
Real-Time Trajectory Generation for a Planar Crane using Discrete
Mechanics

Jarvis Schultz and Todd D. Murphey

Abstract— We present a receding horizon control scheme
that utilizes a discrete time version of a nonlinear, iterative,
projection-based optimization routine. The routine utilizes a
projection operator to ensure feasible system trajectories at
each iteration of the optimization resulting in valid control
signals even when constraints on computation time prevent
full convergence. An additional feature of this work is that the
underlying discrete time system representation is provided by a
discrete mechanics derived variational integrator as opposed to,
e.g., a Runge-Kutta based integrator. Recent work has described
a midpoint variational integrator that provides a causal, one-
step map that admits both first and second order linearizations
facilitating use in standard discrete time control and estimation
techniques such as linear quadratic regulators and extended
Kalman filters. In this work, this variational integrator is com-
bined with the aforementioned receding horizon optimization
routine to generate feasible system trajectories for real-time
control of an experimental planar crane system.

I. INTRODUCTION

In a general receding horizon control (RHC) framework,
finite horizon optimal control problems are repeatedly solved
to generate open-loop system trajectories [1]. The open-
loop controls from an optimal trajectory are then used to
command the system for a small fraction of their total time
horizon. Then a new finite horizon problem is solved to
generate the controls for the next fraction of time. There
are many advantages to this control approach including its
ability to handle state or actuator constraints, and its ability to
respond to unplanned disturbances [2]. One disadvantage to
this approach is the requirement that an optimization problem
must be solved at each timestep. For practical implementa-
tion, this traditionally has restricted RHC to systems with
slow dynamics, such as industrial processes, or systems with
special structure simplifying the optimization problem [3].
Recently, much work has focused on ways to increase the
efficiency of this optimization [4].

In this work, we present a discrete time extension to
a nonlinear, projection based optimization routine, origi-
nally described in [5], that is easily adapted to a receding
horizon control framework. This optimization technique is
particularly well-suited to a RHC framework due to the
projection operator used in the optimization. In this iterative
optimization procedure, the system state x and the inputs to
the system u are both varied when determining a descent

J. Schultz jschultz@northwestern.edu
T.D. Murphey t-murphey@northwestern
Department of Mechanical Engineering, Northwestern University,

Evanston, IL

direction. This descent direction added to the current opti-
mization iterate produces dynamically infeasible trajectories.
The projection operator then maps these infeasible trajecto-
ries to the set of feasible trajectories. So for a given RHC
optimization even if the optimization doesn’t have sufficient
computation time to converge to a prescribed tolerance, as
long as there is time to take a single step, a valid set
of controls is produced. In other constrained optimization
techniques, such as penalty function methods, this is not the
case [6], [7]. In these techniques if the optimization fails to
converge in the allotted time there is only an infeasible set
of controls to send to the system.

This optimization technique’s performance is further im-
proved by employing recent advances from the discrete me-
chanics community. In discrete mechanics, one utilizes ap-
proximations of a physical principle, e.g. Hamilton’s princi-
ple, to directly derive a discrete time map, called a variational
integrators (VI), that provides a numerical approximation to
a system’s state evolution. Traditionally, this map is arrived
at by first considering a continuous time model of the system
and then building the discrete approximation by employing
a numerical integration techniques. Much of the work in the
discrete mechanics community has focused on studying the
numerical benefits of these variational integrators. Variational
integrators provide stable long-term energy behavior, they
perfectly conserve symmetries of the system, they guarantee
satisfaction of holonomic constraints, and they can accurately
predict statistics of stochastic systems [8]–[10].

Recent work by the authors has begun to investigate how
the desirable numerical properties of variational integrators
affect the performance of standard control and estimation
routines in real-world embedded systems [11], [12]. Ad-
ditionally in [13], the authors presented a particular VI
amenable to use in standard control and estimation routines
as well as the first and second order linearizations of this VI.
Any discrete time system representation must admit these
linearizations for the optimization routine presented in this
work. The primary message of [11], [12] is that the numerical
properties of the VI leads to more reliable controllers and
estimators at low frequencies when compared to the low-
order Runge-Kutta methods typically used in estimation and
control. Thus, in a situation where one needs to run an
RHC at low frequency to provide sufficient computation
time, the integrator itself can help compensate for some of
the disadvantages inherent to the low frequency. If one can
lower the frequency and still have well-behaved estimators
and controllers, the lowered frequency can also provide a

secondary advantage to the RHC. In a discrete time optimiza-
tion the computation time required to solve the optimization
is fundamentally tied to the number of timesteps involved. In
many situations, the performance of the RHC is tied to the
time-length of the optimization window [14]. So at lower
frequencies, not only does one have greater computation
time, but for a fixed dimension of optimization problem,
the total time horizon that can be optimized is also greater
which can lead to a further increase in performance. Results
illustrating this will be shown in Section IV.

