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Abstract— This paper considers the problem of optimizing
the schedule of modes in a linear time-varying switched system
subject to a quadratic cost functional. The switched system
optimization is formulated as an infinite-dimensional optimal
control problem where a projection-based technique handles
an integer constraint. In the proposed implementation, only a
single set of differential equations needs to be solved off-line,
with no additional simulation required during the optimization.
Robustness to numerical errors is enhanced as these differential
equations are as smooth as the system’s vector fields, despite the
optimization itself being non-smooth. An example demonstrates
the optimization algorithm steps and verifies feasibility and
convergence.

I. INTRODUCTION

This paper considers the problem of scheduling the modes
of a linear time-varying switched system so as to optimize
a quadratic performance metric. By mode scheduling, we
refer to the calculation of the optimal mode sequence and
the corresponding switching times. The primary result of this
paper is reformulating a projection-based mode scheduling
algorithm so that no differential equation needs to be solved
for during optimization. Therefore, we propose a modified
iterative algorithm that makes full use of the system’s lin-
earity, hence requiring only a single integration of a set of
smooth differential equations prior to optimization.

The problem is formulated as an infinite-dimensional
optimal control problem where the variables to be optimized
are a set of functions of time constrained to the integers.
Several mode scheduling methods have been proposed to
deal with this problem, including: mode injection methods
[1], [2] which determine optimal switching times by com-
puting when an injected mode will decrease the cost and
embedding methods [3], [4], which relax, or embed, the
integer constraint and find the optimal of the relaxed cost.

The iterative projection-based approach as introduced in
Caldwell’s work [5], [6], [7] form the basis for the work
in this paper. For a projection-based method, the design
variables live in an unconstrained space but the cost is
computed on the projection of the design variables to the
set of admissible switched system trajectories. In [5], an
iterative optimization algorithm is synthesized that employs
the Pontryagin Maximum Principle and a projection-based
technique.
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We reconsider this algorithm by taking advantage of
the linearity of the dynamical system under concern. The
specific case of linear switching control has been extensively
investigated by others (see [8]). However, the approaches in
[9], [10] solve for a differential equation at each step of the
iterative algorithm. Previous attempts to avoid the on-line
integration of differential equations are limited to switching
time optimization problems where the mode sequence is
fixed. More specifically, Xu and Antsaklis [10], [11] consider
time-invariant switched systems and thus, employ the matrix
exponential for simulating the state without solving for a dif-
ferential equation. However, the linear relationship between
state and co-state must still be simulated on-line at each
iteration. On the other hand, Caldwell in [12], [13] considers
linear time-varying systems and proves the existence of
operators that, after they have been solved for off-line, can
be used for the algebraic calculation of the state and co-
state. In this paper, we extend this work to mode scheduling
applications where the mode sequence is also optimized.

The objective of this paper is to present a projection-
based mode scheduling algorithm that is not constrained by
the system dynamics. In other words, only a single set of
differential equations is solved off-line making it so that
no additional simulation is required during the optimization
routine. These differential equations are independent of the
assumed mode sequence and switching times. Moreover,
as in [12], no assumption about the time-variance of the
modes is made. Under this formulation, the execution time is
invariant to any choice of ODE solver, and only depends on
the number of multiplications and inversions required for the
calculation of the optimality condition. One of the strongest
assets of the proposed algorithm is its high robustness
to numerical errors arising from the fact that the off-line
integrated differential equations are as smooth as each of the
linear modes.

This paper is structured as follows: Section II reviews
switched systems and their representations while stating our
optimization problem. The single integration mode schedul-
ing algorithm is proposed in Section III and an example is
provided in Section IV. Section V discusses the algorithm
complexity in terms of matrix multiplications per iteration
and considers its robustness.

II. ReviEw

A. Switched Systems

Switched systems are a class of hybrid systems that evolve
according to one of N modes f; : R" — R,i € {l,....N}
at any time over the finite time interval [Ty, Ty/], where



Ty is the initial time and T > O is the final time. We
consider two representations of the switched system, namely
mode schedule and switching control. As a unique mapping
exists between each representation, the two will be used
interchangeably throughout the paper.

Definition 1: The mode schedule is defined as the pair
{Z,7} where 2 = {o,...,04} is the sequence of active
modes o; € {1,...,N} and 7 = {T}, ..., Ty_1} is the set of the
switching times T; € [Ty, Ty]. The total number of modes
in the mode sequence is M € Z*.

