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Abstract— This paper introduces a new control-on-request
(COR) method that improves the capability of existing shared
control interfaces. These COR enhanced interfaces allow users
to request on-demand bursts of assistive computer control
authority when manual / shared control tasks become too
challenging. To enable the approach, we take advantage of the
short duration of the desired control responses to derive an
algebraic solution for the optimal switching control for differ-
entiable nonlinear systems. These solutions minimize control
authority while generating immediate and optimal degrees of
improvement in system trajectories. The technique avoids the
iterative constrained optimization required to derive traditional
finite horizon optimal switching control solutions for nonlinear
system and allows optimal control responses on time-frames
otherwise infeasible. An interactive example illustrates how
users can use COR interfaces to request real-time bursts of
control assistance to help stabilize an unstable system.

I. INTRODUCTION

This paper focuses on a specific form of control that
will be referred to as burst control. These control laws
are defined as a subclass of switching control laws. They
consist of a continuous nominal control mode that switches to
alternate, continuous control modes lasting for short but finite
durations (see Fig. 1). As an example, consider a pinball table
where, nominally, the ball moves without control. By pushing
buttons on either side of the table, a user actuates toggles that
apply short duration controls of varying amplitude when they
contact the ball.1In this case, users generate burst control
signals to aim and influence the ball’s trajectory.

A number of important systems directly apply burst con-
trol. For example, spacecraft and satellites use what can
be modeled as pneumatic burst control for stabilization and
orbital correction. This paper focuses on the utility of burst
controls in shared control settings. Where traditional shared
control strategies work in conjunction with or filter user
input commands (see [8], [10], [14], [25], [31]), burst control
strategies can provide for a different form of shared control.
Potentially working along with existing shared controllers,
burst control signals can be applied to implement quick
changes in the trajectory on request, assisting with control
goals as user / shared control tasks become too challenging
to maintain. Due to their short duration, the key advantage
of these signals is that they allow computers to take control
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1For the purposes of this example, assume the toggles are body fixed to
the ball such that users can apply control (strike the ball) at any time.

authority and implement changes before users notice the loss
in control. The challenge in implementing these on-demand,
quick-assist controllers is that optimal control responses for
nonlinear systems require constrained iterative optimization
and so are infeasible to compute on-the-fly.

To address this concern, this paper introduces a method
that allows for rapid generation of optimal burst control laws.
First, the process computes the control action2 to apply at any
time to which a system’s tracking objective is optimally sen-
sitive. As Section II-A proves, this action is guaranteed to ex-
ist under standard assumptions. Planning for infinitesimal ac-
tivation durations, we show optimal actions can be computed
extremely rapidly from a simple algebraic expression of state
and co-state (no iterative optimization). Next, Section II-B
provides a simple line search that is guaranteed to find a
finite application duration for any selected activation time,
τm, that will provide a desired improvement in trajectory.
By quickly computing optimal actions and resolving their
finite application durations, the approach calculates assistive
burst controls on-demand. Through interactive simulation,
we demonstrate how this control-on-request (COR) paradigm
can be implemented using simple interface components (e.g.
buttons, toggles, or switches), providing users the ability to
quickly request bursts of computer control assistance.

To illustrate how COR interfaces can complement tradi-
tional shared control systems, consider the scenario of a
fighter pilot flying a jet. Modern pilots share control with
sophisticated systems that provide low level commands to
stabilize flight (see [20], [26], [27]). These control systems
also serve as safety mechanisms, protecting against maneu-
vers that push the jet beyond recovery. However, to maneuver
aggressively pilots require significant control authority and
are still heavily relied on to actively stabilize flight. In these
circumstances, if a pilot were to begin to lose control over
a plane (e.g. entering a flat spin) a COR interface could
prove extremely useful. While an optimal control response
would likely take too long to compute, a pilot could activate
the COR interface to momentarily increase computer control
authority. Through a short burst of control, the computer may
be able to improve the current trajectory enough to stabilize
the plane or provide more time to respond.

