
Continuous-time optimal control of impacting mechanical systems via a
projected Hamilton’s principle*

Vlad Seghete, Student Member, IEEE, Todd D. Murphey, Member, IEEE

Abstract— In this paper we present a method of generating
an optimal controller for impulsive hybrid mechanical systems,
such as those undergoing impact. Our goal is for the optimiza-
tion procedure to incorporate the dynamics of the impact rather
than treating it as a disturbance. To this purpose we make use
of a projection operator—obtained from a projected version of
Hamilton’s principle—to build an equivalent switched system
that is expressed throughout the state space, including the
infeasible regions. This eliminates the discontinuous jumps in
velocity of impulsive systems. The approach allows us to apply
continuous-time optimization techniques intended for normed
function spaces (rather than generalized function spaces) and
concretely produces an optimal controller hybrid mechanical
system. We developed a Python package that applies the re-
quired transformation to simple mechanical systems undergoing
impact and implements optimal control methods. Finally, we
apply the projection-based technique described to a simple
bouncing ball example.

I. INTRODUCTION

A major deterrent in designing controllers for impacting
mechanical systems is the fact that the resulting trajectories
in state space are discontinuous. For example, in the classic
problem of a bouncing ball the velocity experiences jumps
at the moment of impact. Moreover, the force required at the
time of impact is infinite. These facts result in the standard
control systems theory only being useful on time intervals
away from impact, and thus only useful if treating the impact
as introducing a disturbance that needs to be eliminated.
On the other hand the theory of hybrid systems has made
great progress in recent years [1]–[6] although it is hardly
surprising, due to the difficult nature of the problems being
tackled, that it has yet to attain the same degree of maturity
as classical control theory.

One such example of the aforementioned limitation is
the method of infinite dimensional optimization [7], which
has been applied successfully to continuous-time systems
[8], [9], discrete-time systems [8] and switched systems
[10]. What is lacking, however, is an extension of these
methods to impulsive systems. In this paper we propose to
fill this gap by means of a projection-based method which
transforms an impulsive system into an equivalent switched
system with continuous trajectories in state space. We do
this while preserving the actuator effects on the original
system, such that solving the optimal control problem for
the smooth, switched system generates, in fact, controllers
for the original impacting system. The mechanism behind

Vlad Seghete (vlad.seghete@gmail.com) and Todd. D. Mur-
phey (murphey@northwestern.edu) are with the Department
of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd.
Evanston, IL 60208

designing the needed projection and the dynamics associated
with it are based on the idea of allowing the system’s
trajectory access to the full state space instead of restricting it
to the feasible configuration set. In effect, we create a virtual
system where objects are allowed to pass through obstacles
but with dynamics such that after an appropriate non-smooth
projection the behavior of the original system is recovered.
This idea is a relatively new approach to hybrid systems [6]
and our developments are based directly on work done by
Pekarek et.al. [11], [12].

The paper is organized in two main sections. The former
is designed to introduce the reader to the concept of unfolded
and projected dynamics, and also to the notation used in the
rest of the paper. We show how the dynamics of the system
change under a coordinate transformation designed to flatten
the boundary between the feasible and infeasible regions;
we introduce index notation for dealing with tensor products
and tensor derivatives; we design a projection operator and
obtain a new set of system dynamics; and we implement all
of the above concepts in the simulation of a bouncing ball
example with a sinusoidal floor.

The second main part of the paper introduces a continuous-
time optimization mechanism and the changes necessary in
order to use this technique in conjunction with the projected
dynamics of Sec. II. We present the results of trajectory
optimization for the system simulated in Sec. II-D towards
a reference trajectory and we comment on the technique’s
observed convergence rate.

We summarize our results in the Conclusion, as well as
propose several new possible research directions for future
work.

II. SIMULATION
In this section we present a method by which an impacting

hybrid system can be transformed into a switched system
with continuous velocity and simulated as such. While there
is no direct advantage to using this method of simulating
mechanical system, the results of this section are important
both as a proof-of-concept and as a prerequisite for creating
optimal controllers of impacting mechanical systems using
infinite dimensional optimization methods [7], [8], [10], as
we shall see in Sec. III-A.

