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Abstract— This paper provides a complete derivation for
LQR optimal controllers and the optimal value function using
basic principles from variational calculus. As opposed to alter-
natives, the derivation does not rely on the Hamilton-Jacobi-
Bellman (HJB) equations, Pontryagin’s Maximum Principle
(PMP), or the Euler Lagrange (EL) equations. Because it
requires significantly less background, the approach is edu-
cationally instructive. It provides a different perspective of
how and why key quantities such as the adjoint variable and
Riccati equation show up in optimal control computations and
their connection to the optimal value function. Additionally,
the derivation presented requires fewer regularity assumptions
than necessary in applying the HJB or EL equations. As with
PMP, the methods in this paper apply to systems and controls
that are piecewise continuous in time.

I. INTRODUCTION

The LQR problem concerns computation of control laws
to drive linear dynamical systems along trajectories that
minimize an integrated quadratic cost functional [1], [9],
[15]. Solutions to this problem have been central to major
developments in the field of optimal control over the last
century (e.g. Kalman filtering [10], [11], Model Predictive
Control [13], LQG [2], iterative nonlinear optimal control
[14], etc.) and represent one of its greatest achievements.
While the LQR problem can be solved using the Euler
Lagrange (EL) equations and the calculus of variations [5],
[6], most derivations rely on fundamental developments
provided by either (or both) the Hamilton-Jacobi-Bellman
(HJB) equations [3] or Pontryagin’s Maximum Principle
(PMP) [17], which separate the field of optimal control
from the classical calculus of variations [15]. Depending on
the method(s) applied, different regularity (continuity and
differentiability) assumptions result.

In [1], application of the HJB equations requires a tempo-
rary regularity assumption of C1 (in time) system dynamics
and C2 quadratic cost functional. After derivation, the authors
indicate solutions can be tested and are provably optimal if
assumptions are relaxed by one degree of continuity. In EL
formulations from classical variational calculus, the problem
is stated in terms of a Lagrangian function of state, velocity,
and time, that must be minimized. The approach uses the fact
that admissible state perturbations uniformly vanish at the
optimizer (the “derivative” is 0 at the optimizer). However,
classical variational calculus relies on C1 perturbations (the
time derivative must continuously act on velocity terms)
subject to endpoint constraints. The approach implies the
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optimal state and Lagrangian must also be C1. Compared
to these alternatives, only PMP applies to systems with
dynamics that are piecewise continuous in time and so
guarantees optimality with respect to the class of switching
controls.1,2 Though relatively easy to apply, PMP requires a
much more lengthy derivation than its counterparts [15].

The following section derives LQR optimal controls in a
manner that allows the same degree of regularity as PMP
(fewer assumptions than [1], [15] and most other popular
derivations) in that it permits piecewise continuous dynamics
and controls. Proofs build on basic methods from variational
calculus but utilize a broader class of piecewise continuous
perturbations (similar to Pontryagin’s needle perturbations
[15], [17]). Rather than working from the usual constrained
Hamiltonian or Lagrangian formulation, we solve an un-
constrained optimization using simple optimality conditions.
Thus, we translate a fixed-time variable-endpoint problem
solved by constrained state perturbations, to a fixed-time
free-endpoint problem to be solved by unconstrained control
perturbations. Posed in this different fashion, we show all
the same quantities (e.g. adjoint and Riccati equations) still
arise, but as the result of more direct computations. Because
this approach requires less background than alternatives,
it is educationally instructive and provides an alternative
perspective of the necessity and role of key terms in LQR
theory.

For clarity, the LQR derivation in Section II is divided
into several parts. Section II-A formally states the problem
including necessary assumptions. Section II-B derives an
expression for the first variation of the cost and the optimal
feedforward regulator3 that sets the variation to zero for
admissible perturbations. Based on continuity arguments,
Section II-C proves a Riccati equation exists that translates
optimal feedforward controls to feedback laws in a local
neighborhood. Section II-D shows the optimal cost (value)
function satisfies a simple quadratic form involving the
Riccati variable in the same neighborhood, without relying
on HJB formalisms. Finally, Section II-E concludes the
derivation using the quadratic form of the optimal cost
to show (LQR) feedback solutions are unique and exist
globally. A brief discussion and conclusions are provided
in Section III.

1In [17], Pontryagin verifies that the maximum principle can be obtained
from the HJB equations but states the regularity assumptions required for
derivation of the HJB equations are violated for switching solutions.