Another use case for a COR controller is in rehabilitation.
In this setting, patients recovering from stroke increasingly
use powered assistive devices (e.g. Locomat [19], Ekso [33]
and ALEX exoskeletons [29], etc.) under the supervision of

2In this paper a control action is a control vector with constant values
applied for a (possibly infinitesimal) duration of time.
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Fig. 1: An example burst control law. Continuous nominal
control mode u(t) = 0 (blue curve) switches at t = 1.22s
and t = 1.38s to alternate control modes (red) that are
applied for short time horizons (0.04s).

physical therapists. These devices provide specified degrees
of assistance by applying torques to knee and hip joints
during treadmill-based gait training. However, research is
focused on designing these devices to provide minimal as-
sistance, encouraging patients to develop muscle and control
systems while guiding motion and avoiding falls. Shared con-
trollers vary the degree of assistance based on patient skill,
but falling is still an issue and a safety harness is essential.
In the scenario described, a monitoring physical therapist
equipped with a COR interface could activate a response as
a patient begins to fall. Using the techniques in this paper, an
optimal burst control response could feasibly be computed
quickly enough to stabilize the patient sufficiently for them
to regain control and balance.

Following this Introduction, Section II derives a tech-
nique that takes advantage of the structure of burst control
signals to compute an algebraic optimal control solution
for systems with nontrivial dynamics. The methods produce
control solutions that can be computed efficiently enough
to enable the type of COR interfaces mentioned previously.
To demonstrate the approach, Section III discusses a simple
example application where a user is provided a 1-button
COR interface to interactively request computer assistance to
stabilize an unstable system. Section IV presents a discussion
of this application with concluding remarks in Section V.

II. BURST CONTROL SYNTHESIS

This section presents a method to compute burst control
laws that attain specified levels of improvement in trajectory
tracking cost functionals. Section II-A leverages the short
intended switching duration of burst control signals to avoid
dynamic constraints and iterative optimization in solving for
a schedule of infinitesimal optimal actions to apply at any
time. These infinitesimal actions specify the magnitude and
direction of the burst control. The following Section II-B
provides a line search process that returns a finite duration to
apply each action to produce a burst control law that achieves
a desired reduction in tracking cost over a specified horizon.

A. Calculating a Schedule of Optimal Infinitesimal Actions

The type of systems addressed in this paper are assumed
to follow continuous trajectories, (x(t), u(t)), such that

ẋ(t) = f(x(t), u(t)) . (1)

The dynamics vector, f(x(t), u(t)), can be nonlinear with
respect to the state vector, x(t) ∈ Rn, but is assumed to be
linear (or has been linearized) with respect to control vector,
u(t) ∈ Rm. With these assumptions, (1) can be written in
control-affine form

f(x(t), u(t)) = g(x(t)) + h(x(t))u(t) . (2)

The goal of the proposed COR controllers is to predict
the trajectory of the system and compute an optimal burst
of control that produces a specified level of improvement
in this trajectory when activated. To accomplish this, a cost
functional is used to compare the performance of different
trajectories. The state tracking cost functional,3

J1 =

∫ tf

t0

l1(x(t), u(t)) dt+m(x(tf )) (3)

=
1

2

∫ tf

t0

‖x(t)− xd(t)‖2Q dt+
1

2
‖x(tf )− xd(tf )‖2P1

,

serves this purpose. For control derivations, J1 need only
obey general form (3). However, the quadratic form is
applied in the implementation described in this paper. For
this case, Q = QT ≥ 0 defines the metric on incremental
state tracking error and P1 = PT1 ≥ 0 defines the metric on
state error at terminal time tf . Initial time, t0, is assumed to
be the activation time of the COR interface to select controls
that improve the future system trajectory.

Assume the system can be in one of two dynamic modes
at a given time that differ only in control. Under nominal
conditions, the system applies control law, u(t), and dy-
namics, f1 = f(x(t), u(t)), result. Upon activating the COR
interface, the dynamics switch from mode f1 to an alternate
dynamic mode f2 = f(x(t), u2(t)) for a short duration, λ+,
before switching back. Consider the extreme case where the
system evolves according to f1, and u2(t) is applied for an
infinitesimal duration before switching back to the nominal
control law, u(t). In this case the mode insertion gradient,

dJ1

dλ+
= ρ(t)T [f2 − f1] , (4)

measures the resulting change in cost functional (3) (see [11],
[12], [28]). The term, ρ(t) ∈ Rn, is the adjoint (co-state)
variable calculated from the current system trajectory based
on the differential equation,

ρ̇(t) = −Dxl1(x(t), u(t))T −Dxf
T
1 ρ(t) , (5)

such that at the final time ρ(tf ) = Dxm(x(tf ))T . The
control duration, λ+, is evaluated infinitesimally, as λ+ → 0.