Definition 2: A switching control corresponds to a list of
curves u = [uy,...,uy]” composed of N piecewise constant
functions of time, one for each different mode f;. For each
t € [To, Tnl, XN, uit) = 1, and for each i € {1,..., N}, u;(t) €
{0, 1}. This dictates that the state evolves according to only
one mode for all time. We represent the set of all admissible
switching controls as Q.

Throughout the paper, we will refer to the mode schedule
corresponding to the switching control u as {X(u), 7 (u)}.

B. Problem Statement

Our objective is the minimization of a quadratic cost
function

Tu 1
J(x,u) = fT Ex(T)TQ(T)x(T)dH EX(TM)TPIX(TM) (1)

subject to the pair (x,u) where x is the state and u the
switching control. Here, Q and P; are the running and
terminal cost respectively, and are both symmetric positive
semi-definite. Note that this cost functional can also be
adapted to include reference trajectory, in which case the
objective would be to minimize the error between the state
and the reference ([13]).

Any switched system (x, «) that optimizes the performance
metric (1) is constrained by the state equations. For a system
with n states x = [xj, ..., x,]” and N different modes, the state
equations are given by

N
x(1) = F(1, x(1), u(?)) := Z ui(0) fi(x(1), 1) 2
i=1
subject to the initial condition x(7) = x¢. For this paper, we
restrict our focus to linear time-varying systems so that
N
F(t.x(0.u(0) = ) w(DAD(0). 3)
i=1
Alternatively, we may express the system dynamics with
respect to the current mode schedule as follows:

Ft,x(1), 2, T) := A(t, 2, T)x(t) 4)

where A(t,2,T) = A,,(t) for Tiy <t < T;.

From Definition 2 of an admissible switching control u, it
follows that our optimization problem is subject to an integer
constraint. Let S represent the set of all pairs of admissible
state and switching control trajectories (x, u), i.e. all pairs that
satisfy the constraint (2) and are consistent with Definition
2 so that u € Q. In [6], authors propose a projection-
based technique for handling these constraints set by S. In

particular, an equivalent problem is considered where the
original design variables (a,u) belong to an unconstrained
set (X, U) and the cost J is evaluated on the projection of
these variables to the set S. Now, the problem is reformulated
as

arg min J(P(a, 1)) 5)
(a.p)

where P is a projection - i.e. P(P(a,u)) = (P(a,w)) - that
maps curves from the unconstrained set (X, U) to the set of
admissible switched systems S. As the cost is calculated
on the admissible projected trajectories, this problem is
equivalent to the original, as described in the beginning of
this section.

The optimal mode scheduling algorithm developed in
[5] utilizes the max-projection operator. The max-projection
operator P : X X U — S at time ¢ € [Ty, Ty] is defined as

Pl i { £ = Fx@,u@), (T =x o
u(®) = Qu(1))
where @ is a mapping from a list of N real-valued control
trajectories, u(t) = [ui(®),...,un®]" € RN to a list of N
feasible switching controls, u € Q. We may define Q as

Q (1)) .
Qu(r) = with  Qi(u(t) = | | 16a(0) ~ (1)
Qu(u(0) s

(7

where 1 : R — {0, 1} is the step function.

C. Mode Insertion Gradient

The mode insertion gradient appears in previous studies
[11, [2], [14]. Here, it is defined as the list of functions d =
[di(1), ...,dn()] € RV that calculate the change to the cost
J from inserting one of the N modes at some time ¢ for an
infinitesimal interval. Each function element of d is given
by:

do(1) = p(O" (falX(0), 1) = for(y(X(0), ) (8)

where x € R” is the solution to the state equations (2) and
p € R" is the co-state and solution to the adjoint equation

p(1) = =DF(t, x(1), u(®)” p(1) = Q)X (1), ©))

subject to p(Ty) = Pix(Ty). In 8), o(t) : [To, Tyl —
{1,..., N} is the function that returns the active mode at any
time ¢.

It has been shown in [12], that when a quadratic cost is
optimized subject to a linear time-varying switched system,
a linear mapping between state x and co-state p exists. Thus,
we may express the co-state as

p(t) = P()x(1)

where P(f) € R™" is the Riccati relation and is calculated by
the following differential equation:

(10)

P@t) = =A@, 2, T P(t) - POA1LZ,T) — Q@) (11)

subject to P(Ty) = P;. Note that this is the linear switched
system analog to the Riccati Equation from the LQR problem



in classical control theory. Using (3) and (10), the mode
insertion gradient element can be written as

do(1) 1= x(O)T P()[A(1) = A (D]X(2). 12)

III. SINGLE INTEGRATION OPTIMAL MODE SCHEDULING
ALGORITHM

Caldwell in [5] considers the problem of optimizing an
arbitrary cost functional J(x,u) subject to the switching
control u(#) and switching system state x(¢), using projection-
based techniques. Here, we further this work by restricting
our focus to linear time-varying systems with quadratic
performance metric. In particular, we seek to reformulate this
problem so that no differential equations are solved during
the iterative optimization routine.

