter estimates.

The estimation technique is demonstrated on a linear time-
invariant numerical example and a non-linear skid-steered
vehicle estimation problem. The algorithms converge to the
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correct values in simulation, and to values within expected
ranges experimentally. The results demonstrate that using a
second-order optimization method with an exact Hessian,
including the cross-derivative terms, results in convergence in
significantly fewer iterations than when first-order or approx-
imate second-order methods are used, and provide sufficient
conditions for optimality. Additionally, graceful degradation of
estimation performance as a function of measurement noise is
demonstrated using Monte Carlo simulation.

The estimation method presented can be applied to a
range of hybrid, nonlinear dynamic systems. In addition to
calibration and identification applications, information gained
in this way is useful in planning and control. Selection of
subsequent control strategy, for example, may be dependent
on terrain parameters. Similar derivations with respect to
switching times [1]–[3] and parameters [4] independently can
be found in previous work, however the derivations presented
here are based on introductory calculus techniques, and the
proof extends to cross-derivative terms in the Hessian.

Related work in hybrid parameter estimation is discussed
in Section I-A. The skid-steered vehicle, used as a motivating
example and experimental platform, is introduced in Section
I-B. The problem formulation and notation are presented in
Section II. Sections III and IV present the derivations of the
first- and second- order optimality conditions with respect to
both transition times and parameters. The estimation method is
verified using a skid-steered vehicle as an example in Section
V.

A. Related Work

The mathematical results presented are based on previ-
ous work in estimation of switching times and parameters.
Switching time estimation using optimal control techniques
has been presented in several previous publications [1]–[3].
In particular, the first-and second-order optimality conditions
for switching time optimization presented in [1] and [2] are
used directly in the derivations in Sections III-A and IV-A.
Parameter estimation using adjoint methods similar to the
results derived here are presented in [4] in order to calculate
the second-order derivatives with respect to parameters, using
multiplier methods and in the case of continuous systems.
The results derived in Sections III-B and IV-B are similar, but
the proof relies only on introductory calculus techniques. As
a consequence, the results generalize to the cross derivative
terms which we show to be critical in achieving quadratic
convergence.



SIMULTANEOUS OPTIMAL ESTIMATION OF MODE TRANSITION TIMES AND PARAMETERS, SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 2

A numerical optimization approach to a similar estimation
scenario for the case of impulsive systems was derived in [5],
where unknown parameters are estimated using quasi-Newton
methods. The results we present, however, provide an efficient
way of calculating the terms necessary for exact second-order
optimization methods and the sufficient conditions for opti-
mality. In [6] a similar hybrid parameter estimation problem
is solved, but in the context of periodic orbit data, using a
trust-region based optimization method relying on first and
second derivatives obtained via automatic differentiation and
finite differencing, respectively.

A multi-pass estimation technique using hidden Markov
models and a nonlinear least squares is used in [7] to estimate
contact states and object properties for manipulation tasks.
We propose an approach capable of solving the same class
of problems while relying on straightforward optimization
techniques, avoiding the combinatorial complexity MCMC
methods necessarily involve.

The derivations of the optimality conditions and the skid-
steered vehicle model used in this work can also be found in
previous work by the authors [8]. The results presented in [8]
are expanded upon here, including the effect of measurement
noise, and a larger set of simulated and experimental examples.

B. Motivating Example: Skid-Steered Vehicle

The motivating example used in this paper is a skid-
steered vehicle driving on hard surfaces with GPS tracking.
Skid-steered vehicles present a challenge from modeling,
trajectory-tracking, and control design perspectives. A skid-
steered vehicle can turn only by skidding laterally, which
introduces dynamics that are distinct from forward rolling-
without-slipping and are dependent on typically uncertain
environmental factors, such as frictional forces. Localization
and planning for skid-steered vehicles operating on uncer-
tain terrain often require either sensor fusion and filtering
techniques for localization [9]–[11], robust control techniques
[12], [13], or on-line estimation of the vehicle state and
environmental parameters [14], [15], which will be addressed
in this paper.

