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Abstract— This paper develops an optimization method to
synthesize trajectories for use in the identification of system
parameters. Using widely studied techniques to compute Fisher
information based on observations of nonlinear dynamical
systems, an infinite-dimensional, projection-based optimization
algorithm is formulated to optimize the system trajectory using
eigenvalues of the Fisher information matrix as the cost metric.
An example of a cart-pendulum simulation demonstrates a sig-
nificant increase in the Fisher information using the optimized
trajectory with decreased parameter variances shown through
Monte-Carlo tests and computation of the Cramer-Rao lower
bound.

I. INTRODUCTION

The design of trajectories for the experimental identifi-
cation of parameters in dynamic systems is an important
problem in a variety of fields ranging from robotics to biol-
ogy to chemistry and beyond. With more accurate models,
the performance and tuning of controllers can be radically
improved. For nonlinear dynamical systems, the trajectory is
constrained to a nonlinear set of equations of motion which
leads to challenges in parameter estimation. Additionally,
since the trajectories evolve on a continuous-time domain, it
is important to ensure that the dynamics are satisfied along
the entire time domain of any synthesized trajectory.

A variety of estimation techniques are used in practice,
including Kalman filtering, maximum likelihood estimators,
and Monte-Carlo estimators to name a few [1-3]. The focus
of this paper will lie solely in the area of estimating static
model parameters in nonlinear dynamical systems. A widely
used method of estimating these types of parameters is
through a maximum likelihood estimation technique known
as batch least-squares estimation [3].

The batch least-squares method compares a set of mea-
surements taken along the evolution of a trajectory to pre-
dicted observations of the system using the model equations
and estimates of the parameters. This comparison is made
using the method of least-squares along the trajectory, and a
new update to the parameter estimate is then calculated.

II. RELATED WORK

The design of the experimental trajectory is of particular
importance to maximize the amount of information gained
from the parameter estimation task. A large amount of
literature on optimal experimental design exists in the fields
of biology [4-6], chemistry [7], and systems [8-11].
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A common metric used in the area of experimental design
that will also be a key metric in this paper is the Fisher in-
formation matrix computed from observations of the system
trajectory [12]. Metrics based on Fisher information are used
as cost functions in many optimization problems including
work by Swevers on “exciting” trajectories [13]. This work,
as well as related works [14], [15], synthesize trajectories for
nonlinear systems that can be recast as linear systems with
respect to the parameters.

Further research has resulted in optimal design methods
for general nonlinear systems. In work by Emery [16],
similar least-squares and maximum likelihood estimation
techniques are combined with Fisher information to optimize
the dynamic experiment. In this case and a number of
others, the dynamics are solved as a discretized, constrained
optimization problem [17], [18].

To avoid a discretization of the dynamics of the continuous
system, a class of methods has been developed which relies
on sets of basis functions to synthesize an optimal control
input to the system [19-21]. This method allows the full
trajectory to be optimized on a continuous-time domain;
however, the optimization is still subject to a finite set of
basis function coefficients.

The main contribution of this paper is the formulation of
an infinite-dimensional, projection-based optimization algo-
rithm which maximizes the information gained from obser-
vations along the dynamic trajectory. The projection-based
algorithm was originally designed for optimal trajectory
tracking problems [22], [23]; however, this paper extends the
algorithm to include a non-Bolza cost function, maximizing
the information gained by observations of the dynamic
trajectory. This formulation results in a method that preserves
the continuous-time dynamics using variational perturbations
to the input and trajectory to find an optimal solution.

This paper is organized as follows: Section III introduces
the estimation concepts required to compute the Fisher
information matrix for the system. Section IV derives the re-
quired cost function and equations necessary to optimize the
trajectory over the Fisher information. Finally, an example of
the optimization algorithm is provided for a cart-pendulum
system in simulation.