Through the course of the trajectory, any time, τm, the
mode insertion gradient is negative, the state tracking cost

3The notation, ‖·‖2M , indicates a norm on the argument where matrix,
M, provides the metric (i.e. ‖x(t)‖2Q = x(t)T Qx(t) ).



functional can be reduced if u2(τm) is activated for some
duration at that time. The magnitude of the mode inser-
tion gradient provides a first-order model of the change in
trajectory cost that would result relative to the duration of
application of this control.

To produce a desired degree of improvement in a system
trajectory, each applied burst of control authority needs to
improve cost (3) by a specified amount. In other words,
control actions, u ∗2 (τm), need to be computed that drive
the mode insertion gradient to a desired negative value,
αd ∈ R−. However, there is generally a cost associated
with the application of control authority. As such, a trade-
off must be made in tracking the desired value of the mode
insertion gradient, αd, relative to control effort. Following a
trajectory optimization approach, these competing goals can
be encoded into the cost functional,

J2 =

∫ tf

t0

l2(x(t), u(t), u2(t), ρ(t)) dt

=
1

2

∫ tf

t0

[
dJ1

dλ+
− αd]2 + ‖u2(t)‖2R dt

=
1

2

∫ tf

t0

[ρ(t)T (f2 − f1)− αd]2 + ‖u2(t)‖2R dt . (6)

Matrix R allows the designer to encode the cost of control
relative to tracking αd. The continuous schedule4 of control
actions, u∗2(t), that minimizes (6), optimizes this trade-off.

The remainder of the paper assumes quadratic norms in
(6) with R = RT > 0. Proved in [4], quadratic functionals
and the space of positive semi-definite / definite cones is
convex. Because convexity is preserved for non-negative
weighted sums and integration, this choice of R > 0
provides convexity of (6). Additionally, the nominal control
is often (indicated by case) assumed to be null, u(t) = 0,
over the control planning horizon. This choice allows easier
interpretation of u ∗2 (τm) as the optimal action at τm relative
to doing nothing (allowing the system to drift for a horizon
into the future).

Theorem 1: Define Λ , h(x(t))T ρ(t) ρ(t)T h(x(t)). The
schedule of controls, u2(t), that optimizes (6) based on
dynamics (2) and state tracking cost functional (3) is given
by the algebraic expression,

u∗2(t) = (Λ +RT )−1 [Λu(t) + h(x(t))T ρ(t)αd] . (7)

Proof: Any time t ∈ [t0, tf ], action u2(t) is assumed
to be applied infinitesimally and so does not affect state
trajectory (i.e. x = x(u(t), t)). Optimization of convex
cost (6) with respect to u2(t)∀t ∈ [t0, tf ] is therefore
unconstrained by (2) and it is necessary and sufficient for
(global) optimality to find a curve u2(t) that sets its first
variation to 0. Using the Gâteaux derivative and the definition

4At any specified application time, τm, of the COR interface, u∗2(τm)
represents the optimal action that balances control authority and drives the
mode insertion gradient to αd if activated around that time. Thus, u∗2(t) is
a schedule of optimal actions that can be switched to from nominal control,
u(t), to produce a desired change in mode insertion gradient at τm.

of the functional derivative,

δJ2 =

∫ tf

t0

δJ2

δu2(t)
δu2(t) dt

=
d

dε

∫ tf

t0

l2(x(t), u(t), u2 + ε η(t), ρ(t)) dt|ε=0

=

∫ tf

t0

d

dε
l2(x(t), u(t), u2 + ε η(t), ρ(t))|ε=0 dt

=

∫ tf

t0

∂l2(x(t), u(t), u2(t), ρ(t))

∂u2(t)
η(t) dt

=0 , (8)

where ε is a scalar and ε η(t) = δu2(t).
At the optimal value of u2(t) (i.e. u2(t) = u∗2(t)), the

final equivalence in (8) must hold ∀ η(t). By the Fundamen-
tal Lemma of Variational Calculus (see [24]), this implies
∂l2(·)
∂u2(t) = 0 at the optimizer. The resulting expression,

∂l2(·)
∂u2(t)

= (ρ(t)T h(x(t)) [u2(t)− u(t)]− αd)

ρ(t)T h(x(t)) + u2(t)T R

= h(x(t))T ρ(t) (ρ(t)T h(x(t))

[u2(t)− u(t)] − αd) +RTu2(t)

= [h(x(t))T ρ(t) ρ(t)T h(x(t))]u2(t)

+RTu2(t)− [h(x(t))T ρ(t) ρ(t)T h(x(t))]

u(t)− h(x(t))T ρ(t)αd = 0 , (9)

can therefore be solved in terms of u2(t) to find the value,
u∗2(t), that minimizes (6). Algebraic manipulation confirms
this optimal value is given by (7).

