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Abstract— Estimation and filtering form an important com-
ponent of most modern control systems. Techniques such as ex-
tended Kalman filters and particle filters have been successfully
utilized for estimation in many different applications. Integra-
tors derived from discrete mechanics possess desirable numer-
ical properties such as stable long-time energy behavior, exact
constraint satisfaction, and accurate statistical calculations. In
the present work, we leverage these features by utilizing a
variational integrator derived from discrete mechanics within
extended Kalman filters and particle filters. By filtering real
experimental data from the nonlinear, underactuated planar
crane problem we demonstrate that the linearizations available
through the discrete mechanics framework increase the accu-
racy of uncertainty estimates provided by an extended Kalman
filter, especially when operating at low frequencies. Additionally,
we illustrate situations where particle filter performance is
increased through the statistics-preserving properties provided
by the variational integrator.

I. INTRODUCTION

In control systems, measurements of a system’s state
are utilized in a feedback loop to regulate and control the
behavior of the system, and in a real-world application these
measurements are subject to sensor noise. Additionally, there
may be components of the system state that go unmeasured
for a variety of reasons; an unreliable system model is
then used to fill in information about these unmeasured
states. Dealing with these challenges is the primary goal of
estimation and filtering.

Likely the most well-known and widely used estimator
is the Kalman filter [1]. When the Kalman filter is ap-
plied to a linear Gaussian system, it provides the opti-
mal, maximum-likelihood (minimum-variance) state estima-
tor [2]. The Kalman filter has been successfully applied to
a wide variety of problems in image processing, wireless
communication, aerospace, robotics, and more. It is simple
to compute, but limited because in its most common form,
it is restricted to system models that are linear in their
arguments and represent uncertainty as additive Gaussian
noise. The extended Kalman filter (EKF) relaxes the linearity
requirement by utilizing local linearizations to approximate
posterior distributions as Gaussian. It is only slightly more
complex than the Kalman filter, and because most nontrivial
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real-world systems are nonlinear, it is applicable to a much
wider range of problems. One drawback of the EKF is that
its performance is strongly dictated by the severity of any
nonlinearities and the levels of uncertainty inherent in the
system. That said, the EKF is quite common and it has been
successfully applied to a wide range of problems.

More recently, particle filters have become a popular
technique for estimation [3], [4]. In particle filters, the
uncertainty posterior distribution is represented by a finite
collection of parameters. These parameters, called particles,
are drawn from a distribution representing the current belief
of the system’s state. Each particle is independently mapped
to a future time using a noisy system model. In this way, as
the number of particles approaches infinity, the distribution
of the particles approaches the solution to the Fokker-Plank
equation associated with the system [5]. In principle, the
strength of the particle filter lies in its generality; it can
handle any noise model, and it is still applicable when the
system exhibits nonlinear dynamics. The main disadvantage
of the particle filter lies in its computational complexity. Its
reliability is primarily governed by the number of particles
used, and in some problems, the number of particles required
to begin approximating the true posterior distribution is quite
large (104–106).

Recently, much work has been done in developing the
theory of discrete mechanics and corresponding numerical
methods produced by the theory. Discrete mechanics lies at
the intersection of classical mechanics, computer science,
and applied mathematics. The integrators that are derived
through the discrete mechanics approach possess long-term
energy stability, they provide exact momentum conservation,
they are symplectic, and they are able to accurately predict
statistics of systems [6]–[8]. While these properties are well
established, the implementation of these integrators in real-
world systems is limited to a small number of examples
[9]–[12]. In this work we investigate the application of a
structured integration technique called a variational integra-
tor, which is derived from discrete mechanics theory, in
place of a classical integrator in the estimation of mechanical
systems. Several examples are presented where the numerical
properties of this variational integrator lead to improved
estimation performance for both EKFs and particle filters.