III. LEAST-SQUARES ESTIMATION

This paper will assume that a predefined number of
model parameters are being estimated from a series of state
measurements taken along a dynamic system’s trajectory
evolution. To provide background for the trajectory optimiza-
tion objective function, which will be presented in the next



section, the estimation procedure will first be outlined. The
dynamic model of the system is defined as

ẋ(t) = f(x(t), u(t), θ) (1)

where x ∈ Rn defines the system states, u ∈ Rm defines the
inputs to the system, and θ ∈ Rp defines the set of model
parameters that will be estimated. For the purpose of this
paper, all states will be assumed to be observable for the
estimation algorithm.

When running an experiment, a predefined trajectory, x(t),
is executed, and measurements of the state are taken during
the evolution of the experiment. We will assume that the
trajectory has a finite time horizon, and a fixed number of
observations are made. This assumption commonly occurs
for fixed frequency sampling of sensors over a fixed time
horizon in an experimental setup. Using the collected mea-
surements, least-squares estimation of the parameter set can
be performed using a Newton-Raphson search method. The
objective of the least-squares estimator can be rewritten as

θ̂ = arg min
θ
λ(θ)

where

λ(θ) =

h∑
i

(x̃(ti)− x(ti))
T · Σ−1 · (x̃(ti)− x(ti)).

x̃(ti) is the observed state at the ith time-point of h mea-
surements and Σ ∈ Rn×n is the covariance matrix associated
with the sensor measurement error.

Given this minimization problem, the Newton-Raphson
iterator is given by

θ̂k+1 = θ̂k − [∇2
θλ(θ)]−1∇θλ(θ).

A. Fisher Information

The Fisher information matrix quantifies the amount of
information a set of observations contains about a set of
unknown parameters. Assuming that the measurement noise
of the system is normally distributed, the Fisher information
matrix for the linear estimator is given by

I(θ) =

h∑
i

∇θx(ti) · Σ−1 · ∇θx(ti)
T
.

Since I(θ) ∈ Rn×n, an appropriate metric must be chosen
which involves the Fisher information matrix. There is a
significant amount of literature on different types of mapping
choices [4], [16], [17]; however, this paper will restrict
itself to the design choice of E-optimality. This choice of
mapping attempts to improve the worst-case variances of the
parameter set by maximizing the minimum eigenvalue of the
Fisher information matrix.

Given this choice of mapping, the objective function
for the trajectory optimization includes the inverse of the
minimum eigenvalue as well as cost on the control effort.
Additionally, a trajectory cost may be added to keep optimal
trajectories in the neighborhood of the initial trajectory. The
details of the trajectory optimization cost and routine will be
presented in the following section.

IV. NONLINEAR TRAJECTORY OPTIMIZATION

A. Objective Function

The trajectory optimization problem described in the pre-
vious section will now be formally defined. The objective
function, J is dependent on the eigenvalues of the Fisher
information matrix, I(θ). Since our optimization method
requires a continuous cost function, the maximization of the
information matrix needs to be cast into an appropriate con-
tinuous analogue. To satisfy this condition, the information
equation will be written as

Ĩ(θ) =

∫ tf

t0

∇θx(t) · Σ−1 · ∇θx(t)T dt. (2)

Assuming that observations are taken regularly along the
entire trajectory, the optimal trajectory x∗(t) maximizing the
eigenvalues of the continuous Ĩ(θ) will approximately opti-
mize the eigenvalues of the sampled I(θ). As the sampling
rate increases, the values of Ĩ(θ) and I(θ) will converge.

If observations do not take place along the entire trajectory
and the times samples are measured along the trajectory are
predetermined, a weighting function can be added to Ĩ(θ)
to ensure that sensitivity is maximized in the sampled areas
of the trajectory. However, if the observation time is not
predetermined, the sensitivity along the entire trajectory will
be maximized using Ĩ(θ).

The optimization objective function will therefore be given
by

J =
Qp
λmin

+
1

2

tf∫
t0

[
(x(t)− xd(t))T ·Qτ · (x(t)− xd(t))

+u(t)T ·Rτ · u(t)
]
dt (3)

where λmin is the minimum eigenvalue of Ĩ(θ), Qp is the
information weight, xd(t) is a reference trajectory, Qτ is
a trajectory tracking weighting matrix, and Rτ is a control
effort weighting matrix.