Though the principles applied to derive the schedule
of infinitesimal optimal control actions (7) are reasonable,
they are also non-traditional. To provide intuition regarding
the properties of these solutions, the following proposition
proves that the optimization posed to derive these controls is
equivalent to a well-studied class of Tikhonov regularization
problems (see [7], [9], [13], [16]).

Proposition 1: Assume u, u2, ρ, h ∈ H where H is
an infinite dimensional reproducing kernel Hilbert function
space (RKHS).5 With appropriate change of variables, mini-
mization of (6) obeys the structure of generalized continuous-
time linear Tikhonov regularization problem 6

min
z
‖Γz − b‖2 + κ2‖L(z − z0)‖2 , (10)

and (7) obeys the structure of associated solution

z ∗ = (ΓTΓ + κ2LTL)−1(ΓT b+ κ2LTLz0) . (11)

Above, Γ and L are bounded linear operators on H, vectors
z and z0 ∈ H, and b and κ ∈ R. See [7], [9], [13], and [16]
for more detail on (10) and (11).

5Practically, this is not a very stringent requirement. Most spaces of
interest are RKHS. Refer to [7] for more detail.

6For equivalence, ‖·‖ refers to the L2 norm and H is additionally
assumed to be an L2 space.



Proof: Using the control affine form of dynamics f1

and f2, the final equality in (6) can be stated as

J2 =
1

2

∫ tf

t0

[ρ(t)Th(x(t))(u2(t)−u(t))−αd]2+‖u2(t)‖2R dt .

Performing change in variables z(t) = u2(t)−u(t), z0(t) =
−u(t), Γ = ρ(t)Th(x(t)), and b = αd yields

J2 =
1

2

∫ tf

t0

[Γz(t)− b]2 dt+
1

2

∫ tf

t0

‖z(t)− z0(t)‖2R dt .

Because R = RT > 0, it can be Cholesky factorized as R =
MTM . By pulling out a scaling factor κ2, the factorization
can be rewritten R = MTM = κ2(LTL). Applying this
factorization and posing the expression in terms of L2 norms
results in

J2 =
1

2
‖Γz(t)− b‖2 +

1

2
‖κL(z(t)− z0(t))‖2 .

Minimization of (6) is thus equivalent to (10) up to a constant
factor of 1

2 that can be dropped as it does not affect z ∗.
Additionally, equivalence of solutions (7) and (11) can be

proved directly. With the previous change of variables, u ∗2 (t)
can be written as z ∗(t)− z0(t) and (7) as

z ∗(t)− z0(t) = (ΓTΓ + κ2LTL)−1(−ΓTΓz0(t) + ΓT b) .

Algebraic manipulation verifies this is equal to Tikhonov
regularization solution (11).

As the following corollary indicates, because minimization
of (6) can be posed as a Tikhonov regularization problem,
solutions (7) inherit useful properties that regularization
solutions obey.

Corollary 1: With the assumptions stated in Proposition
1, solutions (7) for minimization of (6) exist and are unique.

Proof: The proof follows from Proposition 1, which
shows the minimization can be formulated as a Tikhonov
regularization problem with convex L2 error norm, ‖Γz−b‖.
These problems are guaranteed to have solutions that exist
and are unique. A proof is provided in [9].

Globally, optimal control actions (7) inherit properties of
Tikhonov regularization solutions. However, the following
corollary shows that near equilibrium points, solutions (7)
simplify to linear state feedback laws.

Corollary 2: Assume system (2) contains equilibrium
point x = 0, the state and co-state are continuous, and track-
ing cost (3) is quadratic7. There exists a neighborhood around
the equilibrium and nonzero time horizon for which optimal
actions (7) are equivalent to linear feedback regulators.