We will restrict our scope on simple mechanical systems
of the form:

L(q, q̇) =
1
2

q̇TM(q)q̇−V (q)

Here q ∈ Q and q̇ ∈ T Q. We also have a region C ⊂ Q in
which configurations are considered feasible. This region is

bounded and its boundary ∂C is defined by the roots of a
function φ(q) = 0. The common convention is that φ(q) >
0≡ q∈C. We assume also that our system behaves elastically
through all impacts. As such, every time the configuration
encounters the boundary at a time t∗, the state is updated
according to a reset map of the form:

q̇(t+∗) = q̇(t−∗)
(
I−2

M−1Dφ TDφ

DφM−1Dφ T

)
,

where D represents the derivative of a function with respect
to its argument and all instances of Dφ and M−1 are
evaluated at q(t∗) and I signifies the identity matrix. The
application of the reset map is undesirable, as it creates a
discontinuity in the state trajectory and makes it impossible
to apply continuous-time optimization techniques as those
described in Sec. I.

In order to avoid the use of the reset map altogether, we
turn to the technique derived from a modified Hamilton’s
principle, also known as the projected Hamilton’s princi-
ple [11], [12]. Instead of using a reset map, we will allow
the configuration access to the infeasible parts of the space
under the condition it satisfies a certain set of modified
dynamics in that region. This will provide a continuous
state space trajectory which we then project back into the
feasible region using a specialized operator. Essentially, this
technique allows us to move the discontinuity in state into a
discontinuity in dynamics

A. Boundary Flattening Through a Coordinate Transforma-
tion

The method described in [11] assumes a flat boundary
between the feasible and unfeasible areas of the configuration
space. However, this is rarely the case in practice and as
such [12] describes how the method can be extended to
any boundary that is homeomorphic to a flat surface. Doing
this involves applying a coordinate transformation to our
configuration space. We assume through the rest of the
paper that our boundaries are homeomorphism to planes and
that this homeomorphism is known. Thus, we can build a
coordinate transformation such that, in the new coordinates,
the boundary becomes a plane aligned with one of the
configuration variables.

We assume that, for our system, such a transformation ex-
ists. In other words, there exists a diffeomorphism Ψ : Q→ Q
such that φ(Ψ−1(q̄)) = q̄0, where q̄0 represents the first
element of the vector q̄. We chose zero-indexing as it is
standard in most programming languages and will make
implementation of the rest of the math in this document
easier. Also, for ease of notation we will name the inverse
of psi:

Ω = Ψ
−1 : Q→ Q.

Under the above coordinate transformation we obtain that
our Lagrangian becomes:

L(q̄, ˙̄q) =
1
2

˙̄q T ·M(q̄) · ˙̄q−V (q̄)

where we have that

M(q̄) = DΩ(q̄)T ·M(Ω(q̄)) ·DΩ(q̄), (1)

V (q̄) =V (Ω(q̄)), (2)
φ̄(q̄) = q̄0, (3)

Dφ̄(q̄) = [1,0, . . .], (4)

where we dropped the dependence on q̄ in the more obvious
places. Note that one can show, through the use of the
chain rule, that DΩ(q̄) = [DΨ(q)]−1. Thus, from now on,
we will use this equivalence in order to write clearer and
more compact terms.

B. Index Notation Summary

Before the equations get more complicated, we must
introduce the Einstein summation notation for tensor product
and tensor derivatives, which we will use in the remaineder
of the paper. Given a mapping on Rn:

T : Rn→ Y,

we indicate by Ti the ith element across the first dimension of
T , by Ti j the element indexed by i in the first dimension and
by j in the second dimension, and so on. When two tensors
are multiplied that share an index it will stand as shorthand
for summation over that index:

Sik = Ti jU jk = ∑
j

Ti jU jk.