In Section II an overview of discrete mechanics, and the
derivation of the particular integrator used in the present
study is provided. Section III discusses several important
numerical features related to estimator performance of this
integrator, as well as discrete mechanics in general. Sec-
tion IV utilizes this integrator with particle filters and ex-



tended Kalman filters applied to estimation problems of both
simulated and experimental data. Since standard particle filter
and EKF algorithms are used the details of these algorithms
are omitted. It is recommended to consult [3] for the specifics
of the implemented algorithms — EKF algorithm on page 59
and particle filter algorithm on page 98. Finally, Section V
discusses the conclusions that may be drawn based on these
results.

II. DISCRETE MECHANICS

In the discrete mechanics framework, one attempts to find
a sequence {(t0,q0),(t1,q1), . . . ,(tn,qn)} that approximates a
continuous time trajectory of a system i.e. qk ≈ q(tk) where
t is time, and q ∈ Q, the configuration space of the system.
In traditional variational mechanics, Hamilton’s principle
is used to derive governing differential equations for a
system. In practice, numerical integration techniques must be
used to approximate their solutions. In discrete mechanics,
approximations are instead applied to the underlying physical
principle, and then variational methods produce governing
difference equations. To begin this derivation, one approxi-
mates a system’s Lagrangian using an arbitrary quadrature
rule over a timestep ∆t = tk+1 − tk

Ld(qk,qk+1)≈
∫ tk+1

tk
L(q(τ), q̇(τ))dτ (1)

(this quantity is referred to as the discrete Lagrangian). Next
the action integral is approximated with an action sum as

S(q[t0, t f ]) =
∫ t f

t0
L(q(τ), q̇(τ))dτ ≈

n−1

∑
k=0

Ld(qk,qk+1). (2)

Hamilton’s principle states that the evolution of a mechanical
system is a stationary point in the action. Taking the first
variation of Eq. (2), and invoking the fundamental lemma of
the calculus of variations [13], one can derive the unforced,
unconstrained Discrete Euler-Lagrange (DEL) equations1

D1Ld(qk,qk+1)+D2Ld(qk−1,qk) = 0. (3)

In this form the DEL equations provide a discrete map
(qk−1,qk) → (qk,qk+1) that is implicitly solved using a
numerical root-finding algorithm [7]. The precise quadrature
rule chosen to define the discrete Lagrangian in Eq. (1) will
determine the order of the integrator derived and whether it
is an explicit or an implicit method. Any quadrature rule used
to define a discrete Lagrangian produces a corresponding set
of DEL equations; the integrator used to solve these DEL
equations is referred to as a variational integrator (VI). In
this work, we use the midpoint rule to define a VI yielding
the following discrete Lagrangian

Ld (qk,qk+1) = L
(

qk +qk+1

2
,

qk+1 −qk

∆t

)
∆t. (4)

Differentiating Eq. (4) with respect to its arguments allows
computation of all terms in Eq. (3) in terms of the original
continuous Lagrangian.

1Here we have used the slot derivative notation where Di f (·) represents
a derivative of f with respect to its ith argument.

In the given form, the DEL equations provide a two-step
map from Q×Q → Q×Q. In Section III we discuss the
advantages of one-step maps in relation to linearizations. To
convert Eq. (3) to a one-step map, invoke the discrete Legen-
dre transform to define the discrete generalized momentum
as

pk =−D1Ld(qk,qk+1) = D2Ld(qk−1,qk). (5)

Eq. (3) can now be viewed as the following set of equations

pk = −D1Ld(qk,qk+1) (6a)
pk+1 = D2Ld(qk−1,qk) (6b)

To integrate this form of the DEL equations, start with the
given the pair (qk, pk) then implicitly solve Eq. (6a) to obtain
qk+1. Next evaluate Eq. (6b) to obtain pk+1. Thus the DEL
equations are now the one-step map T ∗Q → T ∗Q [7]. In this
work we use Eq. (4) to define the discrete Lagrangian and we
use the Newton-Raphson method to implicitly solve Eq. (6a).

As a final point, note that the theory presented in this sec-
tion is easily extended to include external forcing, holonomic
constraints, and kinematic inputs. For more information on
these extensions see [7], [8], [14], [15].