2The authors were surprised that they were unable to find a more direct
derivation of LQ theory for this general class of systems given their
importance in switched systems theory.

3The control will be shown to satisfy a well-known form involving the
adjoint variable.



II. DERIVATION OF OPTIMAL CONTROLS

A. Problem Statement

With regard to notation, the following section refers to
an arbitrary variable, Γ, with an arrow, ~Γ, if it represents a
vector and in bold, Γ, if it refers to a matrix quantity. All
other notation is standard. Applying these conventions, we
address the fixed horizon optimal regulator problem from [1]
for linear time-varying systems,

~̇x(t) = A(t) ~x(t) + B(t) ~u(t) , (1)

with state ~x(t) ∈ Rn×1 and control ~u(t) ∈ Rm×1. Trajectory
performance is measured according to the quadratic cost
functional,

J(t, ~x(t), ~u(t)) =

∫ tf

t0

l(t, ~x(t), ~u(t)) dt+m(~x(tf ))

=
1

2

∫ tf

t0

~x(t)TQ(t) ~x(t) + ~u(t)T R(t) ~u(t) dt

+
1

2
~x(tf )TP1 ~x(tf ) . (2)

For brevity, the time dependence of the cost functional
will be dropped so J(t, ~x(t), ~u(t)) , J(~x(t), ~u(t)) and
l(t, ~x(t), ~u(t)) , l(~x(t), ~u(t)). In deriving optimal controls,
~u ∗(t) for {t ∈ [t0, tf ] | t0 < tf}, that minimize (2) subject
to (1), two main assumptions will be applied.

Assumption 1: R(t) is symmetric positive definite and
Q(t) and P1 are symmetric positive semidefinite.

Assumption 2: The elements of A(t), B(t), Q(t) and
R(t) are real, piecewise continuous, and bounded. Here,
piecewise continuous functions refer to C0 functions that may
contain a set of point discontinuities of Lebesgue measure
zero, where the one-sided limits exist in a local neighborhood
on each side. Such functions are assumed to take the value
of one of their side limits at discontinuities.4 This set of real,
piecewise continuous, and bounded functions will be denoted
C̃0.

Assumption 1 provides a positive definite quadratic form
l(·, ·) that is convex with respect to (~x(t), ~u(t)). Because con-
vexity is preserved under non-negative weighted integration
and composition with convex equality constraints (1) (see
[4]), cost (2) is also convex with respect to the control alone.
This guarantees that any local extrema satisfying necessary
conditions for optimality is a global extremum. For J ∈ C1,
these conditions require the first cost variation vanish locally
for all (admissible) perturbations to the optimal control [15].
As will be shown, Assumption 2 ensures the first variation
in the cost functional is continuous (i.e. J ∈ C1) and that
solutions to (1) that minimize (2) exist and are unique.

The remainder of Section II is dedicated to the proof of
the well-known5 LQR result provided in Theorem 1.

Theorem 1: Based on Assumptions 1 and 2, the control
that (globally) optimizes (2) subject to (1) is provided by

4Piecewise continuous functions will be defined from the left side limit
at switching points.

5Usually C0 continuity is assumed in Assumption 2.

linear state feedback law

~u ∗(t) = −R−1(t) B(t)T P(t) ~x(t) . (3)

This control is guaranteed to exist on [t0, tf ]∀ t0 < tf .

B. The Optimal Feedforward Regulator
Because the state and control are equality constrained,

optimal controls are often determined by minimizing (2)
with respect to state and enforcing dynamic constraints (1).
However, the constraints allow the state to be expressed in
terms of the control as a variation of constants formula (see
[8]),

~x(~u(t), t) = Φ(t, t0)~x(t0) +

∫ t

t0

Φ(t, s)B(s)~u(s) ds , (4)

with a state transition matrix (STM), Φ(·, ·), which is guar-
anteed to exist. Following this approach, the cost functional
only depends on the control, J(~u(t)). Therefore, optimal
controls, ~u ∗(t), result from unconstrained optimization6

~u ∗(t) , min
~u(t)

J(~u(t)) . (5)

Because (2) is convex, it is necessary and sufficient to show
the optimizer results in continuous variation,

δJ =

∫ tf

t0

δJ(~u ∗(t))

δ~u(t)
δ~u(t) dt = 0 . (6)

∀ δ~u(t) ∈ C̃0. Any solution satisfying this condition is
globally optimal [4], [15].