Consider the switched system (x, #) and the corresponding
optimization problem constrained by the system dynamics,
as described in the previous section. The dynamic constraint
dictates that a system simulation should be performed at
each iteration as soon as the next switching control has been
calculated. In particular, the calculation of the mode insertion
gradient (8) involves the solution of the state and adjoint
equations, (4) and (9), while the max-projection operator also
includes the state equation. In this paper, we consider a mod-
ified version of the projection-based iterative optimization
algorithm in [5] that depends on a set of differential equations
that are only solved off-line once, hence alleviating the need
for additional integration during the optimization process.

A similar approach to [12] will be followed. Building
on the existence of a linear relationship between the state
and co-state as described in the previous section, we will
utilize operators to formulate algebraic expressions for the
calculation of the state x(#) and the Riccati relation P(¢) at
any time t € [Ty, Ty]. The operators should be available
prior to optimization through an off-line solution to a differ-
ential equation. Moreover, they should be switching control
invariant.

It should be noted that for an infinite-dimensional optimal
control problem, the definition of the full state and co-state
trajectories is required at each iteration, unlike the switching
time optimization case [12], where only a finite number of
state and co-state evaluations are involved. Remember that
in the latter case, the mode sequence is constant and the
problem is finite-dimensional. Therefore, in order for the
proposed algorithm to be feasible, an explicit mapping from
time 7 to x and P is defined at each iteration, depending on the
current mode schedule {Z, 7}. The proposed mapping only
includes algebraic expressions. The exact number of multi-
plications executed in each iteration depends on the number
of times the state and co-state must be evaluated. Later on,
we will see that this comes down to the minimization of a
single function, namely the mode insertion gradient.

For the rest of the paper, a variable with the superscript
k implies that the variable depends directly on u* i.e. the
switching control at the k™ algorithm iteration.

A. Defining x(t)

The operators for defining x(f) are the state-transition
matrices (STM) of the N different modes. Let ®/(-, -) € R
denote the STM for the linear mode j € {1, ..., N} with A ;(?).
The STM are the solutions to the N differential equations

d . A
ECD’(I, To) = A;(t)- @' (t,To), j=1,...,N (13)

subject to the initial condition ®/(Ty, To) = I,.

The following two STM properties will be useful for
defining the state x(¢) given a mode schedule {X,7}. For
an arbitrary STM, ®, characterized by A(¢), we have:

1) x(t) = O(t, 7)x(7)

2) @(t1,13) = D(t1, 2)D(12,13) = D(t1, 12)D(13,12)7!
Then, the state x at the i switching time is

1
x(T;) = ©(T;, To)xo = [1_[ (T, Ti-Dlxo  (14)
J=t
where E(Ti, Ty) is the state-transition matrix corresponding
to Z(t, 2,7) as defined above.

But for an infinite-dimensional optimal control algorithm,
the value of the state should be available for all ¢ € [Ty, Ty],
as needed throughout the algorithm steps. Hence, the state
evolution is defined as a piecewise function of time, each
piece corresponding to a time interval between consecutive
switching times {7}, Tis1}:

x(t) =
71 (2, To)x(To),
O%2(t, T)® ' (T, To)x(Ty),

To<t<T
T,<t<T,

1
7 (t, Ty-1)[ I}J 1<1><ff(Tj, TiiDIx(To) Ty-1 <t<Ty
M-
(15)

A more compact representation of the state is provided
here, by employing unit step functions and (14) . In particu-
lar, the value of the state x(7) at all # € [Ty, Ty] depends on

Algorithm 1
Off-line:
« Solve for the STM ®/(¢, Ty) and ATM Wi(t,Ty) Vj €
{1,...,N} and t € [Ty, Ty] and store in memory.
« Choose initial u® — {Z(u®), T (u®)).
« Set x(Ty) = xo and P(Ty) = P;.