III. DISCRETE MECHANICS APPLIED TO ESTIMATION

In this section we discuss two key reasons why the
variational integrator discussed in Section II should improve
estimator performance.

A. Numerical Properties of the Integrator

The aforementioned desirable numerical properties of dis-
crete mechanics integrators are one of the primary rea-
sons they improve estimator performance. Exploring these
numerical properties has been one of the main academic
thrusts of the discrete mechanics and structured integration
communities in the recent years. As a result, we only
briefly mention some of the important results related to the
present study, and then illustrate how these properties impact
estimator performance using a numerical experiment of a
simple system.

The first advantageous property of the present VI is
that it is a symplectic integrator2. The key consequence of
symplecticity is that for a given Hamiltonian system, the
VI will provide the exact solution to a nearby Hamiltonian
system called the modified system. The discrete trajectory
produced by the VI is an exact sampling of the nearby
Hamiltonian system, and thus exactly conserves the energy
and momentum of the modified system. This is a key
characteristic of the VI, and indeed all symplectic integrators.
For explanations of the underlying mathematics, see [7], [16],
or [17].

Another numerical benefit of the VI involves systems
with constraints. A set of holonomic constraints of the form
hi(q) = 0, is incorporated in the integrator at the endpoints
as hi(qk+1) = 0 [18]. As the DEL equations are only in terms

2We point out that there are many symplectic integrators including
symplectic Runge-Kutta methods [16] and other variational integrators.



of configurations, the constrained DEL equations ensure that
holonomic constraints are exactly satisfied at every time step.
With traditional integrators applied to constrained mechani-
cal systems one may directly integrate index-3 Differential
Algebraic Equations (DAEs), in which configuration-level
constraint satisfaction may introduce artificial noise in the
simulated state trajectories [19]. Alternatively, one can use
index-reduction techniques to obtain a set of index-1 DAEs
where constraints are enforced at the acceleration level.
When applying this technique, care must be taken to ensure
that the simulation does not exhibit excessive constraint drift
[20]. The VI inherently satisfies constraints and artificial
noise is regulated by the dynamics of the modified system.

In the context of state estimation one benefit of the VI,
and symplectic integrators in general, is related to the their
statistics-preserving properties. Recent work has developed
special symplectic methods for stochastic systems [6], [21],
[22]. These integrators have been shown to better predict
several statistical quantities than higher-order RK schemes
[23], [24]. To illustrate these effects with a simple system,
we borrow the example system from [21], but implement the
results with the present integrator rather than the symplectic
integrator they described. The example system is a linear har-
monic oscillator with state-independent additive noise driven
by a Wiener process. The governing stochastic differential
equations are given by

dx1 =x2dt +σdw1(t), x1(0) = x1
0 (7a)

dx2 =− x1dt + γdw2(t), x2(0) = x2
0. (7b)

Using Ito calculus [5], one may determine an analytical
solution for an individual sample path of this system. The
effects of the present symplectic integrator on the statistics of
this system may be visualized in Fig. 1. In Fig. 1, domains of
three different discrete phase plane flows are produced using
the exact solution, standard Euler-Maruyama integration [5],
and the VI described in Section II. In the exact flow of the
initial unit circle domain, the domain remains circular and
is driven away from the origin by Wiener process forcing.
Analyzing Fig. 1, one may see that the discrete flow produced
by the VI follows the exact flow very closely. The flow
produced by Euler-Maruyama integration artificially expands
the radius of the domain, and the mean location of the do-
main drifts significantly from the true solution. This artificial
noise injection degrades estimator performance; examples are
shown in Section IV.