Consider all perturbations δ~u(t) , ε ~η(t) where ε ∈ [0, 1)
and η(t) ∈ Rm×1. The optimal control satisfies

δJ =
d

dε

∫ tf

t0

l(~x(~u ∗(t) + ε ~η(t), t), ~u ∗(t) + ε ~η(t)) dt

∣∣∣∣
ε=0

+
d

dε
m(~x(~u ∗(t) + ε ~η(t), tf ))

∣∣∣∣
ε=0

=

∫ tf

t0

(
∂l(·, ·)
∂~x(·, t)

d

dε
~x(~u ∗(t) + ε ~η(t), t)

∣∣∣∣
ε=0

+
∂l(·, ·)
∂~u(t)

~η(t)

)
dt

+
∂m(·)
∂~x(·, tf )

d

dε
~x(~u ∗(t) + ε ~η(t), tf )

∣∣∣∣
ε=0

=

∫ tf

t0

∂l(·, ·)
∂~x(·, t)

∫ t

t0

Φ(t, s)B(s)~η(s) ds dt

+

∫ tf

t0

∂l(·, ·)
∂~u(t)

~η(t) dt

+
∂m(·)
∂~x(·, tf )

∫ tf

t0

Φ(tf , s)B(s)~η(s) ds = 0 . (7)

To simplify the double integral from the final relation in (7),
partial ∂l(·,·)

∂~x(·,·) is incorporated into the innermost integral and
the order of integration changed so that the double integral
becomes ∫ tf

t0

∫ tf

s

∂l(·, ·)
∂~x(·, t)

Φ(t, s)B(s)~η(s) dt ds . (8)

6This unconstrained approach to optimization of (2) is motivated by [7].



Note that B(s) and perturbation direction ~η(s) do not depend
on t. When these terms are pulled out of the inner integral
in (8), (7) is equivalent to

δJ =

∫ tf

t0

∂l(·, ·)
∂~u(t)

~η(t) dt

+

∫ tf

t0

(∫ tf

s

∂l(·, ·)
∂~x(·, t)

Φ(t, s) dt

+
∂m(·)
∂~x(·, tf )

Φ(tf , s)

)
B(s)~η(s) ds = 0 . (9)

Defining ~ρ(s)T ∈ R1×n as the expression inside the
parenthetical above, optimal controls must satisfy

δJ =

∫ tf

t0

(
∂l(·, ·)
∂~u(s)

+ ~ρ(s)T B(s)

)
~η(s) ds = 0 ∀~η(s) .

(10)
Asserted earlier, even for C̃0 (in time) integrand, first varia-
tion (10) is absolutely continuous and yields J ∈ C1. For this
case, we re-iterate that relation (10) would normally serve
only as a necessary condition for a (weak) local minimizer.
Convexity not only ensures local minimizers are globally
optimal, but it allows consideration of more general classes
of controls and perturbations (e.g. δ~u(t) ∈ C̃0) that satisfy
first-order conditions (10).7

Temporarily consider the more common, restricted version
of the regulator problem from [1], [15], where Assumption 2
provides C0 continuity and boundedness of relevant quanti-
ties.8 In this case, admissible perturbations need only be C0
and unconstrained at endpoints. A standard generalization of
the Fundamental Lemma of Variational Calculus (see [15],
[16]), implies optimizers set ∂l(·,·)∂~u(s) + ~ρ(s)T B(s) = ~0. Based
on the quadratic form (2), optimal controls would satisfy

~u ∗(t) = −R−1(t) B(t)T ~ρ(t) . (11)

The feedforward control (11) matches standard results in
[15] for the restricted problem assumptions.9 However, in
the full problem statement based on Assumption 2, it is
not reasonable to only consider perturbations, ~η(t) ∈ C0.
This class of perturbations only guarantees optimality of
controls with respect to nearby solutions obtained by such
perturbations and neglects nearby C̃0 control solutions (i.e.
nearby switching control solutions are not considered). We
will prove the above arguments in transitioning from (10)
to (11) still apply if the class of admissible perturbations
is generalized to C̃0. To show this, an extension of the
Fundamental Lemma of Variational Calculus is required.

