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Abstract— Tracking moving objects requires tight coordi-
nation of sensing and movement, in both biological contexts
such as prey pursuit and capture, and in target following
by mobile robots. Algorithms for target tracking often use
a probabilistic map, or information map, of the domain to
guide search. Though it is reasonable to expect that the
best approach would be to choose control actions driving
the robot toward the maximum of this information map, we
show improved performance in simulation by using a simple
heuristic incorporating the time history of robot movement
into the map. Furthermore, our results indicate that as the
distribution of robot positions approaches the distribution of
the density of information, the variance of the estimate is
decreased and tracking improves. We conclude that control
actions based solely on information maximization may under-
perform in information orientated tasks, such as estimation.

I. INTRODUCTION

Mobile robots (as well as their biological counterparts,
animals) face uncertain environments from which some
certainty must be derived to remain operational (or alive).
Robots and animals both require sensory data in order to
make sense of their surroundings and perform tasks such
as navigation, object identification, etc. Movement of the
sensors is often required to maintain a steady stream of useful
information about the environment. With movement comes a
cost [1], however, so movement strategies must be optimized
to gain the most useful information about the environment,
leading to an entire field of study called active search.

In robotics, a variety of methods have been proposed in
active search. Often, robots gather sensor data to estimate
some unknown parameter about their environment. This
unknown parameter could be the location of an object to
track or a distinguishing feature of an object that requires
identification. A perfect sensor without noise would be able
to determine this parameter with a single measurement (i.e.
there is a one-to-one correspondence between the sensor
reading and the value of the parameter). However, most
sensors receive noisy measurements, and even in noise-free
cases, a measurement could result in multiple possibilities
for the value of the parameter. A suitable method for active
search should therefore choose a control which will best
minimize the variance of the parameter belief function while
also resulting in an accurate estimate.
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Fig. 1: Schematic of our object tracking method using a time-discounted
information map. The robotic sensor is tasked with locating and tracking
an object moving in 1D. A simple control strategy might be to ascend
the map in order to reach locations of maximum information. Our method
discounts the information map according to the recent position history of
the robot, allowing for a more distributed exploration of the original map
using a simple and real-time control law. This time-discounted information
map method results in better estimates over information maximization.

The inherent problem in active search is that the utility
of a future measurement must somehow be predicted, given
that the measurement itself is dependent on the uncertain
parameter. Predicting measurement utility can be accom-
plished using entropy related metrics [2], [3] or information
measures [4]–[6]. As searching the entire space of control
actions can be expensive, methods of locally maximizing
or approximately maximizing such metrics are often used.
For example, local control actions can be chosen in or-
der to maximize some measure on expected measurement
utility over a set of candidate control actions [3], [7], [8].
Alternatively, local gradient-based methods based on an
information metric [6], [9] can be used to drive sensors
towards informative sensor states. While these methods prove
sufficient in many situations, local information maximization
(info-max for short) methods may fail when the belief, and
therefore the expected measurements, are highly uncertain
or multimodal. These issues are expected if the parameter is
time-varying.

An alternative approach would be using the global maxi-
mum of an information map over the whole search domain to
to control decisions [10]. One might expect that moving the
sensor towards the peak of this information map will result
in robust estimation. This approach is however still likely to
fail when the belief is uncertain, incorrect, or multimodal,
which will be demonstrated in Section III. We show that
choosing control actions that are based on the distribution of



information, as opposed to the local information or maximum
information, can improve performance in these situations.

Previously, we developed a method that calculates a spatial
map of expected information using the Fisher Information of
an a priori measurement model [11]. Using this information
map, control actions were chosen over a finite time horizon
to generate an ergodic trajectory, meaning the sensor visited
locations in the search space for times proportionate to
the expected information density of those areas [12]. This
ergodic search method was more successful and faster at
localizing objects in the presence of distractor objects than
other locally greedy methods described above [11].

An ergodic metric for estimation involves analyzing the
spatial distribution of measurements over a finite time hori-
zon. Silverman et. al. [11] developed a method of generating
forward trajectories that produces ergodic behavior with re-
spect to the current expected information density. Trajectory
optimization can however be computationally expensive for
dynamic systems and difficult to implement in real time. The
benefit of generating a longer trajectory is also less clear
when the parameter being estimated is time variant.

Rather than generating an ergodic trajectory forward in
time, Mathew and Mezic (2011) [12] calculate an ergodic
feedback control law based on past position history. This
can still be computationally expensive as it is necessary to
calculate the ergodic metric, and extension to moving target
tracking is not obvious.