B. Linearizations Provided by Discrete Mechanics

The VI presented in Section II has a unique characteristic
referred to as a structured linearization [11], [25]. Many
estimation algorithms, such as the EKF, rely on local lin-
earizations to adapt linear system tools to nonlinear systems.
The form of the discrete map provided by VIs admits
particularly nice linearizations. Typically, in the continuous
time setting, to obtain a local linearization at a point one
would use a Taylor expansion of ẋ = f (x,u) about that point.
This linearization is an infinitesimal linearization, but the
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Fig. 1. Plot showing the effects of symplectic integrators for stochastic
differential equations. Shown are the time evolutions of a domain of the
phase plane of Eq. (7) using three different schemes – the exact mapping
[21], Euler-Maruyama integration, and the VI described in Section II. At t =
0.0 s the domain is represented by a collection of points distributed on the
unit circle. Each point’s time evolution is then calculated with each scheme
using an identical sample path of the Wiener process for all points and
schemes. The solid black circles are generated using the exact mapping, the
red stars with dashed lines are produced by Euler-Maruyama integrations,
and the green triangles are produced by the present VI. The noise parameters
are given by σ = 1, γ = 1, and the timestep is dt = 0.031 s.

discrete-time linearization is what is required. In other words,
one needs to linearize the discrete map

xk+1 = fk(xk,uk). (8)

One issue with this is that for most higher-order integrators
the discrete map fk from tk to tk+1 involves evaluating the
continuous function f at intermediate points between (xk,uk)
and (xk+1,uk+1). This significantly complicates the Taylor
expansion required to define the linearization. This is true
for all Runge-Kutta methods above first order, but is not
true for implicit or explicit Euler integration as they are
first-order Runge-Kutta methods. In theory, more accurate
linearizations could be obtained through proper expansions
of higher-order integrators, or numerical techniques could
be used to approximate the solution to the state transition
matrix for higher-order integrators [25]. But in practice,
if a linearization about (xk,uk) is required, and a “simple
form” linearization is desirable, one is restricted to one-step
methods.

As the present VI is a one step method, it admits a simple
linearization and even though the method is an implicit
method, one can calculate an explicit linearization of the
DEL equations [25]. Furthermore, since the VI is exactly
sampling a nearby mechanical system, the VI linearization
is an exact linearization of the nearby mechanical system.
This restriction on the behavior of the linearization greatly
improves its local accuracy. In Section IV we show an
example of how the improved accuracy of this linearization
leads to better EKF estimator performance.
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Fig. 2. Image of the particle filter covariance propagation for the harmonic
oscillator without resampling.

IV. RESULTS

A. Structured Integration for Particle Filters

In particle filtering algorithms, a collection of particles
is mapped forward a single timestep using a noisy process
model to represent a proposal distribution. Then a measure-
ment of the system is taken, and a new set of particles is
produced by resampling the proposal distribution to produce
an approximation of the posterior distribution. Particles with
higher probability given the measurement value (and its
corresponding probability density function) have a higher
probability of being selected for the posterior distribution.
This resampling process incorporates the measurement in the
filter state by removing particles that have a low probability.
In principle, as long as enough particles are used, and
the measurement frequency is high enough this process
works well. However, there exist many situations where
measurement frequency may be unreliable, and one cannot
count on the measurements to regulate the filter performance.
Examples of this situation include high-dimensional data as-
sociation problems, systems with unreliable communication
networks, or tracking systems suffering from occlusions.

In situations where a particle filter must predict the state
of the system over long time horizons without measurements
symplectic integrators can significantly increase the perfor-
mance of the particle filter. An illustration of this can be
seen in Fig. 2. In Fig. 2, the statistical properties of the
harmonic oscillator of Eq. (7) are simulated by integrating a
collection of 1,000 particles for 60 seconds with a timestep
of 0.0625 s using a VI and an explicit Euler integrator (RK1).
The plot shows the eigenvalues of the covariance of the
particle distribution as a function of time. It can be seen that
the RK1 scheme adds significantly more noise to the system
than the variational integrator. This is true even though the
two collections of particles were driven by the same set of
sample paths of the Wiener process.