The various weights allow for design choices in the
optimal trajectory that is obtained. The control weight is
required to maintain a convex optimization problem and
must be a positive definite matrix. Increasing this weight will
result in less aggressive trajectories, most likely decreasing
the obtained information. Using a reference trajectory allows
for an optimal solution that remains in the neighborhood of
a known trajectory.

To minimize the objective function given by (3), an
optimal control algorithm is formulated using an infinite
dimensional, projection-based approach. The technique is
founded on the approach detailed in [22], but is extended
in this paper to allow for a cost function in the form of (3).

B. Extended Dynamics Constraints

For the optimization of the system trajectory, the objective
function must be minimized while satisfying the governing
dynamic equations of the system. The nonlinear system
dynamics are given by (1).



The optimal control algorithm traditionally was formulated
for trajectory tracking problems where the objective function
is explicitly a function of the system states. However, given
the formulation of the objective function in the previous
section, the cost depends on ∇θx(t). The Jacobean along
the trajectory can be calculated by first writing x(t) in its
integral form,

x(t) = x0 +

∫ tf

t0

f(x(t), u(t), θ)dt.

Calculating the Jacobean with respect to θ, yields

∇θx(t) =

∫ tf

t0

Dxf(x(t), u(t), θ)T∇θx(t)

+Dθf(x(t), u(t), θ)T dt.

If the above equation is now differentiated with respect to
time, a new ODE can be written in terms of the Jacobean of
the state with respect to θ,

ψ̇(t) = Dxf(x(t), u(t), θ)T ψ̇(t) +Dθf(x(t), u(t), θ)T (4)

where
ψ(t) = ∇θx(t).

Since the equation for the Jacobean denoted by ψ(t) is,
in effect, an additional equation that must be satisfied by the
optimal trajectory x∗(t), ψ(t) will be appended to the state
vector as an additional dynamic constraint. This will allow
for variations on ψ(t) to be made directly in the optimization
algorithm followed by a projection step to satisfy both x(t)
and ψ(t).

For convenience, x̄(t) = (x(t), ψ(t)) will define the
expanded states and η(t) = (x̄(t), u(t)) defines a feasible
curve on the trajectory manifold, T .

C. Projection Operator

The minimization of (3) is subject to the dynamics con-
straints given by (1) and (4). This constrained optimization
can be relaxed by calculating a descent direction using an
unconstrained iterate followed by a projection of the descent
direction onto the dynamics constraints as detailed in [22].
The projection operator uses a stabilizing feedback law to
take a feasible or infeasible trajectory, defined by ξ(t) =
(ᾱ(t), µ(t)) and maps it to a feasible trajectory, η(t).

The projection operator used in this paper is given by

P (ξ(t)) :


u(t) = µ(t) +K(t)(ᾱ(t)− x̄(t))
ẋ(t) = f(x(t), u(t))

ψ̇(t) = Dxf(x, u, θ)Tψ(t) +Dθf(x, u, θ)T .

The feedback gain, K(t) can be optimized as well by solving
an additional linear quadratic regulation problem. Details of
the optimal gain problem can be found in [22].

With the addition of the projection operator, the opti-
mization problem can be reformulated as an unconstrained
problem of the form

arg min
ξ(t)

J(P (ξ(t))).

This allows variations of the trajectory to be calculated free
of the constraint of maintaining feasible dynamics; however,
the solution is projected to a feasible trajectory at each
iteration of the optimization algorithm.

D. Optimization Routine

The optimal control problem is solved using a gradient
descent technique. In order to apply the iterative method, a
descent direction must be defined for each iteration of the
algorithm. The descent direction, ζi(t) is given by

ζi(t) = arg min
ζi(t)

DJ(P (ξi(t))) ◦ ζi(t) +
1

2
〈ζi(t), ζi(t)〉 (5)

where ζi(t) ∈ TξiT , i.e., the descent direction lies in
the tangent space of the trajectory manifold at the current
iteration. The components of the descent direction are given
by ζi = (z̄(t), v(t)) where z̄(t) is the perturbation to the
extended state and v(t) is the perturbation to the control.