A number of friction models have been established to
represent tire-ground interaction for vehicles driving on non-
deformable terrain [16]–[19]. More sophisticated friction mod-
els typically involve larger numbers of parameters, 16-31
in the case of Pacejka’s Magic Tire formula [18]. These
parameters are typically identified with a large number of
steady-state, highly controlled laboratory experiments, which
makes estimating a high number of parameters possible.

With the intention of performing efficient online terrain
estimation with limited sensing, such as sparse GPS data,
the skid-steered vehicle in this paper is modeled as a hybrid
system, with modes dependent on whether or not the wheels
are slipping with respect to the ground, using a simple
stick-slip viscous friction model. While a stick-slip friction
model does not characterize frictional forces at the tire-road
interface level as precisely as more sophisticated models, it is
nevertheless sufficient to characterize behavior at the vehicle
motion level. As will be shown in Section V, the stick-slip

Fig. 1. Skid-Steered vehicle used in experiments

model exhibits the same qualitative behavior in simulation
as the widely used Pacejka’s magic tire formula [18] for
simple maneuvers, as well as good experimental tracking of
the vehicle shown in Fig. 1 given coarsely sampled GPS
position measurements. Perhaps most critical in terms of
formulating a viable estimation problem, the stick-slip model
requires estimation of a single parameter for friction as well
as switching times characterizing stick-slip transitions, which
becomes a tractable estimation problem for online experiments
with sparsely observed, vehicle motion level data while still
providing useful terrain information at the motion control
level.

While estimation of a large number of parameters for more
sophisticated traction models is not likely a well-conditioned
problem for our experimental scenario, it should nevertheless
be noted that the estimation method presented in this paper is
not specific to this traction model, and although not explored
here, friction models with a larger number of parameters may
be amenable to the estimation method presented here with
higher frequency GPS sampling or additional sensors.

II. PROBLEM FORMULATION AND NOTATION

For the hybrid model used, it is assumed that the number
and order of mode transitions are known in advance. This is
a reasonable assumption if the driver inputs to the vehicle are
known, although model and environmental parameter uncer-
tainty typically result in variations in the transition times and
trajectory. The problem is therefore, given the control inputs,
system model, and potentially coarse positional tracking data,
to have a method of estimating transition times and parameters
in order to represent the continuous path of the vehicle for
localization and planning of future control strategy.

The hybrid system model and notation used throughout
this paper follow [2]. As in [2], slot derivative notation is
used throughout; i.e. Dnf(arg1, arg2, ...) is the derivative of
the function f(·) with respect to the argument at position
n. Darg(...) is the derivative with respect to arg . The ◦
operator is used to represent linear mappings, for example
M ◦ v = M · v, and M ◦ (v, u) = vT [M ]u.

A general hybrid system with n dimensions, N transitions,
and M parameters of interest can be described by a sequence
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of dynamic equations of the form

ẋ = fi(x(t), t) τi < t < τi+1 , x(t0) = x0 (1)

for transition times τ = τ1, . . . , τN and parameters
p = p1, . . . , pM , where τ0 = t0 is the initial time
and τN+1 = tf is the final time. Note that through-
out this paper, x(t) is written when it should explicitly
be x(τ1, . . . , τN , p1, . . . , pM , t), and f(x(t), t) should explic-
itly be f(x(t), τ1, . . . , τN , p1, . . . , pM , t). Unknown switching
times and parameters can be estimated simultaneously by
minimizing an objective function of the form

J(τ1, . . . , τN , p1, . . . , pM ) =

� tf

t0

�(x(t), t)dt, (2)

where �(x(t), t) is an arbitrary incremental cost function,
such as (x(t)− xm(t))T (x(t)− xm(t)), where x(t) is the
estimated trajectory and xm(t) is the measured trajectory. It
is assumed that �(x(t), t) does not depend explicitly on the
switching times or parameters. It is also assumed that the
system trajectory is sampled over a finite time horizon, that
the number of switches as well as the mode order is known,
and state variables are continuous. Although not addressed
here, there are scenarios where the order in which mode
changes occur is not known. A method for determining mode
order is provided in [1]. Additionally, while in this paper the
trajectory x(t) is assumed to be a continuous signal, impulsive
optimization techniques [5] would allow the extension of this
method to non-continuous state variables.