Note that even though a relatively large timestep was used
for the simulation in Fig. 2, the overprediction of noise by
the RK1 integrator would still be happening regardless of
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Fig. 3. Schematic of planar crane system including relevant geometric
parameters.

how small the timestep was. The specific system dynamics,
the levels of noise in the system, and timestep size are
all important factors in determining the horizon over which
the unmeasured, unresampled RK1 particle filter will return
meaningful predictions of the system’s uncertainty. This is
still true even for higher-order, non-symplectic integrators i.e.
eventually, additional noise introduced by the integrator itself
may significantly impact the quality of uncertainty estimates.
The same is not true for a symplectic integrator; the bounds
on the statistics guaranteed by symplecticity alleviate this
issue. Thus given a system with sparse or unreliable mea-
surements the use of symplectic integration techniques will
increase the reliability of particle filter estimators.

One common issue with particle filters is referred to as
particle deprivation [3]. In a filter suffering from particle
deprivation, there are too few particles in the vicinity of the
true state of the system. When this occurs, the resampling
process may eventually drive the number of unique particles
down to a single particle. While there are known methods
preventing this situation [3], we simply point out that an
integrator adding inappropriate amounts of noise to an un-
regulated particle filter will increase the filter’s probability of
suffering from particle deprivation when measurements are
incorporated. Results illustrating this point will be shown in
the next section.

B. Estimation for the Planar Crane

In this section we apply particle filters and EKFs to the
planar crane system shown in Fig. 3. This system, and
corresponding modeling strategy have been discussed by the
authors in [11] and [26]. In those works, a modeling strategy
was presented where the position of the winch system xr,
and length of the string r were treated as kinematic inputs;
i.e., inputs where the system has sufficient control authority
to perfectly track any desired trajectory [14]. With this
modeling strategy, the Lagrangian for the system is only a
function of the dynamic configuration variables (x,y) and is
given by

L(q, q̇) =
1
2

m
(
ẋ2 + ẏ2)−mgy . (9)
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Fig. 4. This set of figures illustrates the results of utilizing a particle filter (PF) and an EKF to estimate the dynamic configuration variables of the system
shown in Fig. 3. For each filter, both VI and RK1 integrators are used. In the left plots, measurements, controls and integrations happen at 30 Hz, while
in the right plots they all occur at 6 Hz. To generate the data for a given frequency, an actual robotic system was sent a set of commands at the desired
frequency and those commands were used to map both integrators forward. A Microsoft Kinect R©configured to provide data at the target frequency was
used to measure both of the dynamic configuration variables (x,y). For the 30 Hz data, only some of the measurements/ estimator updates are shown to
avoid overcrowding the figure. The particle filters used 1000 particles, and the “low variance sampler” algorithm from page 110 of [3] is used to resample.
The ellipses shown represent the local covariance estimates for each filter. The eigenvalues and eigenvectors of the covariance are used to define the size
and orientation of the ellipses. Note that the VI-based filters outperform the RK1-based filters at both frequencies, and that the VI filter performance is
similar for both frequencies. Additionally note that the VI covariance estimates are in excellent agreement between the filters at both frequencies; this is
not true for the RK1 filters.

The corresponding midpoint discrete Lagrangian, as defined
by Eq. (4), is given by

Ld(qk,qk+1) =
m

2∆t

(
(xk+1 − xk)

2 +(yk+1 − yk)
2
)

− mg
2∆t (yk+1 + yk) . (10)

In order to emphasize the practical aspects of integration
techniques discussed in the present work, actual experimen-
tal data from the robotic system described in [11] and [26]
was used. This system utilizes digital encoders to close its
control loops around xr and r. Thus the kinematic-input
modeling strategy was employed in the present work. Since
these inputs are assumed to be perfectly controlled, the
dynamic configuration variables (x,y) are the only state
variables that are estimated.

Fig. 4 shows the parametric evolution of estimates of
the dynamic configuration variables using particle filters and

EKFs at two different frequencies using both a VI and an
RK1 integrator to represent the system. The strength of the
present integrator can be seen by noting that the particle filter
and the EKF estimates of the system’s uncertainty are nearly
identical even at frequencies as low as 6 Hz. The two filter
estimates are not only in agreement with each other, but they
are also in excellent agreement between the frequencies. We
emphasize that at 6 Hz the timestep used for integration,
measuring, linearization, and estimation is ≈0.167 s. With
this large timestep the RK1 particle filter is useless as the
amount of noise introduced by the integrator is of the same
order as the noise in the system model.