The solution to (5) results in a descent direction for
the optimal control problem (3) and an appropriate Armijo
step of the projection, P (ξi(t) + γiζi) provides a feasible
trajectory solution assuming that the step size γi satisfies a
sufficient decrease condition.

The basic algorithm is shown in Algorithm 1. The descent
direction is found by defining a local LQR optimization
problem at each iteration of the trajectory [24]. The fol-
lowing section will cover the setup and structure of this
LQR problem. Sufficient decrease is satisfied by an Armijo
line search on the solution which is projected onto the
trajectory manifold [25]. After the steepest descent condition
is satisfied, the updated trajectory becomes the seed for the
next iteration of the optimal control algorithm.

Algorithm 1 Trajectory Optimization

Initialize ξ0 ∈ T , tolerance ε
while DJ(ξi(t)) ◦ ζi > ε do

Calculate descent, ζi:
ζi = arg minζi(t)DJ(P (ξi(t))) ◦ ζi + 1

2 〈ζi, ζi〉
Compute γi with Armijo backtracking search
Project onto dynamics constraints:
ξi+1(t) = P (ξi(t) + γiζi)

i = i+ 1
end while

E. Solving the LQR Problem

To find a descent direction for the optimal control al-
gorithm, the LQR problem must first be formulated. As
given shown in (5), the descent direction depends on the
linearization of the cost function, DJ(P (ζi(t))) and the local
quadratic model, 1

2 〈ζi(t), ζi(t)〉. The following subsections
present the formulations for these two quantities as well as
the linearization of the dynamics which constrain the descent
direction.



1) Cost Function Linearization: The linearization of the
cost function, DJ(P (ζi(t))) will be found by taking the
directional derivative of (3) with respect to the extended
states, x̄(t), and the control vector, u(t).

The derivative of (3) with respect to x̄ yields

a(t) =
∂J

∂x̄
=− 1

λ2
min

∂λmin
∂x̄

+

tf∫
t0

[
(x(t)− xd(t))T ·Qτ

]
dt. (6)

Since the cost function involves the eigenvalues of Ĩ(θ),
this linearization requires a method of handling derivatives
of eigenvalues. An equation for derivatives of eigenvalues
was formalized by Nelson [26]. Given an eigensystem of
the form

AX = XΛ

where Λ is a diagonal matrix of eigenvalues, (λ1, λ2, ...λn),
and X is the associated matrix of eigenvectors, the derivative
of one eigenvalue is given by

Dxλk = yTk ·DxA · vk

where yk is the left eigenvector and vk is the right eigenvec-
tor associated with λk.

Using this result, ∂λmin

∂x̄ from (6) can be calculated. Taking
the derivative of the eigenvalue of Ĩ(θ) from (2) with respect
to the extended state yields

∂λi
∂x̄

= yTi
∂

∂x̄

(∫ tf

t0

∇θx(t) · Σ−1 · ∇θx(t)T dt

)
vi

where i denotes the index of the minimum eigenvalue and
eigenvector. Since the partial derivative and eigenvectors are
not time dependent, the equation can be rewritten as the
running cost over the derivative of the outer product of the
Jacobeans,

∂λi
∂x̄

=

∫ tf

t0

yTi
∂

∂x̄

(
∇θx(t) · Σ−1 · ∇θx(t)T

)
vi dt.

The last step in computing the extended state linearization
of the cost function is calculating the derivative of the outer
product of the Jacobeans, ∂

∂x̄ (∇θx(t)∇θx(t)). Given that
∇θx(t) is included in the extended state, x̄(t), the partial
derivative of the outer product is straightforward. The matrix
representation of the derivative is given by

∂

∂x̄

(
∇θx(t) · Σ−1 · ∇θx(t)T

)
=

[
{0}n×p×n

2∇θx(t) · Σ−1 · E

]
where E is an identity-like tensor of the form

Ei,j,k,l = δi,kδj,l

with δ·,· as the Kronecker delta function.
Given the cost function (3), the linearization has been

defined in terms of the expanded state, x̄(t). Additionally, the
linearization with respect to the control u(t) is needed. ∂J

∂u
is much simpler since only the control cost term is directly

dependent on the control. Therefore, the linearization is given
by

b(t) =
∂J

∂u
=

tf∫
t0

[
u(t)T ·Rτ

]
dt. (7)

These linearization terms are evaluated using the state and
control at each point in time along the trajectory.

