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Abstract—1In this study, we employ optimal control and
tactile feedback to teach subjects how to balance a simu-
lated inverted pendulum. The output of a Linear Quadratic
Regulator (LQR) was converted to a vibratory teacher-signal
and was provided as additional somatosensory feedback to the
subjects. The LQR approach is consistent with an energy-saving
strategy commonly observed during human motor learning.
Our rationale for using the inverted pendulum as a criterion
task is that this balance system requires the brain to solve
many of the same problems encountered in simple tasks of
daily living like transporting a glass of water to the mouth.
Experimental results indicate that subjects who trained with
the teacher-signal, performed significantly better than subjects
who trained only with visual feedback. This result is promising
and can be applied, among other fields, in rehabilitation to
compensate for lost or compromised proprioception, commonly
observed in stroke survivors.

I. INTRODUCTION
A. Motivation and Background

Learning and control of dexterous movements requires
timely and reliable sensory feedback [1]. Therefore, it should
come as no surprise that tactile and proprioceptive impair-
ments experienced by approximately 50% of stroke survivors
negatively impact functional movements and rehabilitation
outcomes [2]. Although vision can partly compensate for lost
or compromised proprioceptive feedback, delays associated
with the visual system result in slow and poorly-coordinated
movements [3]. Nevertheless, the primary emphasis of cur-
rent research and clinical efforts on rehabilitation robotics is
directed toward motor retraining ([4], [5]) with only limited
focus on enhancing motor learning and re-learning.

The idea of recovering motor skills through synthetic sen-
sory feedback, thus moderating sensory loss, is a reasonable
alternative to approaches based only on visual feedback.
Audition, electrical stimulation and vibratory signals are all
good candidates to assist vision in any task. Considering that
electrical stimuli can be painful, these would not make a
viable solution in the long run. Moreover, several comparison
studies have shown that participants using tactile feedback
perform better than those acting on audition [6], [7]. There
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are also cases in which tactile feedback is at least equally
effective as vision, if not more so [7]. For example, in
[6] the subjects’ performance in one-dimensional pointing
tasks was nearly the same regardless of whether they were
provided with tactile feedback or visual feedback. In [8] re-
searchers ran a simulator of an automated cockpit system and
compared the contribution of different feedback conditions
in detecting unexpected status changes. Tactile conditions
resulted in higher detection rates for, and faster response
times to uncommanded mode transitions. Another pointing
study in [9] used a multi-modal mouse to confirm that the
cursor was on a target during pointing tasks. Although the
overall response times did not vary with feedback type, final
positioning time with tactile feedback improved significantly.
These findings suggest that tactile feedback could indeed be
an effective source of sensory information.

Synthetic tactile feedback as a means to enhance motor
(re-)learning and for augmenting somatosensory feedback in
general has been explored for many decades [10]. Some
successful applications include a wearable robotic bracelet
capable of guiding simple movements of the upper limb
[11], a tactile vest aimed to support interaction with moving
objects at a close range [12], a wearable suit employing error
feedback [13] etc. Remarkably, people in [14] report experi-
encing images in space instead of on the skin when trained
with the proposed vibrotactile-visual system. More recently,
vibrotactile systems for enhancing postural stabilization in
vestibular patients have been proposed and show promise
when the synthesized feedback includes all the relevant states
[15], [16]. Finally, [17] mentions potential applications of
tactile feedback in minimally invasive surgical procedures
(MIS), while researchers in [18] describe MusicJacket; a
wearable system employing vibrotactile feedback to teach
good posture and bowing technique to novice violin players.

In summary, although there is promising work on the
exploitation of vibrotactile stimulation as a means of aug-
menting sensory feedback, there is still much to be done
before it may become possible to develop vibrotactile stimu-
lation systems effective in promoting recovery of sensory-
motor skills. Moreover, the literature provides no strong
theoretical and computational basis for designing synthetic
sensory feedback for use in promoting motor learning and re-
learning within the context of goal-directed limb movements.

B. Objective

In this experiment, we employ optimal control and tactile
feedback to teach unimpaired subjects how to balance a
simulated inverted pendulum. Unlike prior studies, the re-



sulting interface encodes an optimized linear combination of
state information, thus always suggesting the optimal course
of action. In particular, the output of a Linear Quadratic
Regulator (LQR) is converted to a vibratory teacher-signal
and is provided as additional somatosensory feedback to the
subjects, thus introducing the human factor in the control
loop. The LQR output is no longer fed back to the system,
so it is then up to the subjects to decide how to integrate
this signal in their attempt to balance the pendulum. Our
rationale for using the well-known cart-and-pole task is that
this balance system requires the brain to solve many of
the same problems necessary for simple everyday tasks like
transporting a glass of water or a spoonful of peas to the
mouth.