On-line iterative process:
Set k=0, uf = u°.
1) Define x*(¢) := x(t, 2", T (")) as in Eq. (17).
2) Define P(t) := o(t, Z(u¥), T (")) as in Eq. (24).
3) Define the descent direction —d*(¢) as in Eq. (27).
4) Calculate step size ¥* by backtracking.
5) Update: u**'(r) = Quk(r) — y*d (1)).
6) If u**! satisfies a terminating condition, then exit, else,
increment k and repeat from step 1.




the current mode schedule {Z, 7} and is given by

x(t) = (6,2, 7) (16)
where
M
X(6,2,7) = {1 = Tioy) = 1 = TDIO7 (2, Tio)x(Tiy))
i=1
(17)
where, from STM property 2,
7 (1, Tioy) = D7 (t, To)D7 (Tizy, To) ™" (18)

Prior to the iterative optimization, the operators (STM)
®i(t, Ty) are solved off-line for ¢ € [Ty, Ty] and for all
different modes j = 1,...,N and stored in memory. Thus,
given a mode schedule, the calculation of state x(¢) via (17)
requires no additional integrations.

B. Defining P(t)

Caldwell has proved in [12] that an analogous operator to
the STM exists for the definition of the Riccati relation P(r)
appearing in (10). As in [12], we will refer to the operator as
the adjoint-transition matrix (ATM) and use W/(-,-) € R™"
to denote the ATM corresponding to each mode j € {1, ..., N}.
The ATM are defined to be the solutions to the following N
differential equations:

d . . .
d—t‘I” (t, Ti) = =A ;O (2, Tv) =W/ (1, Tw)A ()= Q1) (19)

subject to the initial condition W/(Tyy, Th) = 0,x,. Note that
the state and the adjoint are solved in opposing directions.

The following two ATM properties will be useful for
defining P(¢) given a mode schedule {2, 7}. For an arbitrary
ATM, ¥, characterized by A(f) and associated STM ®, and
cost function defined by Q(f), we have:

1) P(t) =¥(t,1)0 P(1) = P(t,7) + (1, )T P(1)D(7, 1)

2) Y(1,13) = Y(t1,12) o W(2,13) = Y(1,12) +

(2, 1DHTP(12, 13)D(12, £1)

Each of the above properties has been proved in [12]. Then,
the P(¢) at the i switching time is

P(T;) = ¥(T;, Ta) © P(Tw)

_ _ - _ (20)
=Y(T;,Tu) + ©(Ty,T;) P(Ty)O(Ty,T;)

where W(T;, Ty) is the adjoint-transition matrix correspond-
ing to A(#,2,7) as defined above. From ATM property 2,
this is equal to
(T3, Tr) =7 (T3 Tin) © - 0 ¥ (g1, Th)
¥ _ , - 1)
= Z O(Ty—1, T;) Y (Ty—1, T)P(Ti-1, Ti)
k=i+1
As in the previous case, we aim to derive an expression for
the evaluation of P(f) at random time instances, as needed.
Again, we will represent the Riccati relation as a piecewise
function of time:

WM (t, Ty) o P(Ty), Ty-1 <t<Ty

Yot (t, Toyy—1) o P(Ty—1), T <t < Ty

P(t) = (22)

Y7 (@@, Th) o P(T), To<t<T

In particular, the value of the Riccati relation P(7) at all ¢ €
[To, Ty] depends on the current mode schedule {X,7} and
is given in a more compact form by the following

P@) :=0t,2,7) (23)

with

M
o6, Z,7) = ) {1 = Tiey) = 1 = TYIPT(2, T) o P(T)1)
i=1

(24)
where, from ATM property 2,

\Po—i([, T) = \Po—i(l, Ty) + (I)o-i(T,‘, l)T\Po—i(T,‘, TM)(D(T“(T,', 1.
(25)
Combining ATM property 1 with (24) and (25), we end up
with the expression

M
ot,2,7) = Y (1t~ Tie) = 1¢ = T
i=1
(87 (1, Tar) + D7 (T3, 0 [P(T) = ¥ (T3, Ty @7 (T3, )]}
(26)

Prior to the iterative optimization, the operators (ATM)
Wi(t,Ty) are solved off-line for all ¢ € [Ty, T)] and for all
different modes j = 1,...,N and stored in memory. Thus,
given a mode schedule, the calculation of P(¢) via (26)
requires no additional integrations.