A. Optimization Methods

Sequential Quadratic Programming (SQP) is used as an
optimization framework for comparing first, and exact and
approximate second-order, convergence. SQP involves solving
a quadratic program at each iteration, subject to a set of
constraints on the order of the switching times. Three choices
of the quadratic term were compared. Setting the quadratic
term equal to zero is equivalent to a first-order, steepest descent
algorithm, resulting in linear convergence. Quadratic conver-
gence is obtained using the exact Hessian, which involves
the cross-derivative terms between the switching times and
parameters, i.e.

exact Hessian :

�
D2

τJ DpDτJ
DτDpJ D2

pJ

�
, (3)

derived in Section IV. The effects of using an approximate,
block-diagonal Hessian, not including the cross-derivative
terms, as the quadratic term

block-diagonal Hessian :

�
D2

τJ 0
0 D2

pJ

�
(4)

are also examined. Both SQP and steepest descent algorithms
are well-established. For more information, see [20].

For the skid-steered vehicle example in Section V, a combi-
nation of steepest descent and SQP was used. While second-
order optimization methods (SQP) result in fast convergence,
they are only viable in locally convex regions of the cost
function. It is therefore typically necessary to iterate initially
using steepest descent, switching to a second-order method
when the Hessian is determined to be positive definite.

III. FIRST-ORDER OPTIMALITY CONDITIONS

DJ(·) involves the derivatives of J(·) with respect to
switching times and parameters. DJ(·) is the N +M length
vector

DJ(·) = (Dτ1J, . . . ,DτNJ,Dp1J, . . . ,DpMJ). (5)

The calculations of DτiJ and DpiJ follow.

A. Calculating DτiJ(·)
Complete derivations of first-order partial derivatives of a

cost function J(·) with respect to a switching time τi are
derived in [1], [2]. Those results are presented here, as they are
used directly in the second-order and parameter derivations.

Lemma 1: The first partial derivative of the cost function in
Eq. (2) with respect to each switching time τi ∀ i = 1, ..., N
is calculated as

DτiJ(·) = ψ(τi) ◦Xi, (6)

where ψ(t) is the n-length first-order adjoint found by solving
the following backwards differential equation:

ψ̇(t) = −D�(x(t))− ψ(t) ◦D1f(x(t), t), ψ(tf ) = 0. (7)

Xi ∈ Rn is defined as shown below for compactness, follow-
ing [2].

Xi = fi−1(x(τi), τi)− fi(x(τi), τi) (8)

A proof of Lemma 1 can be found in [2].

B. Calculating DpiJ(·)
Lemma 2: The first partial derivative of the objective func-

tion with respect to a parameter pi is calculated as

DpiJ(·) =
� tf

t0

ψ(t) ◦Dpif(x(t), t)dt, (9)

where ψ(t) is the same adjoint used in Lemma 1, calculated
using Eq. (7). Note that Eq. (9) is simply an inner product.

Proof: The cost function from Eq. (2) is differentiated
with respect to a parameter pi, applying the chain rule as
follows:

DpiJ(·) =
� tf

t0

D�(x(s)) ◦Dpix(s)ds.

This expression depends on the partial derivative of x(t) with
respect to a parameter pi. Dpix(s) is obtained by writing
segments of the trajectory in integral form,

x(t0) = x0 xk(t) = xk−1(τk) +

� t

τk

fk(xk(s), s)ds,

and taking partial derivative of each segment xk(t) of the
trajectory to obtain a linear differential equation for Dpixk(t).

Dpixk(t) =Dpixk−1(τk) +

� t

t0

D1fk(x(s), s) ◦Dpixk(s)

+Dpifk(x(s), s)ds
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Using the fundamental theorem of calculus, the above equation
can be expressed in differential form:

Dpixk(τk) =Dpixk−1(τk),

∂

∂t
Dpixk(t) =D1fk(x(t), t) ◦Dpixk(t) +Dpifk(x(t), t).