The current study falls under the broader category of
Human Machine Interface (HMI) and offers a demonstration
of how human performance can be improved by using
optimal controllers to generate artificial feedback to a human
operator. We sought to determine whether subjects attempt to
learn the optimal behavior conveyed by the LQR, i.e. whether
they try to keep the energy of the closed-loop system as
small as possible. Such a strategy would be consistent with
the energy-saving approach commonly observed in human
behavior.

II. MATERIALS AND METHODS
A. Overview

Fig. 1 shows a block diagram of the experimental setup.
Our goal was to easily compare and combine visual and
tactile feedback in terms of motor learning and to examine
whether complex information can be successfully encoded
and shared by small vibrotactile motors (tactors). In this
experiment, all hypotheses were tested on a simulated two-
dimensional inverted pendulum. During simulation, subjects
could directly control the cart position by moving their
right hand along a horizontal axis (a one-dimensional task).
The major components of the testing platform are described
below:

1) Robot Operating System (ROS): ROS [19] is a dis-
tributed framework of processes (called nodes) that com-
municate via message passing. It provides all the standard
services of a typical operating system and handles the inte-
gration of all hardware and software parts of the experiment.

2) Microsoft Kinect: The Kinect uses an infra-red struc-
tured light array to build a three-dimensional point cloud
representation of its view of the world. ROS was used to
collect and process the data coming in from the Kinect
at approximately 30Hz. Interface to the Kinect is provided
by the NITE™ open source Kinect drivers released by
PrimeSense™ [20].

3) trep: We have developed a simulation package called
trep (available at https://code.google.com/p/trep/) which
allows for dynamic simulation of arbitrary mechanical sys-
tems in generalized coordinates based on the variational
integrator approach [21]. This is where the dynamics of the
pendulum/cart system were simulated. ROS was responsible
for mapping the subject’s right hand position, as captured

by the Kinect, to the corresponding cart position along a
horizontal axis.

4) Tactors/Arduino: Tactile feedback was provided by
vibrating motors typical of those found in cellphones. Their
compact size (Smm radius) and high output to power ratio are
ideal for our setup. The tactors are controlled by an Arduino
microcontroller board (through ROS) using PWM signals.

B. LOR Loop

The purpose of this study was to teach subjects how to
successfully balance an inverted pendulum. We hypothesized
that the most fitting way to do that would be to first design
an ideal controller for the system and then train subjects to
take advantage of that controller’s output.

The nonlinear dynamics of the simulated pendulum shown
in Fig. 2a are given by:

(M + m)i, + ml6* sinf — mifcos 6 = F (1)
16 — gsinf = ¥.cos @ (2)
where all symbols are explained in Table I. Linearization

about the vertically upward equilibrium position, 6 = 0, gives
the following state-space equations:
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where u has been substituted for the input F. A LQR loop
as in Fig. 2b can now be designed to meet the desired
response. The optimal weighting of states was computed off-
line while the output of the LQR was computed in real-time
as described in the following section.

C. Using the LOR as a “teacher”

The derived controller carried all the necessary state
information needed to balance the pendulum at a reference
cart position ». We used two tactors in this study to map the
signed control input u to each tactor’s voltage input. This was
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accomplished by passing u through a linear bounded function
as demonstrated in Fig. 2c and Fig. 2d. Thus, both the
target position and direction of movement could be encoded
by regulating the amplitude of vibration of the appropriate
tactor. Theoretically, if someone could “follow” accurately
the resulting vibrotactile feedback v they should be able to
successfully complete the balancing task.

Note that even though u was by itself capable of balancing
the pendulum, it was only used to synthesize the “teacher”;
it was no longer used as an input to the simulated cart-
pole system. Instead, the input signal was based on the
subject’s right hand position, captured by the Kinect. ROS
matches these hand data to the corresponding cart position,
thus creating the actual input signal / (Fig. 2¢). As a result,
once the subject received the “suggested” feedback v, it was
entirely up to them to decide how they should move their
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Fig. 2. (a) A schematic of the inverted pendulum/cart system. The rod is

considered massless. (b) A typical LQR control loop. (c) Extended LQR
loop where the controller is used to “teach” the user how to balance the
system. (d) Mapping from u to V. All symbols are explained in Table I.

hand. This idea extends the conventional implementation of
a HMI where the subjects seek to improve their performance
by utilizing external feedback signals. What is unique in
the current implementation is that subjects were expected
to learn the optimal, energy-minimizing behavior instructed
by the LQR that would otherwise be unintuitive and which
would require considerable exploration to obtain.

D. Experimental Protocol

Ten subjects (4 females, 6 males) consented to participate
in this pilot study, which was approved by Northwestern
University’s Institutional Review Board. Only adult subjects
with no history of neurological disorders, and no prior
knowledge of the experimental procedure were allowed to
participate.