2) Quadratic Model: The second required component of
the LQR problem is defining the inner product, 1

2 〈ζi, ζi〉. For
this paper, we will choose a simple quadratic model related
to the extended state and control inputs. This will be defined
as

1

2
〈ζi, ζi〉 =

∫ tf

t0

1

2
z̄(t)TQ(t)z̄(t) + v(t)TR(t)v(t)dt

where matrices Q(t) and R(t) are weighting matrices for
the local quadratic model approximation. Design of these
weighting matrices can lead to faster convergence of the
optimal control algorithm depending on the specific problem.

3) Dynamics Linearization: The final step required to set
up the LQR problem is to calculate linearizations of the
dynamics. Since the original dynamics for the system are
nonlinear, linearized dynamics are used as an approximation
for the steepest descent calculation and then the projection
operator projects the step back onto the nonlinear dynamics.

The descent direction, ζi, will satisfy the linear constraint
ODE given by

˙̄zi(t) = A(t)z̄i(t) +B(t)vi(t)

where A(t) is the linearization of the nonlinear dynamics
given by (1) and (4) with respect to x̄(t), and B(t) is the
linearization with respect to u(t). The linearization, A(t),
of the dynamics with respect to the extended state, x̄(t), is
given by

A(t) =

[
∂ẋ
∂x

∂ẋ
∂ψ

∂ψ̇
∂x

∂ψ̇
∂ψ

]

=

[
Dxf(·) {0}

D2
xf(·) · ψ(t) +DxDθf(·) Dxf(·) · E

]
.

Additionally, the linearization of the dynamics with respect
to the control input, u(t), is required. This linearization
matrix, B(t), is given by

B(t) =

[
∂ẋ
∂u
∂ψ̇
∂u

]

=

[
Duf(·)

DuDxf(·) · ψ(t) +DuDθf(·)

]
.

Given the cost function linearization and quadratic model,
the LQR problem which solves for the descent direction (5)
can be written as

arg min
ζ(t)

=

∫ tf

t0

a(t)T z̄(t) + b(t)T v(t)

+
1

2
z̄(t)TQ(t)z̄(t) +

1

2
v(t)TR(t)v(t)dt (8)



such that
˙̄z(t) = A(t)z̄(t) +B(t)v(t)

where a(t) = ∂J
∂x̄ , b(t) = ∂J

∂u and A(t) and B(t) are
the linearizations of the system dynamics. The problem is
therefore reduced to solving this LQR problem iteratively to
find directions of steepest descent. The solution to the LQR
descent problem can then be solved using the known Riccati
differential equations [22]. Since this descent direction is
based on the linearized dynamics, the projection operator
must be applied to ensure the dynamics constraints are sat-
isfied. This process is iteratively repeated until convergence
is achieved as shown in Algorithm 1.

V. SIMULATION EXAMPLE

To demonstrate the procedure and use of optimizing the
Fisher information for a dynamic system, a simulation of
a cart-pendulum system is considered. The system has two
degrees of freedom, (s(t), φ(t)), where s(t) is the horizontal
displacement of the cart and φ(t) is the rotational angle of
the pendulum as seen in Fig. 1.

u

s

Fig. 1: Cart-pendulum system

A horizontal control force can be applied in either direc-
tion to the cart with positive force to the right and a torque
due to rotational friction is added to the pendulum joint. The
Lagrangian for this system is given by

L =
1

2
(M +m)ṡ2 −m`ṡφ̇ cosφ+

1

2
m`2φ̇2 −mg` cosφ,

and the equations of motion for the cart-pendulum can be
derived with the Euler-Lagrange equations given by

∂L

∂s
− d

dt

∂L

∂ṡ
= u(t);

∂L

∂φ
− d

dt

∂L

∂φ̇
= −cφ̇(t),

where M is the cart mass, m is the pendulum mass, ` is the
pendulum length, and c is the viscous friction parameter. The
full equations will not be derived here; however, the results
are easily obtained.