Finally, derivatives with respect to the main argument of the
tensor mapping will be indicated by a new index after a
comma:

Ti j,k =
∂Ti j(x)

∂xk

To illustrate this notation, let us use it to write (1), (2) and (4)
respectively:

Mi j = Ωi,pMpqΩq, j, (5)

V ,i =V, jΩi, j, (6)
φ,i = δi1, (7)

where δ represents the Dirac delta function. Note also that,
unless otherwise noted, we assume that superscripts are
always to be applied before indexing. E.g.

M−1
i j =

(
M−1

)
i j
.

The one notable exception to this rule involves the projection
P and its derivative:

P−1
i, j =

[
(DP)−1

]
i j
,

i.e. we will never refer to P’s inverse function, only to the
inverse of its derivative in a matrix sense.

C. Regular and Projected Dynamics

Having established the notation to be used in the remainder
of the paper we move on to determining the dynamics in this
modified coordinate system. We apply the Euler-Lagrange
equations:

d
dt

∂L
∂ ˙̄q
− ∂L

∂ q̄
= 0

which gives us

¨̄ql = M−1
l j

(
− ˙̄qiMi j,k ˙̄qk +

1
2

˙̄qiMik, j ˙̄qk +V , j

)
(8)

In order to calculate the derivative of the mass matrix, we
used chain rule and (1) to obtain

Mi j,k = Ωp,ikMpqΩq, j + Ωp,iMpq,kΩq, j + Ωp,iMpqΩq, jk

where we assume we have access to the first derivative of
the original mass matrix Mi j,k. We also need to calculate the
inverse of M:

M−1
i j = Ψi,pM−1

pq Ψq, j

Next, we want to find a smooth trajectory z̄(t) ∈ Q and
a mapping P : Q→ C such that: q̄(t) = P(z̄(t)). That is,
we want to allow the system to follow trajectories into
the unfeasible region of the configuration space but change
the dynamics in that region such that, when projected back
into the feasible region, the resulting trajectory follows the
original dynamics and the impact behavior is elastic. As it
turns out, previous work done by Pekarek shows that, the
following form of a projection does the trick:

Pi(z̄) =


z̄i if φ(z̄)> 0
z̄0 if φ(z̄)≤ 0 and i = 0
z̄i− 2z̄0

1+kz̄2
0
∆i, if φ(z̄)≤ 0 and i 6= 0

(9)

∆i = M−1
i0 /M−1

00 , (10)

where k is a scalar that must be larger than a system
dependent lower bound [11]. Notice that this projection is
the identity function for all feasible configurations, just as
expected, and hence won’t influence the dynamics in the
feasible region of the configuration space. However, in the
unfeasible region the dynamics have to change in order
for the trajectory to follow the correct dynamics after the
projection. We do this by substituting

q̄ =P(z̄), ˙̄q = DP(z̄) · ˙̄z (11)

into (8). We obtain the following dynamics:

¨̄zp = (Pp,l)
−1(M−1

)l j

(
1
2

˙̄qiMik, j ˙̄qk

− ˙̄qiMi j,k ˙̄qk +V , j
)
− (Pp,i)

−1 ˙̄q jPi, jk ˙̄qk (12)

where all the tensors are evaluated at their corresponding
arguments: all instances of P and its derivatives are evalu-
ated at z̄ while everything else is evaluated at q̄. In the case
where φ̄(z̄)≥ 0 we have that z̄= q̄, the first derivative of P is
identity while all the higher derivatives of P are identically

zero. Thus, in this case, (12) reduces to the feasible region
dynamics from (8).