We sought to determine whether the proposed type of
tactile feedback can improve learning of a new motor skill.
Subjects were divided into two groups of five and were
asked to play a “video game” for approximately 20 minutes.
The game had two phases, a training phase and a testing
phase (10 minutes each with a 5-minute break in-between).
The goal was to keep the pendulum from falling for as
long as possible. If the pendulum fell, a new session started
immediately. Trials continued until the end of the experiment.
We found that 10 minutes of training sufficed to learn the task
without noticeable fatigue effects. During the training phase,
one group received both visual and tactile feedback (TV
group) while the other group received only visual feedback
(V group). During the testing phase, both groups received
only visual feedback of the pendulum/cart system (i.e. no
vibrotactile feedback).

The experimental setup is shown in Fig. 3. In a typical
session, subjects stood in front of a monitor and used their
right hand to control the position of the cart. In the training
phase, the TV group also received tactile feedback by two
small tactors as shown in Fig. 3. To acquire experience with
the artificial feedback, i.e. what the amplitude of the vibration
means and how they should use it, the TV group initially
practiced a target-matching task for 1-2 minutes. In that
familiarization task, subjects were asked to match a moving
cursor (representing their right hand) to a randomly changing
target along a horizontal axis. During the task, error feedback

TABLE I

SymBoL DESCRIPTIONS

Fig. 2a Fig. 2b-c
Symbol  Description Symbol  Description
M Mass of the cart r Reference cart position
m Point mass u Control signal
l Pendulum length X State vector [x x. 6 6]
F External force y Output vector [x. 6]7
Xc Cart position N Precompensator
0 Pendulum angle 14 Voltage
Gravity v Vibrotactile feedback
h Hand position
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Fig. 3. Experimental setup.

was provided through the tactors, thus familiarizing the group
with vibrotactile feedback. This type of feedback provided
in this familiarization task was entirely different from that
provided in the primary task and therefore their performance
on the latter was not affected.

III. ResuLts
A. Preliminary Analysis

We used the Time To Failure (TTF) as our primary
performance metric, which we computed for each trial. TTF
was the amount of time (in seconds) during which the subject
was able to keep the pendulum from falling. Fig. 4 illustrates
a typical response of a subject in the TV group during the
training phase. For this trial, the subject clearly attempted
to “follow” the vibrotactile feedback conveying the optimal
response. By doing so, the subject was able to balance the
inverted pendulum for more than 60 seconds (more than 4
times the average V group performance).

Fig. 5a (top) shows the within-group average of the first 13
trials of the training and testing phases (i.e. the Mean Time
To Failure, MTTF). This preliminary comparison suggests
that after an initial startup transient in the training phase, the
TV group performed better than the V group in almost every
trial. Thus, an optimal vibrotactile training signal appears
to provide information that people can use to improve
performance of a complex motor task, above and beyond that

which is capable using only visual feedback of manipulated
object state. Even so, one can notice that there is substantial
variability between trials in the TV group. This variability
continues throughout the whole training phase suggesting
that people may require more than 10 minutes of training
to fully learn how to capitalize on the training signal. Future
studies will investigate the patterns of exploration and the
time course of variability reduction as people learn to use
optimal vibrotactile feedback to perform this challenging
balancing task.

Fig. 5a (bottom) reveals a carry-over benefit of TV training
into the testing phase over and above what was acquired
in the vision only testing condition. This important result
demonstrated that the skill learned during the short training
period generalized to the testing condition without vibro-
tactile feedback. That is, by attempting to follow a training
signal that combines controlled-object states in a way we
deemed to be optimal, subjects may have implicitly learned
how to extract and combine those states all without relying
on the training signal. Future studies will investigate how to
maximize the performance gains obtainable via augmented
LQR state feedback and how to maximize generalization to
situations wherein training signals are no longer available.

B. Statistical Results

To quantify the carry-over effect described above, we fit
the individual performance curves to the TTF data obtained
from each subject:

a(l —e_é)+y )

where 7 is trial number, « is the gain (i.e. the amount learned
or the steady-state performance), § is the time constant (i.e.
the learning rate) and y is an offset. The resulting approx-
imations were reasonably similar to the actual performance
curves (2 > 0.73).
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Fig. 4. Typical response of a subject training with both tactile and visual
feedback. The percentage of activation is equivalent to the amplitude of
vibration.