The equation above is of the form ż(t) = A(t)z(t) + B(t),
which has the solution

Dpixk(t) =Φ(t, τk)Dpixk−1(τk)

+

� t

τk

Φ(t,σ) ◦Dpifk(x(σ),σ)dσ,

where the state transition matrix Φ(t, τk) is the solution to
ż(t) = D1fk(x(t), t) ◦ z(t) [2]. For more information on the
state transition matrix, see [21]. Because the initial condition
Dpixk−1(τk) depends recursively on the same expression for
the previous segment of the trajectory and Dpix(t0) = 0,
Dpix(t) can be expressed as a continuous trajectory:

Dpix(t) =

� t

t0

Φ(t,σ) ◦Dpif(x(σ),σ)dσ. (10)

Plugging the expression for Dpix(t) from Eq. (10) into the
expression for DpiJ yields

DpiJ(·) =
� tf

t0

D�(x(s))

� s

t0

Φ(s,σ) ◦Dpif(x(σ),σ)dσds.

Switching the order of integration and pulling Dpif(x(σ),σ)
outside the inner integral, the following equation is obtained:

DpiJ(·) =
� tf

t0

�� tf

σ
D�(x(s)) ◦ Φ(s,σ)ds

�

◦Dpif(x(σ),σ)dσ.

The operator ψ(t) can thus be defined as the inner integral� tf
t D�(x(s)) ◦ Φ(s, t)ds, which when differentiated with

respect to t results in Eq. (7), the same backwards adjoint
equation as used in the derivative with respect to a switching
time.

A single integration of ψ(t) is used to calculate the values
of the gradient with respect to all switching times, over the
entire time horizon with respect to all parameters, and can be
calculated and stored once per iteration. Additionally, note that
the proof is only taking advantage of the chain rule.

IV. SECOND-ORDER OPTIMALITY CONDITIONS

The Hessian with respect to switching times and parameters,
D2

τJ(·), is an (N +M) × (N +M) matrix, shown in block
form in Eq. (3).

A. Calculating DτjDτiJ(·)
The second derivative of the cost function with respect to

switching times τ are derived in [1], [2]. The notation once
again follows that of [2] for compactness.

Theorem 1: The second derivative of the cost function with
respect to two switching times τi and τj is calculated as
follows:

DτjDτiJ(·) =−D�(x(τi)) ◦Xiδji + ψ(τi) ◦Xi,j+

Ω(τi) ◦ (Φ(τi, τj) ◦Xj , Xi), (11)

where δ is the Kronecker delta. This equation involves the
n × n second-order adjoint Ω(t), which is found by solving
the following backwards differential equation:

Ω(tf ) =0(n×n) (12)
Ω̇(t) =−D2�(x(t))− ψ(t) ◦D2

1f(x(t), t)−
[D1f(x(t), t)]

T ◦ Ω(t)− Ω(t) ◦D1f(x(t), t).

The terms in Xi,j are defined as

Xi,j =






D1fi(x(τi), τi) ◦ fi(x(τi), τi)
+D1fi−1(x(τi), τi) ◦ fi−1(x(τi), τi)
−2D1fi(x(τi), τi) ◦ fi−1(x(τi), τi)
+D2fi−1(x(τi), τi)−D2fi(x(τi), τi)

[D1fi−1(x(τi), τj)−D1fi(x(τi), τi)]
◦Φ(τi, τj) ◦Xj

i = j

i > j.
(13)

A proof of Theorem 1 can be found in [2].