In evaluating (12) we make use of everything we derived
in the previous section, but we also need to find the terms
associated with P. The form of Pi was shown in (9). Its
derivative is given by

Pi, j =


δi j if φ(z̄)> 0
−δi j if φ(z̄)≤ 0, i = 0
δi j−∆i, j

2z̄0
1+kz̄2 if φ(z̄)≤ 0, i 6= 0, j 6= 0

−∆i, j
2z̄0

1+kz̄2 −2∆i
1−kz̄2

0

(1+kz̄2
0)

2 otherwise

where

∆i, j =
M−1

i0, jM
−1
00 −M−1

i0 M−1
00, j

M−2
00

(13)

We also require the second derivative of the projection in
order to fully specify the dynamics. Since neither accuracy
nor speed of computation are the focus of the current paper,
we chose to forego generalizing the previous method to the
second derivative. This would have produced a rather large
mathematical expression, prone to errors and would have
derailed us from the main objective, which is to generate an
optimal controller for systems such as we have described.
Instead, we used, in turn, and with good results, a finite
differencing method and a symbolic package in order to
obtain D2P. The downside of the first method is loss of
accuracy and its poor extensibility to higher derivatives,
which we we will see later in Sec. III-A that we need in order
to calculate the derivative of the dynamics. Thus, we decided
on a symbolic package approach, as detailed in Sec. III-C.

D. Results

The first step in using the derivations shown in this paper
is to run simulations of systems undergoing impact. The
problem we chose was that of a point mass in the plane,
restricted by a sinusoidal floor:

q(t) = [x(t),y(t)]T,

φ(q) = y− sin(x),
V (q) =−mgy,

M(q) = mI,

Ψ(q) = [x,φ(q)]T,

Ω(q̄) = [q̄1, q̄2 + sin(q̄1)]
T = Ψ

−1(q̄) = q.

We then must choose k such that P as defined in (9) is a
valid global projection as per [11]. In the case of our example
problem the lower bound is k = 1 and any k > 1 will suffice.
In practice, a choice of k that is too close to the bound will
render Pi, j close to singular and hence we will not be able to
invert it. Thus, for this problem it is good numerical practice
to pick something like k = 5 or larger. Note also that too large
a k renders a very stiff system at the boundary ∂C, while a
value of k that is too small gives us bad conditioning of the
dynamics below the surface. An optimal choice for k could
and should be investigated in the future.

Fig. 1: Trajectory of a point mass interacting elastically with a sinusoidal floor, simulated for 5s; (a) shows the trajectory physical configuration space
Q, as well as the trajectory z(t) in the corresponding unfeasible region; (b) shows the trajectory in the modified space Q where the sinusoidal floor has
been transformed into a horizontal plane. Notice that in both figures the trajectories before and after the projection overlap when they are in the feasible
region. Also note the unusual free flight dynamics in (b)—both in the feasible and in the unfeasible areas—which are the result of applying the coordinate
transformation used in obtaining a flat floor.

Given the above information we built a projection P
with parameter k = 5 and then numerically solved equa-
tion (12) using the libraries provided by the SymPy [13]
and NumPy packages in Python. Figure 1 shows the result
of the simulation for an example trajectory including several
elastic impacts over the course of several seconds. Part (a)
of the figure shows the real trajectory q(t) as well as its
counterpart in the unfolded space, z(t) = Ω(z̄(t)). Part (b) of
the figure shows the transformed space, in which the z̄(t) and
q̄(t) =P(z̄(t)) trajectories exist. In this space the boundary
is flattened to a line, no longer being sinusoidal. The effect
of this is a curvature of the dynamics that did not exist in the
original space. A video file of the simulation has also been
generated [14] to aid in understanding the concepts presented
here.

III. CONTROL

We propose using the infinite dimensional optimization
methods described by Hauser [7] for designing controllers of
impacting mechanical system. These methods have already
been used for trajectory optimization in continuous mechan-
ical systems [8], [15], [16] and also for a host of hybrid sys-
tems [10]. The challenge presented by impulsive systems—
which is how impacting mechanisms tend to behave—is that
the state trajectory is discontinuous, and thus the methods
presented in [7] cannot be used.

To get around this obstacle we make use of the results of
the previous section. We essentially use a coordinate trans-
formation and the projected Hamilton’s principle in order
to re-describe an impulsive mechanical system as a hybrid
mechanical system. In other words, we trade a finite impulse
applied at the moment of collision with a change in dynamics
at that same moment. In the new coordinates and using the
new dynamics, our state will be a continuous function of
time and thus described by a well-defined (piecewise) non-
linear differential equation. This allows us to consider the

space of perturbations to the trajectory and find a descent
direction in this space. From there, the methods of [7], [8]
can be applied.