In Section II, an overview of discrete mechanics and the
particular VI presented in [13] is provided. Section III fol-
lows with a description of the optimization routine employed
in this work and its receding horizon formulation. Finally
Section IV describes an experimental planar crane embedded
system and presents results utilizing the present receding
horizon control scheme to stabilize this system to reference
trajectories generated on-the-fly.

II. DISCRETE MECHANICS

In the discrete mechanics framework, one attempts to
find a sequence {(t0, q0), (t1, q1), . . . , (tn, qn)} that approx-
imates a continuous time trajectory of a system — i.e.,
qk ≈ q(tk) where t is time, and q ∈ Q, the configuration
space of the system. In traditional variational mechanics
Hamilton’s principle is used to derive governing differential
equations for a system, and in practice, numerical integration
techniques must be used to approximate their solutions.
In discrete mechanics, approximations are instead applied
to the physical principle, and variational methods produce
governing difference equations. To derive a VI, we begin
by approximating a system’s Lagrangian using an arbitrary
quadrature rule over a timestep ∆t = tk+1 − tk

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(τ), q̇(τ))dτ. (1)

This quantity is referred to as the discrete Lagrangian. Next
the action integral is approximated with an action sum as

S(q[t0, tf]) =

∫ tf

t0

L(q(τ), q̇(τ))dτ ≈
n−1∑
k=0

Ld(qk, qk+1).

(2)
Hamilton’s principle states that the evolution of a mechanical
system is a stationary point in the action. Taking the first
variation of Eq. (2), and invoking the fundamental lemma of
the calculus of variations [15], one can derive the unforced,
unconstrained Discrete Euler-Lagrange (DEL) equations1

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (3)

In this form the DEL equations provide a discrete map
(qk−1, qk) → (qk, qk+1) that is implicitly solved using a
numerical root-finding algorithm [9]. The precise quadrature
rule chosen to define the discrete Lagrangian in Eq. (1) will
determine the order of the integrator derived and whether it

1Here we have used the slot derivative notation where Dif(·) represents
a derivative of f with respect to its ith argument.

is an explicit or an implicit method. Any quadrature rule used
to define a discrete Lagrangian produces a corresponding set
of DEL equations, and in-turn a corresponding VI. Following
[13], we use the midpoint rule to define a VI yielding the
following discrete Lagrangian

Ld (qk, qk+1) = L

(
qk + qk+1

2
,
qk+1 − qk

∆t

)
∆t. (4)

Differentiating Eq. (4) with respect to its arguments allows
computation of all terms in Eq. (3) in terms of the original
continuous Lagrangian. Using the midpoint rule to define the
discrete Lagrangian produces a second-order VI [16].

In the given form, the DEL equations provide a two-step
map from Q×Q→ Q×Q. To express Eq. (3) as a one-step
map as required by many standard control and estimation
routines, we invoke the discrete Legendre transform to define
the discrete generalized momentum as

pk = −D1Ld(qk, qk+1) = D2Ld(qk−1, qk). (5)

Eq. (3) can now be viewed as the following set of equations

pk = −D1Ld(qk, qk+1) (6a)
pk+1 = D2Ld(qk, qk+1) (6b)

To integrate this form of the DEL equations, we start with
the given pair (qk, pk), and then implicitly solve Eq. (6a) to
obtain qk+1. Equation (6b) then explicitly yields pk+1. The
DEL equations are now the one-step map T ∗Q→ T ∗Q [9].

VIs are easily extended to incorporate holonomic con-
straints and non-conservative forcing [9]. See [13] for details
on how these characteristics are incorporated into midpoint
VI just discussed.