B. Calculating DpjDpiJ(·)
Theorem 2: The derivative of J(·) with respect to two

parameters pi and pj can be calculated as follows:

DpjDpiJ(·) =
� tf

t0

Dpif(x(t), t)
T ◦ Ωpj (t)

+ ψ(t) ◦ [DpjDpif(x(t), t)

+D1Dpif(x(t), t) ◦Dpjx(t)]dt, (14)

where Ωpj (t) is an n-length vector second-order adjoint
equation, unique to each parameter, calculated by solving the
differential equation

Ωpj (tf ) =0(n)

Ω̇pj (t) =−D2�(x(t), t) ◦Dpjx(t)−
[D1f(x(t), t)]

T ◦ Ωpj (t)−
ψ(t) ◦ [D2

1f(x(t), t) ◦Dpjx(t)+

DpjD1f(x(t), t)]. (15)

Proof: Differentiating DpiJ(·) with respect to the param-
eter pj yields

DpjDpiJ(·) =
� tf

t0

∂

∂pj
[ψ(t)] ◦Dpif(x(t), t)

+ ψ(t) ◦ ∂

∂pj
[Dpif(x(t), t)] dt

A second-order adjoint, Ωpj (t) = ∂
∂pj

[ψ(t)], is defined for
the second derivative with respect to the parameters. Ωpj (t)
is obtained by differentiating the expression for first-order
adjoint, ψ̇(t), with respect to a parameter pj (the initial
condition remains zero), and integrating backwards in time
as in the first-order derivation.

∂
∂pj

[Dpif(x(t), t)] is calculated by differentiating
Dpif(x(t), t) with respect to a parameter pj :

∂

∂pj
[Dpif(x(t), t)] =

� tf

t0

DpjDpif(x(s), s)

+D1Dpif(x(s), s) ◦Dpjx(s)ds.
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At this point, Ωpj (t) and DpjDpiJ(·) can be substituted into
the expression above to obtain Eq. (14).

As mentioned, the same expression for second-order deriva-
tives with respect to parameters are derived in [4] using
multiplier methods, however the proof presented above is more
concise and the methods used generalize clearly to the results
proven in Section IV-C.

C. Calculating DτiDpiJ(·)
In order to simultaneously optimize over switching times

and parameters, the complete Hessian also involves the deriva-
tive with respect to both a switching time and a parameter.

Theorem 3: The derivative of the cost function with respect
to both a switching time τi and a parameter pj is calculated
as follows,

DτiDpjJ(·) = ψ(τi) ◦Xτ,p + [Xi]T ◦ Ωpj (τi) (16)

where ψ(τi), Xi, Ωpj (τi), are defined by Eqs. (7), (8), and
(15), respectively. Xτ,p is defined as

Xτ,p = [D1fi−1(x(τi), τi)−D1fi(x(τi), τi)] ◦Dpx(τ)

+ [Dpfi−1(x(τi), τi)−Dpfi(x(τi), τi)] . (17)

Proof: Differentiating DτiJ(·) in Eq. (6) with respect to
the parameter pj yields

DpjDτiJ(·) = ψ(τi) ◦Xτ,p +
∂

∂pj
ψ(τi) ◦Xi.

Xτ,p represents ∂
∂pj

Xi, the derivative of the initial conditions
Xi with respect to a parameter. Equation (17) is obtained by
differentiating and applying the chain rule to Eq. (8).

The second term involves ∂
∂pj

ψ(τi), which is the same
second-order adjoint Ωpj (t) derived previously, evaluated at
the switching time τi.

The adjoint equations (7) and (15), derived in the context
of hybrid systems, are derived in [4] for continuous systems
using multiplier methods. The derivation of the second order
derivative with respect to parameters presented in this paper,
in addition to applying to hybrid scenarios, is generalized
to the cross-derivative terms between switching times and
parameters, which is shown to be critical for fast convergence.

V. EXAMPLE: THE SKID-STEERED VEHICLE

In the following sections, the proposed estimation algorithm
is applied to a sampled skid-steered vehicle trajectory, for both
simulated and experimental data. The vehicle model is made
up of four wheels connected to a rigid body. The vehicle
turns if the applied differential torque is large enough to
cause slipping between the tires and the ground, resulting in
skidding. The wheel-ground interaction is modeled as stick-
slip linear viscous friction, and both the experiment and
simulation for the skid-steered vehicle assume non-deformable
terrain. The coefficient of friction for the skid-steered vehicle
example is treated as an unknown parameter.