A. Infinite Dimensional Optimization: Overview

The problem we desire to solve is finding the trajectory-
control pair (x(t),u(t)) on a time interval [ta, tb] that min-
imizes a quadratic cost function representing the distance
from a reference trajectory (xre f (t),ure f (t)):

J(x,u) =
∫ tb

ta

[
x̄TQJ x̄+ ūTRJ ū

]
dt + x̄(tb)TFJ x̄(tb), (14)

where, for notational convenience, we dropped the time
dependence inside the integral and

x̄(t) = x(t)− xre f (t), (15)
ū(t) = u(t)−ure f (t), (16)

ẋ = f (x,u). (17)

We solve this problem numerically by using a gradient
descent method analogous to the classic method on finite
dimensional spaces [17]. However, since our space is in-
finite dimensional—the space of differentiable curves on
(ta, tb)—we need to be careful, especially when we calculate
the gradient. Notice also that this we need a constrained
optimization algorithm, since the pair (x,u) must conform
to the dynamics of the system as defined by the function
f . Fortunately, previous work explains how to solve this
constrained optimization problem in much detail, along with
higher order optimization methods [7], [8]. For the scope of
this paper we will only provide overview for and use the
gradient descent method, and leave the details as well as
higher order approaches to future publications.

The gradient descent method consists in finding a descent
direction based on the gradient of the cost function we are
trying to minimize and then following that direction using

a line search until sufficient decrease has been achieved.
Sufficient decrease refers to the amount of decrease in the
cost function that will guarantee convergence for a locally
convex cost function upon iteration of the above steps.
One way to guarantee sufficient decrease and thus local
convergence to a minimum is to apply an Armijo [18] line
search algorithm.

In order to find the steepest descent direction of the cost
functional in (14) one needs to find the solution of the
dynamics linearized around the point at which the descent
direction is required. Let us call this point (x∗,u∗) and let
A(t) = ∂ f

∂x (x
∗,u∗) and B(t) = ∂ f

∂u (x
∗,u∗) be the time-varying

matrices obtained from linearizing the dynamics around this
trajectory. The descent direction is then found by solving an
LQ problem [8] and obtain the pair (z(t),v(t)):

ż = Az+Bv,

v =−Cd−Kdz,

z(ta) = za,

where

Kd = R−1
d BTPd ,

−Ṗd = ATPd +PdA−PdBR−1
d BTPd +Qd ,

Pd(tb) = Fd ,

and

Cd = R−1
d

(
BTr+RJ ū∗

)
,

−ṙ =
(
A−BR−1

d BTPd
)T

r+QJ x̄∗−PdBR−1
d RJ ū∗,

r(tb) = FJ x̄∗(t).

The pair (z(t),v(t)) obtained as outlined above will give the
steepest descent direction of the cost function in (14) at the
point (x∗(t),u∗(t)).

The above steps are sufficient for solving an unconstrained
optimization. However our problem is constrained by the
system dynamics, as described by

ẋ = f (x,u). (18)

The extension of the unconstrained procedure involves de-
signing a projection that will transform a curve (ξ ,µ) that
does not obey the dynamics into a feasible trajectory:

(x,u) = P((ξ ,µ)), (19)
ẋ = f (x,u). (20)

It has been shown [8] that one such projection can be
obtained by solving a linear system

ẋ = Ax+Bu, (21)
u = µ−Kp(x−ξ), (22)

x(ta) = ξ (ta), (23)

where A(t) and B(t) represent the dynamics linearized
around (x∗,u∗); Kp is the full state feedback matrix obtained
from solving an LQR problem with weighting matrices Qp,
Rp and Fp. Note that these matrices can and should be
chosen independently from those defining the main cost of

the problem, hence the distinct subscript. The solution to the
LQR problem is given by

Kp = R−1
p BT

pPp(t), (24)

and Pp is found by solving the continuous time Riccati
differential equation:

−Ṗp = ATPp +PpA−PpBpR−1
p BT

pPp +Qp (25)

Pp(tb) = Fp. (26)

The projection P thus designed is used at each step of the
line search in order to ensure that the cost function is always
evaluated at a feasibly trajectory.