In this work, we develop a method of taking past sensor
positions into account when calculating the expected infor-
mation density map itself. The actual control decision there-
fore does not involve calculating the potentially expensive
ergodic metric, while nevertheless leading to approximately
ergodic solutions. We show in simulation that by discounting
areas of the information map recently visited, a simple
control law can be used to accurately track objects in real
time. Using this time-discounted information map results in
trajectories that are more distributed (ergodic) over the map,
which correlates strongly with a decrease in variance of the
estimate. The same control strategy using the original map
follows the maximum expected information, but often results
in unstable estimates of the moving object. The approxi-
mately ergodic (called quasi-ergodic in this paper) approach
will likely result in more energetically costly solutions due to
increased movement, though information gained could offset
this cost [1].

While the control strategies for animals performing active
search is a large open area of research, there is some evidence
that animals perform costly movements as a trade-off for
gaining information. Electric fish swim at a drag-inducing
pitched angle to sweep more area with their limited-range
sensors [1]. Similarly, blue crabs orient themselves at a
drag inducing angle while moving, likely to obtain a better
estimate on the local gradient of odorant molecules [13]. Bats
orient their ultrasonic clicks offset from prey where Fisher
Information is maximized [14]. A recent study in electric
fish show a large increase in whole-body oscillations when
tracking a moving refuge by means of their electrosensory

system compared to when using their visual system [15].
Could these strategies be considering areas of increased
information density when planning control? Would these
strategies benefit from an ergodic search approach compared
to going to areas of maximum information? Investigation into
solving these problems in robotics could lead to insight on
these questions in animals.

II. METHODS

A. Algorithm overview

Algorithm 1
1: Init. d(0),V0(0),Υ(θ, d), ε
2: Init. p(θ) to a uniform distribution
3: Calculate the Fisher Information I(θ, d) (Eqn. 1)
4: while True do
5: Calculate expected information density (EID) map

using p(θ) and I(θ, d) (Eqn. 2)
6: Calculate sensor position history to discount EID

(Fig. 2)
7: Update control f from time-discounted EID (tEID)

(Eqn. 5)
8: Take measurement and update pi(θ) (Eqn. 3)
9: i=i+1

10: end while

The algorithm presented in this paper reformulates the
algorithm in Silverman et. al. (2013) [11]—which was
designed to localize a static object—in order to track a
moving object. Previously, a trajectory was planned for
a finite block of time, executed, and then repeated with
the updated belief of the object location (more generally,
object parameter θ). The current algorithm takes into account
the recent trajectory of the sensor along with the expected
information density (EID) of the parameter when executing
the subsequent control. For example, the sensor will explore
areas of lower EID if areas of higher EID had been explored
recently. An overview of this method is shown in Algorithm
1. As in Silverman et. al. (2013) [11], we assume knowledge
of the measurement model for θ, given by v = Υ(θ, d) + δ.
Υ is a function of both the deterministic sensor position d as
well as the unknown parameter θ and can vary depending on
the type of sensor used and the parameter being estimated. δ
adds a zero mean noise with variance σ2. The measurement
model could be derived from first principles if the physics of
the sensor are well known, or empirically obtained through
experiment.

B. Fisher Information

Given the measurement model v, we can calculate the
Fisher Information (FI) as in Silverman et. al. (2013) [11].
FI correlates to the amount of information a measurement
will provide at sensor location x for a specific value of θ.
Assuming Gaussian noise of the measurement, FI can be
calculated as
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Fig. 2: Calculation of position history function for discounting the expected
information density. The blue line shows a sample trajectory of the sensor
over the last 6 seconds, where time = 0 indicates the current time. The
colormap indicates how the function is created over time. The top plot
indicates the level of the discounting as a function of time. Bright yellow
indicates areas of high magnitude for the discounting function. The right
plot is the sum of the discounting function over all time, which is then used
with the EID so that positions of high magnitude (areas recently visited
by the sensor) are discounted heavily whereas low magnitudes (areas not
recently visited by the sensor) are not discounted.

I(θ, d) =

∫
v

(
∂p(v|θ)
∂θ

)2
1

p(v|θ)
dv. (1)

The belief about the value of θ is represented by the PDF
p(θ) (also called the belief) and evolves as measurements
are collected (see Section II-D). To calculate the expected
information density (EID), we take the expectation of the
Fisher Information over the belief of the parameter using

Φ(x) =

∫
θ

I(θ, x)p(θ) dθ. (2)

The calculation of FI (I) and EID (Φ) are unchanged from
the algorithm presented in Silverman et. al. (2013) [11].