Proof: At final time, ρ(tf ) = P1x(tf ). Due to conti-
nuity, this linear relationship between the state and co-state
must exist for a nonzero neighborhood around tf such that

ρ(t) = P (t)x(t) . (12)

7A quadratic cost is assumed so that resulting equations emphasize the
local similarity between burst control and LQR [3].

Applying this relationship, (7) can formulated as

u ∗2 (t) = (h(x(t))TP (t)x(t)x(t)TP (t)Th(x(t)) +RT )−1

[h(x(t))TP (t)x(t)x(t)TP (t)Th(x(t))u(t)

+ h(x(t))TP (t)x(t)αd] .

This expression contains terms quadratic in x(t). In the
neighborhood of the equilibrium these quadratic terms go
to zero faster than the linear terms, and controls converge to

u ∗2 (t) = R−Th(x(t))T P (t)x(t)αd . (13)

By continuity, in a sufficiently small neighborhood of the
equilibrium the system dynamics can be approximated as
LTV system, ẋ(t) = A(t)x(t) +B(t)u(t), (where A(t) and
B(t) are linearizations about the equilibrium). Applying this
assumption and differentiating (12) produces

ρ̇(t) = Ṗ (t)x(t) + P (t) ẋ(t)

= Ṗ (t)x(t) + P (t) (A(t)x(t) +B(t)u(t)) .

Inserting relation (5) yields

−Dxl1(·)T −A(t)TP (t)x(t) = Ṗ (t)x(t) + P (t)

(A(t)x(t) +B(t)u(t)) ,

which can be re-arranged such that

0 = (Q+Ṗ (t)+A(t)TP (t)+P (t)A(t))x(t)+P (t)B(t)u(t).

When nominal control u(t) = 0, this reduces to

0 = Q+A(t)TP (t) + P (t)A(t) + Ṗ (t). (14)

Note the similarity to a Lyapunov equation. As mentioned,
this relationship must exist for some nonzero neighborhood
of tf . Therefore, by continuity of ρ(t), there must exist
a finite time horizon and neighborhood of the equilibrium
where (7) simplifies to linear feedback regulator (13) and
P (t) can be computed from (14) subject to P (tf ) = P1.

As in model predictive control (MPC) from [1], [2], [6],
[15], it is possible to compute open-loop optimal actions
(in this case u∗2(τm)) to provide finite-horizon tracking im-
provements and to sequence these in closed-loop. This would
be equivalent to continuously activating a COR interface.
In such implementations, one could specify αd to provide
local stability based on (13). Alternatively, if (3) is quadratic
and nominal control u(t) modeled as applying consecutively
computed optimal actions (13) near equilibrium, (14) be-
comes a Riccati differential equation for the closed-loop
system (see [17]) and actions (13) become finite horizon
LQR controls [3]. In this case one can prove the existence of
a Lyapunov function and guarantee stability using methods
from MPC and LQR theory to drive Ṗ (t) → 0 ([1], [15],
[17], [18], [21], [23]). While beyond this scope, we have
begun to explore close-loop implementation and stability to
leverage the efficient synthesis methods presented.



B. Computing the Control Duration

Theorem 1 provides a means to compute a schedule
of open-loop optimal control actions, u ∗2 (t). When imple-
mented infinitesimally around any time, τm, u ∗2 (τm) is the
needle variation (see [32]) in u(τm) that optimizes control
authority in driving the mode insertion gradient, dJ1

dλ+ , to αd
at that time. This value of the mode insertion gradient reflects
the achievable sensitivity of cost (3) to application of u ∗2 (τm)
for infinitesimal duration. However, by continuity of the
adjoint and mode insertion gradient as λ+ → 0, there exists
an open, non-zero neighborhood, V , around λ+ → 0 for
which the mode insertion gradient models this sensitivity to
first order (see [5], [12]). Hence the mode insertion gradient
can be used to model the change in cost achievable by
application of u ∗2 (τm) over a finite duration λ+ ∈ V as

∆J1 ≈
dJ1

dλ+

∣∣∣∣
λ+→0

λ+. (15)

As u ∗2 (τm) regulates dJ1
dλ+ ≈ αd, (15) becomes ∆J1 ≈

αdλ
+. Thus the choice of λ+ and αd allow the control

designer to specify the desired degree of change in (3)
provided by each u ∗2 (τm). Also note that for a given dJ1

dλ+ and
any choice of λ+, (15) can be applied to test if λ+ ∈ V or
that it at least provides a ∆J1 that is known to be achievable
for λ+ ∈ V .