III. DISCRETE PROJECTION-BASED OPTIMAL CONTROL

The optimization algorithm used in this work is an iterative
procedure where each iteration can be broken down into three
steps [5]. First is building a projection operator, second is
finding a descent direction, and third is performing a line
search [6] to satisfy a sufficient decrease condition. We begin
by defining T as the set of admissible trajectories for a
dynamic system. The trajectory space is embedded in an
inner product space V so that T ⊆ V . In discrete time,
T = {ξ = (x, u) ∈ V : x(k + 1) = f(x(k), u(k), k) ∀ k =
0, . . . , N−1} where N is the number of timesteps in the time
horizon of interest. We use ξ = (x, u) to denote elements of
T , and δξ = (δx, δu) to denote elements of the tangent space
TT , i.e., elements that obey linearized dynamics. Elements
of V use over-bars to indicate they do not obey the system
dynamics e.g., ξ̄ = (x̄, ū) ∈ V while elements in the tangent
space TV use the notation δξ̄ = (δx̄, δū).

Given an initial trajectory ξ0 = (x0, u0) we are trying to
find

ξ∗ = argmin
ξ∈T

J(ξ)

where J(ξ) =

N−1∑
k=0

`(x(k), u(k), k) +m(x(N)).

This is a constrained optimization problems because the
optimizer ξ∗ must satisfy the system dynamics, i.e., ξ∗ ∈ T .
This is the motivation for introducing the projection operator
P as the mapping P : ξ̄ 7→ ξ. I.e., the projection operator
takes infeasible trajectories ∈ V and maps them to nearby
feasible trajectories ∈ T . Presuming that this operator exists,
it allows the transformation from a constrained optimization
to an equivalent unconstrained optimization

ξ∗ = argmin
ξ∈T

J(ξ) ⇐⇒ ξ∗ = argmin
ξ̄∈V

J
(
P
(
ξ̄
))
.

In practice, the projection operator is found by solving an
LQR problem for the system linearized about the current
iterate to obtain a stabilizing feedback law [15], [17].

In an iterative trajectory optimization routine, given a
dynamically feasible iterate, ξ, one must find a descent
direction. In standard optimization methods, this descent
direction is typically found by minimizing a local quadratic
approximation of the cost, and the present technique is
no different. The optimization for determining a descent
direction is given by

δξ∗ = argmin
δξ∈TξiT

2Dh(ξi) ◦ δξ + q(ξ) ◦ (δξ, δξ)

where, as in standard optimizations, the bilinear operator
q(ξ) ◦ (δξ, δξ) can be chosen to provide different descent
algorithms. For example, choosing q(ξ) ◦ (δξ, δξ) = 〈δξ, δξ〉
yields the steepest descent method, choosing q(ξ)◦(δξ, δξ) =
D2J(ξi)◦(δξ, δξ) yields a quasi-Newton method, and q(ξ)◦
(δξ, δξ) = D2J(P(ξi)) ◦ (δξ, δξ) yields Newton’s method
where 〈·, ·〉 represents an inner product.

A. Receding Horizon Formulation

To utilize the optimization routine described in the pre-
vious section in a receding horizon control framework we
simply have to define the cost function over the discrete time
horizon that will be optimized at each timestep. We begin
by defining N to be the number of timesteps in the window.
Thus, at timestep k the reference trajectory for the reced-
ing optimization is given by ξ̄ref, k = (xref, k, uref, k) =(
{xref (i)}k+N

i=k , {uref (i)}k+N−1
i=k

)
∈ V over the horizon

tref, k = {tref (i) = i∆t | i = k, . . . , k + N}. The
optimization problem statement at time k is then

ξ∗k = argmin
ξk∈T

J(ξk, k)

where J(ξk) =

k+N−1∑
i=k

l(x(i), u(i), i)

+m(x(k +N)).

(7)

The running cost Lagrangian l(·) and the terminal cost m(·)
are given by

l (x(k), u(k), k) =
1

2
(x(k)− xref (k))TQ(x(k)− xref (k))+

1

2
(u(k)− uref (k))TR(u(k)− uref (k))

and

m(x(N)) =
1

2
(x(N)− xref (N))TP1(x(N)− xref (N))

where Q, R, and P1 are positive semidefinite, symmetric
weighting matrices. One important thing to note about this
framework is that for a given control frequency, fcontrol,
we allow the optimization to run for up to ∆t = 1/fcontrol
seconds. Since this computation takes a finite amount of time,
the horizon for the optimizations are actually one timestep
ahead of real-world time. This way the optimization will
have completed by the time its result is needed. This detail
is expressed in Algorithm 1. The trajectory optimization per-
formed in step 10 of Algorithm 1 is expressed algorithmically
in Algorithm 2