C. Sensor position history and control update

Previously, in Silverman et. al. (2013) [11], an ergodic
sensor trajectory was calculated for a finite time horizon
using optimal control methods. In that case, a trajectory was
ergodic if the distribution of locations that the trajectory
visits matches the statistics of the EID. Therefore, the
sensor would spend more time in areas of high EID, and
proportionately less time in areas of lower EID.

When the unknown parameter has the possibility to evolve
over time, such as when tracking a moving object, calculating
an ergodic trajectory over a finite time horizon becomes
impractical because of how rapidly the EID is changing.

Specifically, since an ergodic trajectory requires matching
the sampling of a space to the statistics of the EID, then if
the EID is changing, there is no assurance that this matching

will occur. To accommodate this, we introduce two forms of
“forgetting” into our algorithm, so that guidance by memory
(the information map) is less prone to error. The first form
is to forget, with a certain time constant, the EID of recently
visited locations. We call the result the time-discounted EID,
or tEID. A schematic of this method is shown in Fig. 2. The
second is to forget the current estimate of the parameter,
which will be further explained below. For this work, the
time-constants associated with these two forms of forgetting
were tuned manually by visualizing the resulting trajectories,
whereas future versions of this algorithm would benefit from
automatic tuning based on the frequency spectrum of the
estimated parameter.

A control update was then calculated using the tEID. The
specific control law to use may depend on the dynamics of
the robot and the dimenionality of the problem. We chose to
focus on a very simple control law to show the effectiveness
of using a time-discounted map, which is given in Section II-
E.

D. Bayesian update and evolution of the belief

The PDF of the parameter p(θ) is updated through a
similar Bayesian update as in Silverman et. al (2013) [11].
The update is given by

p(θ|V ) = ηp(V |θ)p(θ), (3)

where p(θ) is the prior belief, V is the measurement,
p(V |θ) is the innovation, and η is a normalization factor.
For estimating an unchanging parameter, the innovation is
calculated from

p(V )|θ) =
1√
2πσ

exp

[
(Υ(θ, d)− V )2

σ2

]
. (4)

However, here we model the dynamics of the parameter
(position in the case of a moving object) as a Gaussian
distribution centered at the current value of the parameter
(also known as a stochastic maximum velocity method). As
the parameter is represented by a probability distribution,
the calculation amounts to convolving the distribution for
the parameter with the Gaussian distribution representing the
possible evolution of the parameter. Therefore, the belief of
the parameter flattens out over time if no new measurements
are taken, effectively ‘forgetting’ some knowledge of the lo-
cation of the object. This flattened distribution then becomes
the prior in Eqn. 3. This procedure allows the estimate of
the parameter to change over time, even if nothing is known
deterministically about how the parameter might evolve.

E. Example Problem

We simulated a single sensor that gathers some reading as
it passes by an object in 1D. The global position of that object
is the unknown parameter θ. Υ(θ, x) models the sensor
reading as a function and can vary depending on the type
of sensor or the object. We chose to compare three sensor
models as well as two control strategies. The first strategy



Fig. 3: Quasi-ergodic control vs. info-max control for tracking an object. The left column shows the different measurement models tested. The first column
shows the sensor reading as an object passes by a sensor located at 0. The sensor models would shift up and down according to the location of the sensor.
A monophasic, symmetric measurement model is used in (A), a biphasic, symmetric model is used in (B), and a monophasic asymmetric measurement
model is used in (C). The Fisher Information for each measurement model is shown in the second column. High FI corresponds to the locations where the
magnitude of the spatial derivate of the measurement model is also high. The third and fourth columns show simulated trials as the sensor attempts to track
an object using either the quasi-ergodic control method (third column) or the info-max method (fourth column). The black trace indicates the trajectory of
the object and the cyan trace indicates the trajectory of the sensor. The shaded red shows the PDF of the estimated object position over space and time,
where the red trace indicated the estimate of the object position based on the location of the maximum value of the PDF. In all cases, the period of the
object oscillation in 15 seconds and two full periods are shown. The plots underneath each trial detail the time evolution of the variance of the estimate
(blue) as well as the Jensen-Shannon divergence measure of ergodicity (green). The signal to noise ratio was 25 dB in all cases.

takes into account the time-discounted EID as described
above. The second strategy is to follow the maximum of the

EID, irrespective of where the sensor has been. We allow
the position of the object to oscillate at various frequencies,