Lemma 1: For g(t), h(t) ∈ C̃0, if∫ tf

t0

g(t)h(t)dt = 0 ∀h(t) (12)

7For a discussion of strong / weak extremals including how convexity
can yield non-smooth global minimizers from necessary conditions see ch.
4-5 of [18].

8Note that, for reasons mentioned earlier, standard derivations of the EL
and HJB equations only apply to this restricted problem.

9The variable ~ρ(t) will be shown to obeys the same adjoint equation that
shows up in alternative (constrained optimization) formulations.

then g(t) = 0 for almost all t ∈ [t0, tf ].
Proof: Assume g(t) > 0 on any finite interval [τ1, τ2] ⊆

[t0, tf ]. Any choice of piecewise constant h(t) > 0 ∀t ∈
[τ1, τ2] and h(t) = 0 elsewhere violates the integral relation.
A similar argument applies if g(t) < 0 on any finite interval.
This contradiction implies g(t) = 0 on all finite intervals
⊆ [t0, tf ]. Thus g(t) may only be nonzero on a set of measure
zero. This set encompasses removable discontinuities in g(t).

Based on the preceding lemma, (11) must be extremal at
all points excluding removable discontinuities. As these con-
trols are integrated in computing the optimal state from (1)
and cost from (2), the isolated points of discontinuity (where
the parenthetical in the integrand of (10) is not necessarily
zero) will have no effect on state trajectory. Controls (11)
are therefore optimal C̃0 solutions. Note that this broader
class of C̃0 perturbations is ultimately unnecessary unless the
quantities in Assumption 2 are in fact piecewise continuous.
When this is not the case, the integral expression for ~ρ(t)
guarantees extremal controls (11) will be C0. Even in this
case, it is theoretically important to consider the broader
class of control perturbations for the purposes of proving
optimality with respect to them.

Though derived by different means (and no longer asso-
ciated with a vector of Lagrange multipliers) we will now
apply direct calculation to show that ~ρ(t) in (11) obeys the
same differential equation as the adjoint variable in [15],
[17]. To this end we utilize the following properties of STMs
(represented by Φ(·, ·)) based on s, t, τ ≥ 0:

1) d
dtΦ(t, τ) = A(t)Φ(t, τ)

2) Φ(t, s)Φ(s, τ) = Φ(t, τ)

3) Φ−1(t, τ) = Φ(τ, t)

These properties are proved in [8]. However, one additional
required property is provided here.

Lemma 2: For a STM, Φ(·, ·), it must be true that

d

dτ
Φ(t, τ) = −Φ(t, τ)A(τ) (13)

for all t, τ ≥ 0.
Proof: Following from properties 2) and 3) of STMs,

d

dτ

(
Φ(τ, t)Φ(t, τ)

)
=

d

dτ
I

A(τ)Φ(τ, t)Φ(t, τ) + Φ(τ, t)
d

dτ
Φ(t, τ) = 0

A(τ) = −Φ(τ, t)
d

dτ
Φ(t, τ)

−Φ(t, τ)A(τ) =
d

dτ
Φ(t, τ) ,

and so (13) must be valid.
Using STM property 3) and swapping integration limits,

~ρ(s) can be expressed as a variation of constants formula,

~ρ(s) =

(
∂m(·)
∂~x(·, tf )

Φ−1(s, tf )−
∫ s

tf

∂l(·, ·)
∂~x(·, t)

Φ−1(s, t) dt

)T
.

(14)



Above, ~ρ(s) is similar to (4) except that its STM is the trans-
pose of Φ−1(·, ·), and initial time t0 in (4) is replaced with
terminal time tf . First, note that if STM Φ(·, ·) corresponds
to a linear system with drift vector field A(t), the inverse
STM, Φ−1(·, ·), is an STM associated with opposite drift
vector field −A(t). This inverse STM in the first term of
(14) propagates a condition from terminal time tf to the
desired evaluation time, s, rather than operating on an initial
condition as in (4). Similarly, the integral flows backwards
from the terminal time to time s. Based on these facts, it
should be apparent that (14) is the variation of constants
formula for backwards ordinary differential equation

~̇ρ(t) = −A(t)T ~ρ(t)− ∂l(·, ·)
∂~x(·, t)

T

(15)

with terminal condition ~ρ(tf ) = ∂m(·)
∂~x(·,tf )

T
. This is the adjoint

equation from [15], [17].