B. Jump Terms

While our trajectories x(t) are continuous they are not
smooth. This is due to the discontinuity in dynamics at the
time of contact. Thus, we expect the linearized dynamics to
present jump terms at the time of impact. The application of
the Leibniz rule during differentiation shows us that this is
indeed the case.

Consider a system of the form

ẋ =

{
f+(x,u), φ(x)> 0
f−(x,u), φ(x)≤ 0

,

a trajectory (x∗(t),u∗(t)) that is a solution of the system on
the time interval (ta, tb) and the cost function J from (14).

Assume, without loss of generality, that at time t1 the
distance function φ(x(t)) changes sign. We can then write
the cost function as

J(x,u) =
∫ t1

ta

(
‖x̄‖2

QJ
+‖ū‖2

RJ

)
dt

+
∫ tb

t1

(
‖x̄‖2

QJ
+‖ū‖2

RJ

)
dt +‖x̄(tb)‖2

FJ
. (27)

In order to generate the LQ problem that gives us the descent
direction of the cost function we need to take the derivatives
of the expression in (27) with respect to x and u, evaluated at
(x∗,u∗). This process is similar to the case where no impact
occurs, except, since the switch time t1 depends on x(t), an
extra term appears due to the application of the Leibniz rule.
The associated LQ problem to solve in this case is

ż = (A+δ f1)z+Bv (28)
v =−Cd−Kdz, (29)

δ f1 = 2
(f+− f−) Dφ

|Dφ (f++ f−)|
δ (t− t1), (30)

z(ta) = za, (31)

where δ f1 represents a Kronecker delta function at time t1,
its numerator is an outer product and it’s denominator is
an inner product (a scalar). The expression generalizes as
one would expect to more switches at times ti, by adding
corresponding δ fi terms. One thing to note is the presence
of the jump terms δ fi makes it clear that there will be
a problem when trying to calculate the descent direction
from a trajectory that has a grazing impact, as this would

generate a division by zero in δ fi. Intuitively, this is due
to the fact that any infinitesimal perturbation of a grazing
trajectory—a trajectory tangent to the impact surface—will
generate an infinitely larger change in the time of impact.
Such trajectories are, luckily, extremely rare in practice, as
we have yet to accidentally generate one. For the scope of
this paper we will assume none of the trajectories we discuss
are grazing. A proper investigation of this rare but important
corner case is thus left as an open question for future work.

C. Derivative of The Dynamics and Implementation

In Sec. II we calculated the dynamics of the unprojected
trajectory as they depend on the boundary function and on
the projection. However, in order to apply the methods of
Section III-A we also need to linearize the dynamics around
trajectories, hence we must have access to the derivatives
of f (x,u). One can see from looking at (13) that even just
calculating the derivative of ∆ analytically for a general
mechanical system will prove difficult. While it is certainly
possible to do this, it is beyond the scope of this paper to
develop the mechanisms to do so. Instead we choose to focus
on showing that the infinite dimensional optimization method
can be applied in conjunction with the projected Hamilton’s
principle. Hence, we decided to use a symbolic mathematics
package to aid with calculating such derivatives. We leave
the development of faster numerical approaches, such as
extending the results of Sec. II or making use of automatic
differentiation [19] as topics for future publications.