Algorithm 1 RHC Algorithm

1: Initialize: ukey = uprev = 0, k = 0, x(k) = x0

2: loop
3: Increment k
4: Send command for current time, ukey , to system
5: z(k)← measurement
6: x(k)← estimate of current state
7: xpred ← predict state at k + 1 using dynamics
8: ξ̄ref ← get reference trajectory for [k+1, k+1+N]
9: ξ0 ← calculate initial iterate for optimization

10: ξ∗ ← trajectory optimization
11: Store results: uprev = ukey , ukey = u∗(0)
12: end loop

Algorithm 2 Trajectory Optimization

1: Given: initial iterate ξ0, reference trajectory ξ̄ref, k, tol-
erance (ε)

2: ξi ← initial iterate ξ0
3: i← 0
4: loop
5: P ← build projection around current iterate ξi
6: δξi ← calculate descent direction
7: if |δξi| < ε or ELAPSED TIME > ∆t then
8: return ξi
9: end if

10: γi ← line search to satisfy sufficient decrease
11: ξi ← step and project P(ξi + γiδξi)
12: end loop

IV. RESULTS

A. Planar Crane System

The system we are interested in controlling is a planar
crane as shown in Fig. 1. We treat the horizontal and
vertical position of the mass (x, y) as dynamic configuration
variables and the horizontal position of the robot and the
length of the string (xr, r) as kinematic configuration vari-
ables. These kinematic configurations require the assumption
that the actuators are powerful relative to the inertias they

x

y
(x,y)

(xr,h)

h

Winch
System

Magnetic
Wheel

String of
length r

Mass, m

Gravity, g

Fig. 1: Schematic of planar crane system including relevant
geometric parameters.

are controlling, and that their dynamics can effectively be
neglected. This results in a dynamic model that uses con-
figurations of the kinematic variables as the inputs instead
of generalized forces. The robotic system used for this work
was designed with this modeling paradigm in mind, and it is
capable of accurately tracking the kinematic trajectories we
are interested in. More about the modeling of this system
can be read in [11], [12], [18], [19].

The robotic system consists of a single magnetically-
suspended vehicle equipped with a winch system for con-
trolling the string length. A Microsoft Kinect® is used
for measuring the dynamic and kinematic configuration
variables, and the Robot Operating System (ROS) is used
for measurement processing, control calculations, and data
recording [20], [21]. All code for controlling this system is
available at https://github.com/jarvisschultz/
receding_planar_sys.

B. Feasible Computation Time

In Section I it was mentioned that the performance of an
RHC was often governed by the total amount of time that
could be considered in the optimization and still converge
given one timestep of computation time. In other words, for
a fixed-complexity optimization containing N timesteps, at
lower frequencies the amount of actual time contained in the
window is greater, and the RHC performance may actually
increase. This idea is illustrated in Fig. 2 which shows
simulated results of the RHC algorithm at both 10 Hz and
30 Hz. The blue curves show normalized cost as a function of
horizon length. Each point on the plots in Fig. 2 is generated
by first simulating the system using the RHC algorithm with
the appropriate N for the specified horizon length for a
total time horizon of tper. This produces a complete system
trajectory ξ = (x, u) =

(
{x(i)}Mi=0, {u(i)}M−1

i=0

)
where

M =
tper
∆t . Each step of the RHC is allowed to fully converge

to a prescribed tolerance regardless of computation time, but
the computation time to achieve convergence for each opti-
mization is stored, and then when the trajectory is complete,
the mean and standard deviation of the computation times
is calculated to produce the computation time per step and

0.0

∆t

0.1
Com

putation
Tim

e
PerStep

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Horizon Length [sec.]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
or
m
al
ize

d
Co

st

Computationally
Feasible

Normalized Cost
Mean Computation Time

(a) 10 Hz

0.0

∆t

0.1

Com
putation

Tim
e
PerStep

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Horizon Length [sec.]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
or
m
al
ize

d
Co

st

Computationally
Feasible

Normalized Cost
Mean Computation Time

(b) 30 Hz

Fig. 2: RHC performance and computation for an arbitrary
reference trajectory as a function of receding horizon length.

the shaded error bounds in the figures. Once the trajectory
is complete, the normalized cost is computed using

Jnorm(ξ) =
1

M

M−1∑
i=0

l(x(i), u(i), i) +m(x(M)) (8)

where l(·) and m(·) are unchanged from their definitions in
Section III-A and Q, R, and P1 are the same values used in
each step of the RHC. All trajectories and their correspond-
ing normalized costs shown in Fig. 2 were calculated using
the same weights.