Three two-sample t-tests were then performed comparing
each model parameter across groups in the testing phase.
Subjects in the TV group had significantly better steady-state
behavior (referring to @ +7) than the V group (mean = 26.5,
SD = 1.81 as opposed to mean = 19.07, SD = 1.95),
t(8) = 6.25, p < 0.05. This is consistent with the carry-
over effect that was observed in Fig. 5a. In contrast, no
significant difference was found between the time constants
of the TV group (mean = 1.908, SD = 0.169) and the V
group (mean = 1.973, SD = 0.65), t(8) = —-0.22, p = 0.833.
Likewise the offset of the TV group (mean = —8.15, SD =
1.71) was not different from the V group (mean = —5.35,
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Fig. 5. (a) First 13 trials of the experiment. Error bars show standard error.
(b) Approximated model of group performance in the testing phase.

SD = 297), 18 = -1.83, p = 0.105. Using (5) we
additionally approximated the average performance curve of
each group (Fig. 5b). These curves graphically support the
individual-subjects results.

The same conclusion about the steady-state performance
can be reached by directly comparing the raw TTF data
across groups. We used two two-sample t-tests to compare
the group averages of the first two trials (TTFs) at the
beginning of testing and the average of the last 10 trials at the
end of testing. The results show that the TV group (mean =
17.2, SD = 2.06) outperformed the V group (mean = 14.22,
SD = 1.81) at the end of testing phase (#(7) = 2.43, p < 0.05)
despite no significant difference between groups at the start
of testing (mean = 15.9, SD = 4.38 for the TV group and
mean = 12.6, SD = 0.962 for the V group, #(4) = 1.65,
p = 0.175). The number of trials at the beginning is limited
to two because of the steep learning curve at the beginning
of the testing phase (Fig. 5b). This steep transient response
is characterized by a time constant of approximately 2 trials
and is likely due to the 5-minute intermediate break. The
fact that the time constants of the two groups in the testing
phase do not significantly differ, implies a smooth transition
of the TV group to the new feedback condition.

Finally, we examined the steady-state performance in the
training phase to confirm that tactile feedback is actually
useful as implied by Fig. 5a. Indeed, after comparing the
average of the last 5 trials for each subject, the TV group
(mean = 46.22, SD = 22.59) was significantly better than
the V group (mean = 13.52, SD = 1.17), #(4.021) = 3.232,
p =0.03.

IV. Discussion

In this study we used a vibrotactile feedback system and
LQR design techniques to test the utility of synthetic state
feedback to facilitate learning of a challenging object control
task that emulates many tasks of daily living. We found that
by providing vibrotactile feedback of object states in the
specific combination that leads to optimal performance, sub-
jects enjoyed an immediate enhancement of task performance
over those provided only ongoing visual feedback of object
motion. This effect was evident within the first minute or
so of training and persisted over the entire training period
(10 minutes). Importantly, we observed that this training
benefit generalized to the testing interval wherein subjects
received only visual feedback of object motion. This implies
that training to emulate a response driven by LQR optimal
feedback can induce subjects to learn which combination
of object states can drive motor behavior so as to achieve
enhanced performance of a challenging object manipulation
task. The results suggest that vibrotactile feedback of syn-
thetic state information may be an effective tool for use in
optimizing motor performance in sports and, perhaps, for
optimizing motor re-learning following neuromotor injury
(e.g. stroke).

The most novel feature of our study is the use of a
LQR training signal to guide task performance. The LQR
training signal carried information about all task-relevant



state variables in exactly the proper proportion required to
optimize performance. To our knowledge, all prior studies
of vibrotactile display systems have used tactors to provide
feedback of just one or two state variable such as position,
velocity or error information. And while it is theoretically
possible that people could have derived the relevant cart-and-
pole state feedback from vision (and subsequently learn to
combine those states in an optimal manner), the observation
of an immediate training benefit of LQR training demon-
strates that they do not do so - at least within the time
frame we examined. The observation that beneficial effects of
LQR vibrotactile feedback training transfer to trials without
such feedback demonstrates that the brain can extract the
task-relevant object state feedback from visual feedback of
object motion under the proper training conditions. Future
studies should determine the frequency, duration, and optimal
scheduling protocols for LQR vibrotactile feedback training
that seeks to promote optimization of task performance, its
generalizability to other tasks of daily living, and the extent
to which performance enhancements can be retained over
time.

V. CONCLUSIONS

In this pilot study, we presented a new way to synthesize
artificial sensory feedback for the express purpose of en-
hancing the ability to learn new motor skills. We combined
an optimal controller with vibrotactile feedback, and the
experimental results showed that subjects who trained with
the LQR teacher signal performed better than those who
trained only with visual feedback of object motion. Poten-
tial applications of this new sensory feedback enhancement
technique include cases of visual impairment, performance
optimization in sports, skill optimization in the teleoperation
of surgical tools and in the physical rehabilitation of limb
movements following neuromotor injury, especially in those
cases where limb proprioception is compromised.
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