A. Simulation Parameters

The goal for this trajectory optimization simulation will
be to estimate three parameters given noisy measurements
of the full state of the system. The three parameters will be
the mass of the pendulum, m, the length of the pendulum,
`, and the friction coefficient, c.

An experimental measurement of the trajectory is sim-
ulated by sampling the trajectory of the system given the
current estimate of parameters at a discrete number of points.
Additive noise is then added to each sample which results

in a simulated set of noisy measurements that will be used
for the subsequent optimization routine. For this simulation
example, a 4 second trajectory will be measured with a
fixed sampling rate of 100 Hz. The uncertainty of each state
measurement will be normally distributed with zero mean
and a standard deviation, σ = 0.05.

An initial control input is chosen as shown in Fig. 2c.
An initial guess of the parameters, θ = {m, `, c}, is also
chosen as well as the actual deterministic parameter set. The
parameters and estimates used to initialize the optimization
are:

Actual : m = 2.0 kg, ` = 1.0 m, c = 1.0 Ns/m

Guess : m = 2.5 kg, ` = 1.4 m, c = 1.4 Ns/m

The cart mass will be assumed to be known and fixed at 1.0
kg.

B. Optimization Results

The optimization was run until the convergence criterion
|DJ(ξ(t)) ◦ ζ| < 10−2 was satisfied. The comparison of
initial and optimized trajectories can be seen in Fig. 2. By
examining Fig. 2d, it is clear that the optimized trajectory
dramatically improves the amount of Fisher information as
the trajectory evolves in time. This increase in information
is due to the fact that the system is being excited in a way
that allows the parameters to be observed more accurately.
As an intuitive example, the increased oscillation of the
pendulum, seen in Fig. 2b, allows a better estimate of the
friction parameter, c, to be made since the system is subject
to greater frictional torques.

In terms of the optimization cost, the initial and optimized
eigenvalues of Ĩ(θ) and J are listed in Table I. The results
show that the minimum eigenvalue, λ3, increases by over
a factor of 100. Additionally, the other eigenvalues also in-
crease, though not included directly in the cost function. The
results can also be visualized through the phase-space rep-
resentation of the sensitivities, ψ(t). Fig. 3 shows the phase
plot of ∇cφ(t) which indicates that the optimized trajectory
maximizes the Fisher information by quickly increasing the
sensitivity of the system throughout the trajectory.

Examining the plots of the optimized trajectory, it is clear
that more information is gained by oscillating the pendulum
back and forth. In particular, more information about the
torsional friction parameter, c, is gained by increasing the
oscillation. This observation leads to a hypothesis that the
cost function and optimization may be driven strongly by
information concerning the friction parameter.

This hypothesis is confirmed by examining the
eigenvector associated with λ3. The eigenvector is
{0.0060018, 0.066900, 0.99774}, which indicates that the
largest initial direction of the eigenvalue and therefore the
optimization is c. This analysis validates the qualitative
observations made about the optimization results; however,
another important test is to confirm that the variance of
the parameter estimate indeed decreases with the increased
information.
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Fig. 2: Comparisons of the trajectory before and after Fisher
information optimization.
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Fig. 3: Phase plot of∇cφ(t) from initial (blue) and optimized
(red) trajectories. Information is maximized by a trajectory
that quickly causes the sensitivity w.r.t. parameters to in-
crease.

TABLE I: Optimization Cost

λ1 λ2 λ3 J
Initial 38.170 19.266 0.87185 1.1470
Optimized 16482. 928.51 101.24 0.0098775

C. Monte-Carlo Analysis

To quantitatively compare the variance of the parameter
estimates for both trajectories, a Monte-Carlo test was per-
formed with both the initial and optimized trajectories using
the batch-least squares estimation method. The parameter
estimation routine was run 1500 times for each of the
trajectories. For each trial, a new set of sampled random
noise was used.