As stated above we use the SymPy [13] symbolic package
together with NumPy and SciPy [20] to symbolically define
a mechanical system, consisting of M(q), V (q), φ(q); and
associated forcing u(t); boundary function φ(q), associated
coordinate transformations Ψ(q) = q̄ and Ω(q̄) = q; and
projection q̄ =P(z̄) as defined in (9). Based on these ele-
ments and their symbolic derivatives we generate a switched
dynamical system defined by ordinary differential equations:

ẋ(t) = f (x(t),u(t)), (32)

where

x =
[

z̄
˙̄z

]
, f (x,u) =

[
˙̄z
¨̄z

]
q̄ =P(z̄), ˙̄q = DP(z̄) ˙̄z, q = Ω(P(z̄)),
¨̄z = [DP(z̄)]−1 [g(z̄)+DΨ(q)M−1(q)u(t)

]
,

and

g(z̄) = M−1
(q̄)
[

˙̄qi

(
1
2

Mik, j(q̄)−Mi j,k(q̄)
)

˙̄qk

+DV (q̄)
]
− ˙̄qiPj,ik(z̄) ˙̄qk.

The functions M(q̄) and V (q̄) are the same as defined
in (1) and (2). The index notation is used to indicate tensor
derivatives and dot products where ambiguity might exist
otherwise. For a very short overview on the use of this
notation see Sec. II-B.

In order to implement the methods described in previous
sections we developed a software package based on Python,
NumPy, SciPy and SymPy. We named it nlsymb [21] as
its main function is to provide symbolic tools for use in the
construction of nonlinear system model and their analysis.
In particular we needed to be able to perform Einstein
summations and calculate tensor derivatives in a manner that
parallels the notation introduced in Sec. II-B. The package
has been made available for use and it is our hope it will
facilitate symbolic computations in future work on nonlinear
systems inside the free Python environment.

D. Results

Using the nlsymb package we implemented the system
model described in Sec. II-D. We then generated a reference
trajectory (xre f ,ure f), where u was picked to be identically
[0,0] for the whole time interval and xre f was given by
the solution of ẋre f = f (xre f ,ure f) with xre f (ta) = [0,1,0,0].
The trajectory, integrated for two seconds and transformed
back into physical space, can be seen in all three panes of
Fig. 2. We then built a cost function J based on the reference
trajectory, and using the following weighing matrices in (14):

RJ = diag([10,10]),
QJ = diag([10,10,1,1]),
FJ = QJ ,

where the diag operator takes vectors into diagonal matrices
with the vector elements on the diagonal. All other weighing
matrices needed in the equations of Sec. III-A were picked
to be identity. The choice for za = 0 implies that we did not
allow changes in the initial condition of our initial guess.

We then picked an initial trajectory which from which
to start our optimization, i.e. an initial guess. We already
know, from having built J using a feasible trajectory as
reference, that the reference trajectory is also the minimum
we are looking for. Since our goal is to test our technique,
we expect to see linear convergence from a nearby point in
the optimization space. We picked the initial guess to be a
disturbance of our reference, so that we could make sure we
never step out of the convex region of the function around
its minimum. The disturbance was achieved by setting the
forcing to u= [1,0] for all time, but otherwise using the same
parameters and initial conditions as the reference trajectory.
The initial guess can be seen in Fig. 2(a), before any
iterations took place.

Finally, we applied the trajectory optimization method to
the initial trajectory until convergence was achieved. Fig-
ures 2(b) and 2(c) show the progress after one and after ten
iterations of the optimization, respectively. Figure 3 shows
the cost J and also the norm of the gradient ∇J as a function
of iteration. The rate of convergence is linear for the first few
iterations after which little extra progress can be made.

IV. CONCLUSION AND FUTURE WORK

In the first part of this paper we have obtained the
differential equations governing a switched system such

Fig. 2: Reference trajectory together with results at different stages of the optimization loop. Both the reference trajectory and the initial guess share the
initial condition at time ta and end at time tb. The initial guess is shown in (a), before any steps were taken; (b) shows the trajectory after one iteration, only
somewhat closer to the reference; in (c) we see that, after tne iterations, the optimized trajectory is visually indistinguishable from the reference trajectory.