Only the modes in which all wheels are slipping (turning)
or all wheels are sticking (driving straight) are considered.
While modes in which the front wheels are sticking and rear

wheels are slipping, or vice versa, are potential modes for
this system, these modes were not observed experimentally
using the input torque profile. Additionally, mode sequence
estimation presented in [1] determined that switching from all
wheels sticking to all wheels slipping was the expected mode
order for similar torque profiles.

A diagram of the skid-steered vehicle model used is shown
in Fig. 2. The vehicle configuration is x = (X, Ẋ, Y, Ẏ , θ, θ̇),
where X and Y are Cartesian coordinates with respect to
the vehicle center of mass, and θ represents the heading of
the vehicle in the global frame. The equations of motion are
adopted from [1] and are shown below for a vehicle that turns
once, switching from sticking to slipping, and back to sticking.

In stick mode:






Ẍ = (F1+F2+F3+F4)cosθ(t)−c1Ẋ(t)
(mb+4mw)

Ÿ = (F1+F2+F3+F4)sinθ(t)−c1Ẏ (t)
(mb+4mw)

θ̈ = 0

In slip mode:






Ẍ = (F1+F2+F3+F4)cosθ(t)−c2Ẋ(t)
(mb+4mw) +

gµksinθ(t)
�
−sinθ(t)Ẋ(t) + cosθ(t)Ẏ (t)

�

Ÿ = (F1+F2+F3+F4)sinθ(t)−c2Ẏ (t)
(mb+4mw) −

gµkcosθ(t)
�
−sinθ(t)Ẋ(t) + cosθ(t)Ẏ (t)

�

θ̈ = 12b(F1−F2−F3+F4)−12a2g(mb+4mw)µk θ̇(t)
4mw(12a2+12b2)+mb(B

2
l +B2

w)

ẋ = f(x, t) =






sticking 0 ≤ t < τ1
slipping τ1 ≤ t < τ2
sticking τ2 ≤ t < 1

(18)

In Eq. (18), F1, F2, F3, and F4 are the transformed wheel
torques sent to each of the wheels. The estimated coefficient
of friction is µk, and all other model parameters for the
vehicle used experimentally, shown in Fig. 1, are known: g
is the gravitational constant, mw = 2.5 kg and mb = 70
kg are the masses of the wheel and car body, Bl = 0.89 m
and Bw = 0.55 m are the length and width of the vehicle
body, a = 0.25 m and b = 0.23 m are the distances from
the wheels to the center of mass in each dimension, c1 and
c2 are system identified internal damping coefficients, set to
0.72 and 0.92 respectively. The incremental cost function
used in the simulations and experiments was �(x(t), t) =
1
2 (x(t)− xm(t))T (x(t)− xm(t)).

Fig. 2. Skid-Steered vehicle model used in simulation
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Estimated hybrid trajectory

Magic Tire trajectory
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Fig. 3. Reference trajectory generated using Magic Tire formula ( dashed
gray) and optimized hybrid trajectory generated using optimal friction coef-
ficient and switching times (solid black line).

A. Simulation

The estimation method requires a model of the system, com-
manded control inputs, and a measured trajectory for optimal
estimation. In this section, the measured vehicle trajectory was
simulated using two different traction models in Mathematica–
Pacejka’s Magic Tire formula [18] and the stick-slip friction
model in Eq. (18). In both cases the hybrid stick-slip model
is used for forward simulation in the estimation algorithm.

1) Estimation of friction coefficient and switching times for

a trajectory generated using the Magic Tire formula: Rather
than assuming that the forces at the wheels in Eq. (18) change
instantaneously (assuming stick-slip), the forces at each wheel
in this example are calculated using the Magic Tire Formula,
with model parameters taken from [18]. In this case, the wheel
angular velocities are assumed to switch from all positive
values, to a differential, and back. The version of the Magic
Tire Formula implemented involves 16 different coefficients;
numerically calculating the Hessian of the objective function
with respect to the 16 Magic Tire parameters at the optimal
values, however, yields an ill-conditioned matrix, which moti-
vates use of the stick-slip model for estimation, involving one
unknown parameter and switching times.