Fig. 4: Quasi-ergodic control vs. info-max control for tracking an object with lower noise. These trials are identical to those in Fig. 3 except that the
amplitude of the noise modeled was decreased by one order of magnitude. The signal to noise ratio was 45 dB in all cases. See Fig. 3 for more details.

keeping the amplitude of the velocity profile constant.
We chose a very simple control law based on the time-

discounted EID, where the input f drives the sensor toward
the peak of the tEID with a magnitude inversely proportional
to the tEID at the current location, given by

f ∝ sign[(argmaxx tEID(x))− d]

tEID(d)
(5)

where tEID is the time-discounted EID function over the
domain x and d is the current position of the sensor. By
using the original EID rather than the time-discounted EID,
the result is to move towards the global maximum of the
information map. The sensor dynamics consists of a simple
second order linear system with an inertial term, a damping
term, and no stiffness with full actuation in 1D given by

md̈+ bḋ = f, (6)

where m and b are the mass and damping coefficient
of the sensor. This model represents the dynamics of our

underwater electrosensory robot with which we will perform
future experiments [16].

F. Performance Measures

Three performance measures were used to quantify the
results. First, the norm was calculated for the error signal
between the estimated and actual object position during the
steady state phase of tracking (the last 20 seconds). Two
error signals were derived based on the two possible ways
to estimate object position, either by the mean location of
the belief function, or the maximum location of the belief
function. These norms are reported in Table I.

Second, the variance of the belief over the time course of
the trajectory was calculated. This measure relates the confi-
dence of the estimate over time. Third, the Jensen-Shannon
divergence (JSD) was used to measure the ergodicity of
the sensor trajectory related to the information map (the
EID). In short, the JSD is a measure of distance between
two distributions. We calculated the distribution of sensor
positions as well as the average EID in a moving window of
3 seconds. Therefore, a value of JSD close to zero indicates



that the position history of the sensor matches the EID, and
therefore represents high ergodicity. Both the variance of the
belief and the JSD are plotted for the trials shown in Fig. 3.

III. RESULTS

We present trials where the sensor must track a moving ob-
ject in a high noise environment (SNR = 25 dB), comparing
the quasi-ergodic approach to the information maximizing
approach using a variety of measurement models. Fig. 3A
shows results when using a symmetric, monophasic measure-
ment model, common in many types of sensors for simple
objects such as sonar detecting a prey. Fig. 3A shows that
the estimate of the position converges quickly and remains
close to the actual position for the quasi-ergodic method,
while the info-max method rapidly flips its estimate between
two possible positions of the object. These rapid changes in
the estimate correspond to times when the variance of the
belief is increasing and the current ergodicity is minimized
(JSD is increased). Norms on the tracking error are reported
in Table I.

Fig. 3B shows a similar trial for a biphasic measurement
model, similar to the one used in [11], as it describes the
voltage reading of our active electrosensing system as it
passes by an object. The Fisher Information for this type
of measurement model has a large peak centered with the
object with two smaller peaks on either side. Here again,
the quasi-ergodic method tracks the object reliably, whereas
the info-max method maintains a belief function with high
variance of the object position, where the estimate jumps
radically.

Last, Fig. 3C show another monophasic measurement
model, only now it is asymmetric, resulting in one side of
the object to contain more Fisher Information than the other
side. The sensor position is biased towards the side with
more Fisher Information as expected for both the quasi-
ergodic case and the info-max case. While both methods
track the object reasonably well, the variance of the estimate
is unstable and generally greater for the info-max method.
Also, when the object changes direction, the estimate for the
info-max method briefly deviates from the sinusoidal pattern
of the object.

We also simulated the trials with lower noise to determine
if the SNR plays a role in how each method performs. The
results for tracking an object moving sinusoidally with a
period of 15 seconds and SNR = 45 dB is shown in Fig. 4.
Norms of the tracking error are reported in Table I.

While not shown in this article, we also simulated objects
oscillating with shorter periods, such as 10 and 5 seconds, but
keeping the amplitude of the velocity profile fixed. The quasi-
ergodic and info-max methods exhibited similar behavior for
these higher frequency tracking simulations. We also varied
the initial position of the sensor and did not see any effect
on the tracking behavior.