Fig. 3: Plot illustrating the convergence rate of the algorithm. Both the
cost function J and the norm of the gradient ∇J drop at a steady rate with
iteration number until convergence to a local minimum is achieved and
progress halts.

that, after the application of a proper projection operator
on the trajectories that solve it, we obtain the solution
to an equivalent impulsive mechanical system—a system
undergoing impact. In the latter part of this paper we used
the projection method to apply a continuous-time optimal
control technique to the modified system and thus obtaining
an optimal controller for the original system. We implement
our techniques numerically using the Python programming
language and present the optimization results as well as the
associated convergence plots.

ACKNOWLEDGEMENT
We wish to acknowledge significant help from David

Pekarek without whom this work would not have been
possible.

This material is based upon work supported by the Na-
tional Science Foundation under Grant CMMI 1200321.
Any opinions, ndings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reect the views of the National Science
Foundation.

REFERENCES

[1] J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions
for input-to-state stability of impulsive systems,” Automatica, vol. 44,
no. 11, pp. 2735–2744, Nov. 2008.

[2] A. Potini, “Trajectory tracking in switched systems: an internal model
principle approach: the elliptical billiard system as a benchmark for
theory,” Tesi di dottorato, Universit di Roma Tor Vergata, May 2008.

[3] Y. Or and A. D. Ames, “Formal and practical completion of lagrangian
hybrid systems,” in Proc. American Control Conference, June 2009,
pp. 3624–3631.

[4] B. Laurent, “Identification of switched linear systems via sparse
optimization,” Automatica, vol. 47, no. 4, pp. 668–677, Apr. 2011.

[5] J. Liu, X. Liu, and W.-C. Xie, “Input-to-state stability of impulsive
and switching hybrid systems with time-delay,” Automatica, vol. 47,
no. 5, pp. 899–908, May 2011.

[6] F. Forni, A. Teel, and L. Zaccarian, “Follow the bouncing ball:
Global results on tracking and state estimation with impacts,” IEEE
Transactions on Automatic Control, vol. 58, no. 6, pp. 1470–1485,
2013.

[7] J. Hauser, “A projection operator approach to the optimization of
trajectory functionals,” in IFAC world congress, 2002.

[8] E. Johnson, “Trajectory optimization and regulation for constrained
discrete mechanical systems,” Ph.D., Northwestern University, United
States – Illinois, 2012, 00000.

[9] L. M. Miller and T. D. Murphey, “Trajectory optimization for con-
tinuous ergodic exploration,” in American Control Conference (ACC),
2013, 2013, pp. 4196–4201.

[10] T. Caldwell and T. Murphey, “Switching mode generation and optimal
estimation with application to skid-steering,” Automatica, vol. 47,
no. 1, pp. 50–64, Jan. 2011.

[11] D. Pekarek and T. Murphey, “Variational nonsmooth mechanics via
a projected hamilton’s principle,” in American Control Conference
(ACC), 2012, 2012, pp. 1040–1046.

[12] D. Pekarek and T. D. Murphey, “Global projections for variational
nonsmooth mechanics,” in Decision and Control (CDC), 2012 IEEE
51st Annual Conference on, 2012, p. 55725579.

[13] SymPy Development Team, SymPy: Python library for symbolic
mathematics, 2013. [Online]. Available: http://www.sympy.org

[14] V. Seghete and T. D. Murphey, “Bouncing ball falls through the
floor,” 2013. [Online]. Available: http://vimeo.com/75709838

[15] E. Johnson, “trep,” Apr. 2012. [Online]. Available: trep.sourceforge.net
[16] J. Schultz and T. Murphey, “Trajectory generation for underactuated

control of a suspended mass,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, 2012, p. 123129.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing,
3rd ed. New York, NY, USA: Cambridge University Press, 2007.

[18] L. Armijo, “Minimization of functions having lipschitz continuous first
partial derivatives.” Pacific Journal of Mathematics, vol. 16, no. 1, pp.
1–3, 1966.

[19] G. Corliss, Automatic differentiation of algorithms: from simulation to
optimization. Springer, 2002.

[20] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[21] V. Seghete, “nlsymb: Symbolic nonlinear system tools for Python,”
2013–. [Online]. Available: http://github.com/vlsd/nlsymb