There are several important things to note about Fig. 2.
For both the 10 Hz and 30 Hz trajectories, the normalized
cost drops rapidly as the horizon length is increased past a
threshold of ~0.6 seconds. Then beyond ~1.0 seconds, further
horizon increases are met with diminishing performance
gains at the expense of much higher computational costs.
This is unsurprising as it has been shown in [22] that for
discrete systems, there exists some finite horizon length
for which a RHC considering a longer horizon will be
stabilizing. This suggests that for a given set of control
weights, and a given reference trajectory there is an optimal
horizon length that balances performance and computational

https://github.com/jarvisschultz/receding_planar_sys
https://github.com/jarvisschultz/receding_planar_sys

Fig. 3: An image of a user controlling the interactive,
receding horizon controlled suspended mass system.

cost. On both plots in Fig. 2, the timestep is indicated with a
gray horizontal dashed line. For a given horizon length if the
computation time per step is greater than the timestep, then
there is not sufficient time to complete the optimizations, and
that horizon length is not feasible to implement on the planar
crane embedded system. This is why only the left half of the
30 Hz plot is marked as Computationally Feasible. In the
other region, which is filled lightly in gray, the mean plus one
standard deviation of the per-step computation time is greater
than the timestep, and thus, horizon lengths in this region
are infeasible to implement. Note that the 10 Hz controller
achieves very similar performance to the 30 Hz controller
with a much higher safety factor on the computational time
constraints. In the real embedded system, total computational
burden is increased through the processing of measurement
data and the evaluation of estimators. Moreover, in the
real system sensor noise is introduced, unreliable wireless
communication links are relied on, and actuator limits exist.
These factors generally produce optimizations that require
more steps to converge, and each step to take slightly longer.
As a result the safety factor is important. Figure 2 indicates
that at 30 Hz it should be possible to achieve reliable
convergence as long as the horizon length is shorter than
~0.7 seconds (N ≈ 21). However experiments with the
embedded system reveal that the limit on horizon length is
closer to 0.5 seconds. Additionally, the value of this threshold
is sensitive to the particular choice of cost function weights.

It is evident in Fig. 2 that with a horizon length of 0.5
seconds the performance at both 30 Hz and 10 Hz is lower
than with a window length of 1.0 seconds, but the longer
window length is only computationally feasible at 10 Hz.
This suggests one reason why one might expect higher
performance from the 10 Hz RHC. The 10 Hz RHC not
only has a higher safety factor on computation limits, but
the standard deviation of the computation time is lower, this
likely results in increased robustness to chosen parameters.

Actual Reference

t = 12 sec.

t = 0 sec.

Fig. 4: Still image of the interactive receding horizon ex-
perimental system in motion with suspended mass reference
(white dashed) and measured (red dotted) trajectory overlays.

C. Real-Time Reference Generation

To demonstrate the real-time nature of this control
scheme, an interface was developed that allows a user
to specify the desired trajectory of the suspended mass
using a computer mouse. As this reference is gener-
ated, the RHC algorithm is used to generate controls
for the robot. As the RHC requires the reference tra-
jectory to be defined for a future window length w =
(N)(∆t) = (steps into the future)(controller period), the
embedded system operates with a w-second time delay from
the reference being generated by the user. An image of a
user controlling the system can be seen in Fig. 3.

Using this interface and control strategy high reliability
has been demonstrated in both simulation and experiment.
A single experimental trial illustrating the experimental per-
formance can be seen in Figs. 4 and 5. Note that the overlay
shown in Fig. 4 is the same data as Fig. 5, but it is cut off
at 12 seconds to keep the image from being too cluttered.

V. CONCLUSIONS

The optimization routine presented herein is a discrete
time extension to the continuous time optimization originally
presented in [5]. This algorithm is also amenable to use
in a receding horizon control scheme. For receding horizon
control, one of the biggest features of the algorithm is the
use of a projection operator that provides feasible system
trajectories even if the optimization cannot fully converge.
Inspired by our recent work involving estimation and control
using variational integrators [11]–[13], our implementation
of this algorithm employed a variational integrator as its
underlying discrete time system representation. The low-
frequency performance of estimators and controllers employ-
ing this variational integrator representation combined lead
us to hypothesize that the receding control paradigm may
actually achieve better performance at lower frequencies. In

0 5 10 15 20 25 30 35
−0.8

−0.4

0.0

0.4
x
[m

et
er
s]

Experiment
Reference

0 5 10 15 20 25 30 35

Time [seconds]

−0.4

−0.2

0.0

0.2

y
[m

et
er
s]

Fig. 5: Example experimental time evolution of the x-
position (top) and y-position (bottom) of the suspended mass
controlled by the interactive receding horizon controller.