Using the hybrid stick-slip model for estimation, the algo-
rithm converged to reasonable values, obtaining necessary and
sufficient conditions for optimality, and produced a trajectory
which tracked the Magic Tire reference well. Figure 3 shows
the trajectory generated using the Magic Tire formula as a
dashed gray curve, and the optimized stick-slip trajectory in
solid black. The wheel angular velocity inputs to the magic tire
model were programmed to switch at 5 and 10 seconds; the
optimal switching times obtained using the hybrid stick-slip
model are 5 and 11.7 seconds with a coefficient of friction of
0.676. The coefficient of friction estimate is within reasonable
bounds for tires on asphalt [22]. The difference in the second
switching time is likely a result of the difference between the
stick-slip model, which assumes the vehicle instantaneously
regains traction, and the Magic Tire model, which results in
a transient turning period after the angular velocity inputs
switch; in the hybrid model, this transient turning results in an
optimal trajectory with a delayed second stick-slip transition
time.
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Fig. 4. The logarithm of the norm of the gradient of the cost function, with
respect to both switching times and parameters, is shown at every iteration for
the three algorithms used; steepest descent and SQP using both exact (SQP:
Full Hessian) and approximate (SQP: Block-Diagonal Hessian) Hessians.

2) Estimation of friction coefficient and switching times

using a stick-slip friction model: Using the equations of mo-
tion in Eq. 18 the simulated torque inputs were programmed
to transition from F1=F2=F3=F4=15N, to F1=F4=27N,
F2=F3=0N, then back to F1=F2=F3=F4=15N. The simulated
measured trajectory was generated using (µk = 0.7, τ1 = 6s,
τ2 = 10s). The estimation algorithm was initialized to
(µ = 0.8, τ1 = 5s, τ2 = 9)s.

Figure 4 shows logarithmic plots of the norm of the gradient
at each iteration using three different choices of quadratic
model for the optimization to obtain the transition-time and
parameter estimates from simulated data: steepest descent
using only first-order derivative information, SQP using a
block-diagonal Hessian and SQP using the exact Hessian in
simulation. Using steepest descent, the algorithm converged to
within a tolerance of 10−7 on the norm of the gradient after
about 1000 iterations. Using SQP with the exact Hessian, the
correct values were determined after only 12 iterations. When
SQP was performed using a block diagonal approximation of
the Hessian, the convergence does not exhibit the fast quadratic
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Fig. 5. Normalized error from the estimated switching time and parameter
values to the true values for different levels of variance in Gaussian measure-
ment noise
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Fig. 6. Measured data and trajectory generated using the optimal estimates of transition times and parameters for five trials of the skid steered vehicle driving
on an asphalt surface. Trajectories are shifted along the X axis for visualization.

performance observed using the exact Hessian including the
cross-derivative terms.

3) Effect of measurement noise on estimation error: A
preliminary study of the effect of measurement noise on
the error between the measured and simulated trajectory for
each switching time and parameter was conducted. Simulated
trajectories were generated using the same switching times
and parameters. The vehicle position was then sampled at
one second intervals, interpolated and low-pass filtered to
simulate coarsely sampled GPS measurements. Interpolation
is necessary as the algorithm assumes continuous state vari-
ables, and filtering accounts for some process noise and
improves robustness. Random Gaussian noise was added to
each sampled data point, with a mean of zero and variance
between 0 and 0.25 m. As shown in Fig. 5, normalized error
between values used to generate the sampled trajectory and
estimated switching times and parameter values increases with
the variance of injected Gaussian noise. The error is zero for
zero noise, and the performance shows graceful degradation
as the noise variance increases up to 0.25 m. The parameter
estimate is most sensitive to higher levels of noise. Based on
the mode order used in this example, with data sampled at
1 Hz over a 15 second time interval, there are effectively
only four measurements which affect the estimate of the
friction coefficient (the coefficient only enters the dynamics
during slip mode between 5-9s); it is not surprising that this
results in increased noise sensitivity with respect to the friction
coefficient.