C. Defining the descent direction

An iterative optimization method computes a new estimate
of the optimum by taking a step in a search direction from
the current estimate of the optimum so that a sufficient
decrease in cost is achieved. For projection-based infinite-
dimensional optimization, the cost does not have a natural
gradient. However, the mode insertion gradient d(f) defined
in the previous section, has a similar role in the mode
scheduling optimization as the gradient does for finite-
dimensional optimization. It was proved in [5] that —d*(r)
is a descent direction.

After the definition for the state and co-state, deriving
an equivalent expression for the mode insertion gradient is
straightforward from (17),(23) and (8). Thus, an element of
d*(1) is defined as

d(0) := x (6 Z(u), T ()" o(t, Z(ur), T (uy)) o
[Aa(t) = Ak (O D (8, (), T ()
where o = {1, ..., N}.

D. Update rule

A new estimate of the optimal switching control u*! is

obtained by varying from the current optimum u* in the
descent direction and projecting the result to the set of ad-
missible switching control trajectories. For this purpose, the
max-projection operator (6) is employed. Here, the projection
operator is adjusted to reflect the fact that the problem is no



longer constrained by the system dynamics. We refer to the
new projection operator as P, and define it as follows:

x(t) = x(t, 2(w), T ()
u(?) = Q(u(n)

where @ is again given by (7). Consequently, the update
rule is **(f) = Qu*(t) — y*d*(1)). For choosing a sufficient
step size yX, we may utilize a projection-based backtracking
process as described in [7].

As the focus of this paper is very specific i.e. the
reformulation of the optimization problem to a problem
unconstrained by the system dynamics, the reader is referred
to [5], [6] for a more detailed description of these algorithm
steps, along with the associated proofs for convergence.

Pula,p) = { (28)

E. Calculating the optimality condition

As no natural gradient exists for this infinite-dimensional
optimal control problem, the optimality function # € R has
been defined in [5] as

¢ = d. (to) (29)

where
min
e{l,...N}Lte[To,Tu]

(ao, to) = arg du (). (30)
This choice is fairly intuitive, if we consider that as the
minimum value of the mode insertion gradient goes to zero,
the possibility of cost reduction with a mode insertion drops.
This rationale follows directly from the definition of the
mode insertion gradient. As far as convergence is concerned,
the limit of the sequence of optimality functions is proved
to go to zero in [5]. This allows us to utilize ¢* also as a
terminating condition for the iterative algorithm.

Building on the definition of the optimality condition in
(29), the amount of memory calls and matrix algebra is tied
to the selection of a specialized global optimization algorithm
for expensive-to-evaluate functions (see [15]).

IV. EXAMPLE

We demonstrate an example to showcase the algorithm
feasibility and convergence. Consider a linear time-invariant
switched system of the form in (4) with N = 2 possible

modes
0 1 0 1
Al —( 10 ) and Az—( 2 0 ) (31)
and initial configuration x, = [0.5,0]” at time Ty = O.

We wish to find the switching controls that minimize the
quadratic cost functional (1) with Q = I, and P, = 0, over
the time interval [0, 6.5].

Before initiating the on-line iterative process, we calculate
the operators @/(z,0) and W/(z,6.5) for all ¢ € [0,6.5] and
J =1{1,2} by numerically solving (13) and (19) respectively.
One way to do that is to store in memory discrete data points
of the trajectories, so that any single value of ®/(z,0) and
Wi(t, 6.5) at time ¢ can be given by a polynomial interpolation
of the data points surrounding this time instance.

0,
°
—1F °
2l *, log (J(uk)-J(uk*1))
-3r ... ®
o ...
—4r ¢ .. °
°
'Y J

—5L ° ° o

C L - - L - - L - - - L . . . .
(a) 5 10 15 20 25 30

Iteration number (k)
1.0
30
u, " (t)

(b 1 5 6

Time (1

Fig. 1. (a) Plot of log(J(u) — J**1)) for 30 iterations. The difference be-
tween consecutive costs decreases with iteration. (b) The optimal switching
control after 30 iterations. Note that this is the scheduling of mode 1, u?o,
and u;() is its supplementary i.e. where u; is 1, up is O and vice versa.

Following, we execute 30 iterations of Algorithm 1 start-
ing with initial switching control «® = [1,0]7(¢) or equiv-
alently 2w’ = {1} and 7@ = {}. The procedure for the
first iteration is described next. The state x°(f) and Riccati
relation P°(f) are defined as in (17) and (26) respectively,
with respect to the current mode schedule. Now, the negative
mode insertion gradient —d°(¢) is given by (27). The next
optimum u' is computed by taking a sufficient step in the
descent direction and utilizing the max-projection operator
S0 as to project the unconstrained trajectories to the feasible
switching control trajectories constrained to the integers.