A histogram of the distribution of estimated values of the
friction parameter, c can be seen in Figure 4. The covariance
matrix for all three parameters computed from the Monte-
Carlo data as well as the Fisher information matrix, I(θ) for
each trajectory can be seen in Table II.

The results from the Monte-Carlo tests confirm that the
Fisher information significantly increases when the opti-
mized trajectory is used in estimating the model parameters.
Additionally, this increase in information leads to a signifi-
cant decrease in the variance of the parameter estimates. In
particular, the variance of the friction coefficient, c decreases
from 0.0595 Ns/m to 0.000170 Ns/m.

D. Cramer-Rao Lower Bound

The final comparison that will be made with the results
obtained from the simulation is with regard to the Cramer-
Rao bound. Since it is assumed that the measurement noise
is normally distributed with zero mean and the estimation



TABLE II: Covariance and Fisher Information

Monte-Carlo Covariance

Initial:

 1.10× 10−3 −1.51× 10−4 3.54× 10−4

−1.51× 10−4 3.64× 10−3 4.92× 10−3

3.54× 10−4 4.92× 10−3 5.95× 10−2



Optimized:

 2.75× 10−4 8.68× 10−5 1.65× 10−4

8.68× 10−5 3.18× 10−5 6.21× 10−5

1.65× 10−4 6.21× 10−5 1.70× 10−4


- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fisher Information Matrix

Initial:

 9.61× 102 2.21× 101 −7.26
2.21× 101 4.82× 102 −3.09× 101

−7.26 −3.09× 101 2.39× 101



Optimized:

 3.16× 104. −9.24× 104. 2.45× 103

−9.24× 104 3.84× 105 −5.02× 104

2.45× 103 −5.02× 104 2.33× 104



method is least-squares, the Cramer-Rao bound on the vari-
ance simply states that

covθ(β) ≥ I(θ)−1

where β is the batch least-squares estimator [27]. This places
an absolute lower bound on the variance of the parameter
estimate that can be obtained using the batch least-squares
estimator or other unbiased estimator.

Table III lists the covariance bounds for the initial and
optimized trajectories. The covariance of the initial trajectory
is clearly subject to a higher bound than that of the optimized
trajectory. Due to round-off and other numerical errors in the
algorithms and Monte-Carlo simulations, the covariance of
the Monte-Carlo estimates is higher than the lower bound;
however, overall remains quite close to the predicted best-
case variance estimates according to the Cramer-Rao bound.

VI. CONCLUSION

This paper presented a method of performing an op-
timization of the Fisher information subject to the dy-
namics of a nonlinear system. By extending an infinite-
dimensional projection-based trajectory optimization algo-
rithm, the continuous-time dynamics could be preserved
throughout the optimization, and variations on the input and
trajectory were projected onto the trajectory manifold, T .

The results of the cart-pendulum simulation show that this
optimization routine results in an increase in the minimum
eigenvalue of the Fisher information as well as a decrease
in the covariance of the estimated parameters subject to

TABLE III: Cramer-Rao Lower Variance Bounds

Initial:

 1.04× 10−3 −3.01× 10−5 2.78× 10−4

−3.01× 10−5 2.26× 10−3 2.92× 10−3

2.78× 10−4 2.92× 10−3 4.57× 10−2



Optimized:

 2.63× 10−4 8.30× 10−5 1.51× 10−4

8.30× 10−5 2.98× 10−5 5.56× 10−5

1.51× 10−4 5.56× 10−5 1.47× 10−4


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Fig. 4: PDF histograms of the viscous friction coefficient, c.
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(b) Distribution using optimized trajectory, σ2 = 0.000275

Fig. 5: PDF histograms of the mass parameter, m.
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(a) Distribution using initial trajectory, σ2 = 0.00364
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(b) Distribution using optimized trajectory, σ2 = 0.0000318

Fig. 6: PDF histograms of the length parameter, `.

the Cramer-Rao lower bound. Future work related to the
optimization approach involves exploring bounds on the
convergence rates including adding second-order information
to the optimization algorithm. Additionally, experimental
trials are planned to compare simulation data to physical
measurements.
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