B. Experiment

The estimation method was implemented experimentally
using the skid-steered vehicle shown in Fig. 1 on asphalt.
Measurements were made using an onboard GPS at 1 Hz, and
the data was low-pass filtered and interpolated. Figure 6 shows
the raw GPS data collected during the experiment, as well
as the interpolated and filtered curves used as the continuous
measurement trajectory xm(t) in the optimization algorithm,
plotted as dashed gray lines for five experimental trials. The
torque inputs for Trials 1-3 were programmed to transi-
tion from F1=F2=F3=F4=12N, to F1=F4=27N, F2=F3=0N,
then back to F1=F2=F3=F4=12N; inputs for trials 4 and 5
were programmed to transition from F1=F2=F3=F4=15N, to
F1=F4=27, F2=F3=0N, then back to F1=F2=F3=F4=15N.
The trajectories that correspond to the optimal estimate of
the values of the switching times and parameters for both
trials are plotted in black. For all five trials, the estimates were
initialized to τ = (5, 10)s, µ = 0.8; the trajectory simulated
using the initial values are plotted in solid gray for each trial.
Transition times and parameters that correspond to an optimal
estimation, according to the interpolation method and objective
function chosen, are shown in Fig. 6 for each trial.

All trials converged to within a tolerance of ||DJ || < 10−7

on the norm of the gradient in fewer than 15 iterations. The
initial conditions were chosen based on approximate knowl-
edge of terrain and the known control inputs for the vehicle.
Because control inputs to the vehicle are known (as well
as mode order), transition times are typically approximately
known, based on when a differential is commanded to the
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wheels. Although the algorithm is initialized to values that are
relatively close to the correct values, choosing initial values
further from the optimal estimate would generally lead to the
same estimate.

The experiment was carried out on an asphalt surface;
imperfections in the surface as well as the possibility of
the presence of other material, e.g. sand or dirt, introduce
variability in the transition times and friction coefficient.
Unmodeled mechanical and electrical factors such as battery
discharge also contribute to uncertainty. Expected values for
the coefficient of friction of rubber on asphalt range from
0.6-0.85 [22]. All estimated trajectories qualitatively follow
the interpolation of the data well, the estimated coefficient
for trials 1-4 are within the range of expected values, and
the values are very similar for trials 1, 2, and 4. In trial 5
a parameter value outside the expected range is calculated.
There are several possible reasons for this difference. Given
that experiments were carried out in an outdoor environment it
is possible that there was a variation in the surface properties
in the region traversed during trial 5, or some characteristic of
the vehicle itself (e.g. battery discharge) is causing the vehicle
to travel and turn marginally more slowly during this trial,
resulting in a higher estimated friction coefficient value given
the same torque inputs.

VI. CONCLUSION

An algorithm for estimating both mode transition times
and parameters using first- and second-order optimization
methods for a hybrid system operating in uncertain conditions
is presented. The main contributions are analytical derivations
of the Hessian and gradient with respect to mode transition
times and parameters. The results rely only on standard cal-
culus techniques that generalize to hybrid systems and cross-
derivative terms between the switching times and parameters.
The results demonstrate the ability of the optimization-based
estimation algorithm to perform well given coarsely sampled
experimental data. Simulation results demonstrate dramatic
increase in convergence rates using second-order methods
within the SQP framework using the exact Hessian.

Several potentially limiting assumptions were made in the
formulation of the estimation method presented. It is assumed
that mode order is known, and that the state evolves continu-
ously. While reasonable for the examples provided, mode order
is not always predictable, and there are many systems which
experience discontinuities in the state, such as impacting sys-
tems. Generalization of the approach to include optimization
over mode order as well as impulse magnitude will be included
in future work. The optimization-based estimation technique
also requires that the system trajectory is sampled over a
finite time horizon. Further analysis is planned to characterize
how the length of this time horizon affects the robustness
of the optimization problem; shorter time intervals are likely
desirable from a computational perspective, however shorter
time intervals may result in a less well-posed optimization
problem.
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