Though the neighborhood where (15) provides a reason-
able approximation varies depending on system, in practice
it is fairly straightforward to select a λ+ ∈ V . The easiest
approach is to select a single conservative estimate for λ+.
This is analogous to choosing a small, fixed time step in
finite differencing or Euler integration. However, to avoid a-
priori selection of a λ+ ∈ V and unnecessarily conservative
step sizes, we use a line search with a descent condition to
select a λ+ ∈ V or one that provides a minimum change
in cost (3). Described in [30], the line search iteratively
reduces the duration from a default value. By continuity,
the process is guaranteed to find a duration that produces a
change in cost within tolerance of that predicted from (15).
In implementation, we use an iteration limit to bound the
algorithm in time. Note that failing to find an acceptable λ+

within the iteration limit is not usually a concern because (7)
provides a schedule of control values so a duration can be
sought for any nearby time if the system is overly sensitive
at the current time.

Finally, because the pair (αd, λ
+) determines the change

in cost that a control can provide, it is worth noting that
a sufficient decrease condition similar to the one proposed
in [5] can be applied during the line search. In addition to
the methods proposed in Section II-A, stability in closed-
loop, MPC style implementation can be provided by defining
this condition to guarantee each control provides a sufficient
reduction in cost to avoid convergence to suboptimal states.

III. COR INTERFACE EXAMPLE: INTERACTIVE
STABILIZATION OF AN UNSTABLE SYSTEM

This section presents a simple, interactive simulation cre-
ated to demonstrate a COR interface in a real-time control

Algorithm 1 Burst Control Synthesis

Initialize αd, minimum change in cost ∆Jmin from (15),
current time tcurr, default control duration ∆tinit, scale
factor β ∈ (0, 1), time horizon T , and the max line search
iterations imax.
if COR interface activated then

(t0, tf ) = (tcurr, tcurr + T )
Simulate (x(t), ρ(t)) for t ∈ [t0, tf ] from f1

Compute initial cost J1,init

Specify αd
Compute u∗2(t) from (x(t), ρ(t)) using Theorem 1
τm = ∆tinit

2 + t0
Initialize i = 0, J1,new =∞
while J1,new − J1,init > ∆Jmin and i ≤ imax do

λ+ = β i ×∆tinit
(τ0, τf ) = (τm − λ+

2 , τm + λ+

2 )
Re-simulate x(t) applying f2 for t ∈ [τ0, τf ]
Compute new cost J1,new

i = i+ 1
end while

end if
return (u∗2(τm), τ0, τf )

Algorithm 1: The algorithm above includes an optional line
search phase which re-simulates the state x(t) and trajectory
cost until an appropriate duration for application of u∗2(τm)
can be found. This is only required if the approximation
provided by the mode insertion gradient is not accurate over
the default control interval chosen.

scenario. The goal of the demonstration is for users to
stabilize an unstable system using nothing but a single button
COR interface to request bursts of computer assistance. To
highlight the impact of the interface, the nominal control
is u(t) = 0, so that the system follows an unstable spiral
trajectory, increasing in speed as it moves away from the
origin. The COR interface is designed to help stabilize the
system from any state by driving it toward the origin.

For the system discussed, the state, x(t), consists of 2D
position components, (x1(t), x2(t)), and the control contains
velocity inputs, (ẋ1(t), ẋ2(t)). The evolution is described by
unstable dynamics, f(x(t), u(t)) = Ax(t) +B u(t), with

A =

(
0.1 0.1
−10 0.1

)
and B =

(
1 0
0 1

)
. (16)

The goal for the COR interface is encoded by setting the
desired trajectory, xd(t), from (3) to the origin, with Q = I .