After the 30" iteration, the cost is reduced from 0.812499
to 0.483374 and the optimality condition & trends to-
ward 0, i.e. °° = —0.00754861. The reduction of the
cost at each iteration is illustrated in Fig. 1(a). The
optimal mode schedule is X@*®) = {2,1,2,1,2,1} and
T @) = {0.0447234,1.53061,2.67752,4.18317,5.25856).
The switching control after 30 iterations 1?0(¢) was evaluated
at all 7 € [0, 6.5] and the first element corresponding to mode
1 is plotted against time in Fig. 1(b).

The executional efficiency of the algorithm is not ad-
dressed in this example, since a conventional function min-
imizer (i.e. built-in Mathematica function) was used for the
calculation of the optimality condition.

V. CoMPLEXITY AND ROBUSTNESS

It is generally the case that the complexity of an optimal
control algorithm is discussed in terms of the forward and
backward system simulations involved in each iteration.
However, in the previous section, we showed that all the
state and co-state information we need, is encoded in the
STM, ®i(t,Ty), and ATM, W/(t, Ty), Vj € {1, ..., N} which
are solved for and saved in memory for all ¢ € [Ty, Ty]
prior to the optimization routine. Therefore, the calculation



of x*(r) and P*(r) and consequently the optimality condition
6* relies simply on memory calls and matrix algebra. No
additional differential equations need to be solved for during
optimization.

The algorithm complexity can be discussed instead in
terms of the number of matrix multiplications involved in
each iteration. Recall that at each iteration, the state is
defined as in (17) and the Riccati relation as in (26), but the
total number of function evaluations depends on the selection
of the global optimization algorithm for minimizing the mode
insertion gradient. Taking this into consideration, we will
instead look at the algebraic calculations required for the
evaluation of the state and co-state at a single time instance
t.

First, for executional efficiency, one may calculate all the
state and co-state values at the switching times, x(7;) and
P(T}), given the current mode schedule (Z(u*), 7 (u¥)) at the
beginning of each iteration. To compute the state, begin with
x(Ty) = xo and then recursively calculate

X(T)) = O7(Ts, T )X(Tie)Vie {1, ..M~ 1} (32)

Using STM property 2 and following a similar approach
as in the derivation of (17) , this computation comes down
to 2(M — 1) multiplications, assuming that all ®/(¢, To)~! for
all j € {1,..., N} have also been stored in memory. Similarly
for the Riccati relation, begin with P(T)/) = P; and then
recursively calculate

P(T;) =7 (T;, Ty) + 7 (Tiat, T)) [P(Tis1)
=Y (Tigr, Ta)1Q7* (Ti1, Ti)

for all i € {1, ..., M —1}. Note that the derivation of the above
expression is identical to the derivation of (26). Knowing
that all ®7#+ (T, T;) have already been calculated in (32),
another 2(M — 1) multiplications are required for the cal-
culation of P(¢). To summarize, the standard computational
cost of the algorithm comes down to a total of 4(M — 1)
multiplications per iteration.

Now, to evaluate equation (17) and (26) at any random
time ¢ during the optimization process, we only need four
additional multiplications, two for the state and two for the
Riccati relation. Therefore, to evaluate the mode insertion
gradient at any random time, 7 multiplications are required
in total, including the algebra involved in (8).

On the subject of the algorithm robustness to numerical
errors, the determinative factor here is the numerical solver
used to solve for the operators ®/(z, Ty) and W/(¢, Ty). Since
the numerical integration of these operators is as smooth
as each of the modes, the proposed implementation has
additional numerical robustness compared to the original
algorithm in [5] where simulation of non-smooth switched
dynamical systems is involved.

(33)

VI. ConcLusioNs AND FUTURE WORK

In this paper, we proposed an approach for scheduling
the modes of linear switched autonomous systems to opti-
mize a quadratic cost functional. In particular, we revised
a projection-based optimal control algorithm aiming to take

full advantage of the system’s linearity. With the proposed
implementation, no differential equations are solved during
the optimization routine. Only a single set of differential
equations, which are as smooth as the system’s vector fields,
need to be simulated off-line, independent of the assumed
mode sequence and switching times. Now, the computational
cost does not depend on the choice of the ODE solver but
on the number of matrix multiplications per iteration.

Future work will focus on assessing the computational
efficiency of the algorithm, by employing global optimization
techniques.
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