Section IV-B we presented simulations that validated this
claim.

Using this receding horizon control scheme with the
variational integrator, we successfully controlled a planar
crane embedded system in experiment. The experiment has
run successfully hundreds of times using both interactively-
generated and pre-defined reference trajectories, and has
demonstrated remarkably reliable performance. Presently,
very little work has been done on investigating any sort of
stability guarantees, but the experimental reliability provides
some evidence that these investigations would be worthwhile.
Our previous work leads us to believe that the numerical
properties of the variational integrator is having a significant
impact on the performance of this control scheme, especially
as the control frequency is lowered. However, at this point, it
is not well understood exactly which numerical properties are
the most valuable to this control scheme. Investigating the
effects of particular integrators on the optimization routine
itself would be another valuable area for future investiga-
tions.

REFERENCES

[1] J. Mattingley, Y. Wang, and S. Boyd, “Receding horizon control,”
IEEE Control Systems, vol. 31, no. 3, pp. 52–65, June 2011.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, June 2000.

[3] J. Mattingley, Y. Wang, and S. Boyd, “Code generation for receding
horizon control,” in 2010 IEEE Int. Symposium on Computer-Aided
Control System Design (CACSD), Sept. 2010, pp. 985–992.

[4] T. Ohtsuka, “A continuation/GMRES method for fast computation of
nonlinear receding horizon control,” Automatica, vol. 40, no. 4, pp.
563–574, Apr. 2004.

[5] J. Hauser, “A projection operator approach to the optimization of
trajectory functionals,” in IFAC World Congress, Barcelona, Spain,
July 2002.

[6] C. T. Kelley, Iterative Methods for Optimization. Philadelphia, PA:
Society for Industrial and Applied Mathematics (SIAM), 1999.

[7] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. New
York: Springer, Aug. 2006.

[8] N. Bou-Rabee and H. Owhadi, “Stochastic variational integrators,”
IMA J. Numerical Anal., vol. 48, no. 2, pp. 421–443, Apr. 2009.

[9] J. E. Marsen and M. West, “Discrete mechanics and variational
integrators,” Acta Numerica, vol. 10, pp. 357–514, 2001.

[10] O. Junge, J. E. Marsden, and S. Ober-Blöbaum, “Discrete mechanics
and optimal control,” in In Proc. of the 16th IFAC World Congress,
July 2005.

[11] J. Schultz and T. D. Murphey, “Embedded control synthesis using
one-step methods in discrete mechanics,” in American Controls Conf.
(ACC), Washington, D.C., 2013, pp. 5393–5298.

[12] ——, “Extending filter performance through structured integration,”
in American Controls Conf. (ACC), Portland, OR, June 2014.

[13] E. Johnson, J. Schultz, and T. Murphey, “Structured lineariation of
discrete mechanical systems for analysis and optimal control,” IEEE
Trans. on Automation Sci. and Eng., to be published.

[14] P. Serkies and K. Szabat, “Application of the MPC to the position
control of the two-mass drive system,” IEEE Trans. on Industrial
Electronics, vol. 60, no. 9, pp. 3679–3688, Sept. 2013.

[15] D. E. Kirk, Optimal Control Theory: An Introduction. Dover
Publications, Apr. 2004.

[16] E. Johnson, “Trajectory optimization and regulation for constrained
discrete mechanical systems,” Ph.D. dissertation, Northwestern Uni-
versity, 2012.

[17] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear
Quadratic Methods. Dover Publications, Feb. 2007.

[18] E. R. Johnson and T. D. Murphey, “Dynamic modeling and motion
planning for marionettes: Rigid bodies articulated by massless strings,”
in IEEE Int. Conf. on Robotics and Automation (ICRA), Roma, Italy,
Apr. 2007, pp. 330–335.

[19] J. Schultz and T. Murphey, “Trajectory generation for underactuated
control of a suspended mass,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), May 2012, pp. 123–129.

[20] (2011) Robot Operating System. Willow Garage. [Online]. Available:
http://www.ros.org

[21] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in IEEE Int. Conf. on Robotics and Automation
(ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009.

[22] J. A. Primbs and V. Nevistić, “Feasibility and stability of constrained
finite receding horizon control,” Automatica, vol. 36, no. 7, pp. 965–
971, July 2000.

http://www.ros.org