The COR interface is designed to apply an optimal action
from the schedule, u∗2(t), from Theorem 1 for a short
duration such that a desired improvement in trajectory cost
functional (3) results. To accomplish this, αd is chosen so
that the mode insertion gradient (sensitivity of the trajectory
cost functional to activation of u∗2(τm) ∀τm) is negative. To
select control laws that produce significant reductions in cost,
αd is set to −1000. The R matrix from (6) that weights the



Fig. 2: A user presses a 1-button COR interface to activate
short control responses at different points along the trajectory
of a system with unstable dynamics. Each activation is
marked consecutively by number. The system starts at the
black and red circle and follows a nominal trajectory until the
COR interface is first used. At this point, the actual trajectory
diverges from the nominal trajectory (dashed purple) that
would result if COR responses were never applied. Upon
each activation, the trajectory color switches between blue
and green to highlight the transition. The COR interface cal-
culates and applies each u∗2(τm) for short duration, producing
a stabilizing effect that drives the system toward the origin
as desired. The final position is indicated with a star.

norm on applied controls is initialized to the identity matrix.
However, this matrix can be modified by the user to select for
control laws that use more or less control authority, resulting
in better or worse tracking of αd, respectively.

Another design choice in creating the COR interface is
the selection of the time horizon for integration of these
cost functionals. This time-frame specifies how long control
u∗2(τm) has to affect the desired change in system trajectory.
For the same change in trajectory, short time horizons can
result in significant control effort. Too long a time horizon
and u∗2(τm) will only produce minor changes in trajectory,
as these accumulate to significantly differences in the cost
functional over time. The COR interface used to control the
simulated system in (16) uses a 4s time horizon to balance
control authority and produce a noticeable stabilizing effect.

For interactive implementation, the system is forward
simulated for 4s and the resulting trajectory animated in real-
time. As the trajectory nears the end of the time horizon,
it is re-simulated from the current state for another 4s so
that it evolves continuously. If the COR interface button is
pressed, the trajectory is immediately forward simulated from
the current state for another 4s so that when control u∗2(τm)
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Fig. 3: Changes in cost functional (3) resulting due to
multiple activations of the COR interface over a typical
trajectory. Costs are computed based on the 4s trajectory
segment following each button press that occurs over a 20s
period. Blue triangles indicate the original trajectory cost
before application of u∗2(τm) and red circles indicate the cost
after. At each press, the burst control applied by the COR
interface reliably improve trajectory costs.

is applied, the resulting change in trajectory will be produced
over a 4s time horizon from the current time. Using this new
trajectory, u∗2(t) is computed from (7).

Algorithm 1 is applied to determine an appropriate dura-
tion for application of u∗2(τm), where τm is set to the current
time plus half the default duration of 0.03s.8 Starting with
this default duration, the trajectory produced from application
of u∗2(τm) is simulated 4s into the future and the change
in cost (3) is computed based on the original and new
trajectories. If simulated application of u∗2(τm) does not
result in a specified minimum change in cost functional the
control duration is reduced, the trajectory is re-simulated,
and the process repeated until an appropriate duration can
be found. (In practice, this system rarely required reduction
of the default duration.) As Figs. 2 and 3 show, the process
produces regular changes in trajectory and provides clear
improvement, moving the system toward the origin.

IV. RESULTS AND DISCUSSION

The interactive example from Section III illustrates the
efficiency of the methods discussed in this paper. The
demonstration, implemented in Mathematica, runs in real-
time on a laptop with an Intel Core 2 Duo chipset. Based
on these results an optimized version implemented in an
appropriately efficient language (e.g. C) can be expected
to enable embedded implementation of COR interfaces for
application in the time critical scenarios discussed.

The snapshot in Fig. 2 shows a typical trajectory that
results after t ≈ 20s. In this case, the user presses the COR
interface button multiple times to request compute aid in
improving the system trajectory. The dashed curve shows

8A default duration of 0.03s is applied because it provided predictable
trajectory improvements that users found easy to control.
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Fig. 4: The schedule of optimal actions u∗2(t) computed based on a 4s segment of the system trajectory (Fig. 4a). The
blue and red curves represent velocity controls ẋ1(t) and ẋ2(t) (ft/s), respectively. At all times, actions minimize control
authority while driving the mode insertion gradient toward αd = −1000 at that time according to weighting matrices Q
and R. The mode insertion gradient curve (Fig. 4b) provides a first order approximation of how the trajectory tracking cost
functional would change due to a short duration switch from nominal control u(t) = 0 to u∗2(t) at different times along the
trajectory. In this case, one can infer that the control action should be applied within 2.5s, before the mode insertion gradient
becomes too small. Regardless of whether the system obeys linear dynamics or nonlinear dynamics (2), the procedure for
calculating the mode insertion gradient and optimal actions remains unchanged.

the trajectory that would have resulted if the interface were
never used. At each point where the button is pressed a
similar change in trajectory results. No matter when along
the trajectory the button is pressed, the COR interface brings
the system closer to the origin.