Fig. 5 shows the time evolution of the eigenvalues of the
covariances from each of the estimators in Fig. 4. This figure
further demonstrates that the VI covariance predictions are
remarkably stable even at large timesteps. Additionally, it
demonstrates that in this particular system the structured
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Fig. 5. This figure shows the time evolution of the eigenvalues of the covariance prediction for particle filters (PF) and EKFs applied to the planar crane
problem of Fig. 3 with both a 30 Hz (left plots) and 6 Hz (right plots) measurement, estimator and integrator update rate. These eigenvalues are the same
eigenvalues used to define the major and minor axes of the uncertainty ellipses plotted in Fig. 4. Note that the VI-based PF and EKF estimates are in
excellent agreement with each other even when compared across frequencies. The two 6 Hz RK1 filters predict very different covariance propagation, and
they both disagree with the corresponding 30 Hz filters.
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Fig. 6. Illustration of the VI improving particle deprivation. The red circles
represent the 6 Hz VI particle filter, and the noisy, dashed blue line is the
6 Hz RK1 particle filter.

linearization allows the EKF to perform nearly identically
to the particle filter. While this may not be true for ar-
bitrary systems, it is noteworthy that it is true for some
systems. In this case the increased accuracy of the structured
linearization avoids the increased computational expense of
the particle filter while achieving similar performance. It is
also important to note that for high-dimensional systems,
the number of particles required to achieve reliable particle
filter performance prohibitively high due to computational
costs. Thanks to the scalability of the VI [15], the VI-
based EKF computational cost allows for real-time estimator
computation even for systems of high state dimension.

In Section IV-A the issue of particle deprivation in particle
filters was discussed. It was explained that the VI reduces the
likelihood of this issue by removing artificial noise injected
by a traditional integrator; this is especially true at low
frequencies. Fig. 6 shows the number of unique particles as
a function of time for the 6 Hz particle filters using the VI
and RK1 integrator. In several cases, the particle distribution
from the RK1 integrator is artificially spread to the point that



resampling produces only 2 unique particles which implies
uncertainty estimates from the filter are essentially useless.

V. CONCLUSIONS

The primary contribution of this work is the demonstration
of improved particle filters and extended Kalman filters
through the use of a structured integrator. We presented
the basics of discrete mechanics, and used the theory to
describe a midpoint variational integrator (VI). We then
discussed several key numerical features of this VI, namely
symplecticity and structured linearizations. We then applied
standard estimation algorithms to several systems using
traditional low-order Runge-Kutta integrators and the VI.
We emphasize that as the integrator takes the same effective
form as traditional integrators, no modification to standard
estimation algorithms is necessary. Even though we only
present results for several sample systems, the benefits of the
VI can be expected to be seen for other systems. The only
caveat is that in order to derive the VI structure, the system’s
governing equations must be derivable from a variational
principle.

One downside to the VI is that it is an implicit integra-
tor, and thus requires the use of a numerical root solving
algorithm to advance the integrator. The added computation
induced by the implicit nature of the VI is minimal and it has
successfully been used for real-time estimators of complex,
nonlinear systems using EKFs and particle filters. However
the structure of the computation is problematic in particle
filters where explicit schemes more-easily leverage parallel
computation. Because the VI is less amenable to parallel
computation it is challenging to implement real-time particle
filters requiring high particle counts; this is not true for the
EKF.

In some cases, the additional accuracy provided by the
structured linearization elevates EKF performance to match
that of the particle filter while saving significant computation.
Particle filters benefit from the VI in situations where a
filter may need to run without the aid of measurements
over an appreciable time span. Additionally, as the VI helps
prevent particle deprivation, VI-based particle filters can be
expected to achieve similar performance with fewer particles
as compared to traditional particle filters. Finally, the VI
exhibits excellent stability of predictions for both particle
filters and extended Kalman filters over a range of timesteps.
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