IV. DISCUSSION

These results indicate that movement outside of regions
of maximum expected information is often necessary to

Measurement
Model

SNR = 25 dB SNR = 45 dB
Control Method Max Mean Max Mean

Monophasic
symmetrical

Quasi-ergodic 0.71 2.20 0.14 0.46

Info-max 4.68 3.81 0.51 2.32
Biphasic

symmetrical
Quasi-ergodic 0.60 2.73 0.24 0.61

Info-max 14.5 4.48 4.69 4.82
Monophasic
asymmetrical

Quasi-ergodic 1.27 1.79 0.23 0.53
Info-max 0.88 2.80 0.19 0.34

TABLE I: Norm of the tracking error over the last 20 seconds of each trial
from Figs. 3 and 4. The error was calculated as the difference between
the actual object position and the estimate of the object position. The
estimate could either be calculated as the mean of the belief function, or
the maximum of the belief function. The values for the norm have units of
meters. The heigth of the bars are proportional to the values of the norms,
except for the entry of 14.5 which is about 3 times as large as any other
value so is.

maintain good estimates while tracking objects, especially
in high-noise environments. Also, the quasi-ergodic method
shown here is more robust to changes in the measurement
model as well as noise.

The measurement model in Fig. 3A represents a simple
sensor and a simple object. However, the symmetry of the
measurement model poses problems. First, there is no unique
maximum in the Fisher Information, as two equal peaks
are offset from the center of the object. If the info-max
method is used to track an object with this measurement
model, the PDF becomes bimodal, as a measurement from
one side of the object could indicate two possible locations
for the object. Therefore, an estimate based on the mean of
the PDF would average these two modes, but an estimate
based on the maximum of the PDF might switch rapidly
between the two modes as it does for the info-max method.
Indeed, the norm of the tracking error is relatively high for
both estimates. The quasi-ergodic method, since it receives
measurements from both sides of the object, maintains a
unimodal PDF; therefore the estimate is unambiguous and
the variance remains constant. Even for low-noise situations
as shown in Fig. 4A, the initial sweeps of the sensor allow the
quasi-ergodic method to quickly settle on a unimodal PDF,
while the bimodal PDF persists for the info-max method.
This measurement model is likely similar to that of a bat
detecting a small prey, which also distributes its ultrasonic
clicks on either side of the prey [14].

The measurement model in Fig. 3B is similar to the
model of measurements from our artificial electrosensors
as an object passes by them. This measurement model is
interesting because the highest Fisher Information is right
at the center of the object, but the actual measurements at
that location are very similar to those that are measured far
away from the object. Therefore, once the PDF focuses on
an estimate of the object, oscillations of the sensor allow
it to disambiguate between the object being centered or
being far away. The info-max method has difficulty with this
disambiguation, persisting even in low noise situations (Fig.
4B).

Both methods are able to track the asymmetric mea-
surement model shown in Fig.3C and the norm for the



tracking error using the maximum as the estimate is lower for
info-max vs. quasi-ergodic. However, the info-max method
exhibits a bimodal PDF similar to that from the symmetric
measurement model in high noise situation resulting in large
fluctuations in the variance and a poorer norm when the mean
of the belief is used as the estimate. In low noise situations,
the quasi-ergodic method and info-max method both perform
well (the norms on the tracking error are actually slightly
lower for info-max), and the trajectory of the quasi-ergodic
method appears to converge on the info-max trajectory.

An interesting result which is especially apparent in the
case of the two monophasic measurement models is the
correlation between the variance of the estimate and the
ergodicity as measured by the JSD. The JSD varies di-
rectly with the variance, indicating that times where the
ergodicity is high (low JSD), the estimate actually improves.
For the info-max control cases, there are times where the
trajectory happens to be more ergodic as a result of the
object movement, and it is at these times when the estimate
improves. The quasi-ergodic method, which simply uses the
time-discounted information map (tEID), achieves the goal of
maintaining higher and more stable ergodicity. These results
show that in many object tracking situations, even if a good
estimate is quickly obtained, it can be detrimental to try to
lock the movement of the sensor to the movement of the
object.

V. FUTURE WORK

Sensor oscillation is a common phenomenon in biological
systems, such as full body oscillations of electric fish in
tracking behaviors [15], or small amplitude oscillation in
eyes to avoid adaptation of retinal cells. Future work will
involve testing models similar to the quasi-ergodic method
of tracking with behavioral data of animals performing active
sensing. Also, we plan to implement these methods on
robotic systems to test their efficacy on real sensors sensing
real object with natural levels of noise. We plan to adapt
our methods to work for estimating more parameters with
higher dimensional movement, as well automatically tune the
time constants according to the frequency spectrum of the
estimate. Also, we would like to incorporate energy models
in which we impose a cost on movement allowing us to
optimize the trajectories of sensors to gain the maximum
amount energy (gained in the form of information, lost in
the form of movement and sensing costs).
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