Similarly, Fig. 3 demonstrates the cost reductions obtained
using the COR interface multiple times over the course of
a typical trajectory. Each time the interface is activated, the
cost for the next 4s trajectory segment is simulated both
before (blue triangles) and after (red circles) application of
u∗2(τm). The burst control generated by the COR interface
produces a significant reduction in cost after each activation.
As illustrated, trajectory costs are improved by the specified
minimum degree of ≥ 5% of the current cost in all cases.

Fig. 4 shows a typical schedule of control actions, u∗2(t),
and the mode insertion gradient curve indicates the sensi-
tivity of (3) to a switch from control u(t) = 0 to u∗2(t)
at each point in time along the trajectory. As mentioned,
when the button is pressed the trajectory is re-simulated
4s into the future and u∗2(t) is computed. In this case the
COR interface button was pressed at t ≈ 2.4s and each
plot covers a 4s time horizon from this initial time. The
short duration switch to u∗2(τm = t + λ+/2) is designed to
occur when the button is pressed and lasts for the default
duration of λ+ ≈ 0.03s (unless the line search reduces this
duration). Based on the mode insertion gradient, switching
to the control u∗2(τm) ≈ (10ft/s, 2ft/s) at this time will
change the trajectory cost functional at a rate of ≈ −960

s .
Applying the control for 0.03s can thus result in a change
∆J1 ≈ −29 over the course of 4s.

Because control schedule u∗2(t) is continuous for each 4s
trajectory simulation, it can be applied at any time rather
than at (near) the initial time. However, as shown in Fig. 4a,

control effort increases farther along the trajectory before
dropping to 0. This is because more control authority is
required to achieve the same change in cost functional toward
the end of the trajectory. In other words, if the same change
in cost of ∆J1 ≈ −29 is desired, but the switch to u∗2(τm)
occurs 3s into the 4s trajectory (τm ≈ 5.42s) rather than at
the beginning, much more control effort will be required to
achieve that desired change in the 1s remaining. This is also
why both u∗2(t) and the mode insertion gradient become 0
at the end of the trajectory. At the final time, no amount of
control authority can improve cost functional (3). However,
by decreasing the weights in R, u∗2(t) can be allowed to
apply more control effort and the mode insertion gradient
will better approximate a flat line at αd. Both terms will still
drop off steeply near the end of the trajectory.

Due to limitations on available control authority, it is pos-
sible that there are additional times along the trajectory where
no control can improve the cost. The mode insertion gradient
naturally indicates these cases by dropping to 0. However, a
COR interface is still useful in such circumstances because
u∗2(t) can applied at any time. To deal with this issue, the
curve of u∗2(t) can be searched to find a nearby time where
control authority once again proves useful, and activation
held until then. This change requires minor modification
and is extremely useful for systems whose trajectories pass
through areas in the null space of their controls. For example,
for a cart-pendulum system where acceleration of the cart is
the control, no amount of control authority can help swing up
the pendulum if activated when the pendulum is horizontal.
By waiting for the pendulum to swing beyond this point, the
trajectory can once again be improved by available controls.



V. CONCLUSION

This paper presents an algebraic expression to compute
optimal actions for nonlinear systems at any time. We
demonstrate how a line search can resolve short durations
to apply these actions to provide long time horizon im-
provement in tracking. Compared to standard methods where
optimal controls are synthesized based on finite switch-
ing durations, these methods completely avoid constrained
iterative optimization. They facilitate the rapid exchange
between human and computer control required to enable a
new shared control paradigm where automated assistance can
be provided quickly and on-demand.

Interactive simulation results show this control-on-request
(COR) paradigm can request, compute, and activate bursts
of computer assistance in real-time. Due to space limita-
tions, the example depicted is simple and intended only to
demonstrate presented concepts. For more involved imple-
mentation examples where COR interfaces provide assistance
to humans in balancing and rehabilitation tasks involving
exoskeletons see [22]. Finally, due to promising preliminary
results, we recommend closed-loop implementation of the
described methods for future investigation.
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