C. Locally Optimal Feedback Solutions

Optimal controls (11) depend on ~ρ(t), but ~ρ(t) also
depends on the optimal state through ∂l(·,·)

∂~x(·,t)
T

=

Q(t) ~x(~u ∗(t), t). The optimal pair, (~x, ~ρ), must therefore
be computed simultaneously from the system of differential
equations (1) and (15), and optimal control (11). Because
this system relies on both initial and terminal conditions, it
is a two-point boundary value problem (TPBVP).

Computing optimal controls (11) from the TPBVP only
facilitates feedforward implementation. To develop feedback
solutions that depend only on the current state (as in (3)), it
is desirable to obtain a linear mapping ~x(·, t) 7→ ~ρ(t). Such
a mapping can be derived from terminal condition ~ρ(tf ) =
P1~x(·, tf ).

Lemma 3: There exists a linear relationship ~ρ(t) =
P(t)~x(·, t) at least in a neighborhood of tf .

Proof: Because the state and adjoint are obtained from
integral formulas based on the C̃0 matrices in Assumption 2,
both the state and adjoint are absolutely continuous in time.
Hence, their left side limit (and derivative) must exist for a
nonzero neighborhood of tf . In this neighborhood the linear
relation between ~ρ(t) and ~x(·, t) exists such that

~ρ(t) = P(t) ~x(·, t) . (16)

Differentiating both sides and applying (1) and (15) provides

−Q(t) ~x(·, t)−A(t)TP(t) ~x(·, t)
= Ṗ(t) ~x(·, t) + P(t) (A(t) ~x(·, t) + B(t) ~u ∗(t)) .

Substituting (11) and canceling ~x(·, t) from both sides yields
the Riccati differential equation [8]

0 = Q(t) + Ṗ(t) + A(t)TP(t) + P(t)A(t)

− P(t) B(t) R−1(t) B(t)TP(t) , (17)

with terminal condition P(tf ) = P1. As discussed, conti-
nuity ensures solutions, P(t), exist and are calculable from
the left of the terminal condition (for t < tf ), at least in an
infinitesimal neighborhood of tf . These solutions define the
linear relationship in (16).

Because its terminal condition is symmetric and the flow
of differential equation (17) is symmetric, matrix P(t) must
also be symmetric. Additionally, P(t) is positive semidef-
inite. A direct proof that does not rely on HJB equations,
dynamic programming, or PMP is provided here.10

Lemma 4: P(t) is positive semidefinite.
Proof: Assume the symmetric matrix P(t) ∈ C0 is

not positive semidefinite ∀t, but P(tf ) = P1 is positive
semidefinite. Then, ∃~ν ∈ Rn and time τ ≤ tf such that
~νTP(τ)~ν = 0 and an ε > 0 such that ~ν TP(τ − ε)~ν < 0.11

However, based on (17),

~νT Ṗ(τ)~ν = −~νTA(τ)TP(τ)~ν − ~νTP(τ)A(τ)~ν

+ ~νTP(τ) B(τ) R−1(τ) B(τ)TP(τ)~ν

− ~νTQ(τ)~ν

= −~νTQ(τ)~ν , (18)

where the time derivative can be taken from either side at a
piecewise discontinuity. Because Q(τ) is positive semidef-
inite, (18) implies that it is impossible for P(t) to become
positive definite forward in time from time t = τ . This is a
contradiction so P(t) must be positive semidefinite ∀t.

D. The Optimal Value Function

Solutions to (17) provide the linear map required to show
optimal controls (11) take on the linear feedback form in
(3). To prove that solutions to (17) must exist over the entire
horizon [t0, tf ], it is necessary to guarantee (17) does not
exhibit finite escape. This is commonly demonstrated using
an expression of the optimal cost functional in terms of
(3) (see [1], [15]). We obtain this expression next by direct
calculation. In the process, we show the optimal cost depends
only on the initial condition, ~x(t0), and initial time, t0. For
this reason, the optimal cost will be preemptively redefined
as V (t0, x0) , J(~x(~u ∗(t), t), ~u ∗(t)) and referred to as the
optimal value function (sometimes called the optimal cost-to-
go [15]). The name highlights that, expressed as V (t, ~x(t)), it
returns the value of the optimal cost to traverse the remaining
interval [t, tf ].

Lemma 5: Based on Assumptions 1 and 2, the optimal
value function satisfies

V (t0, ~x0) =
1

2
~x(t0)TP(t0) ~x(t0). (19)

Proof: Similarly to how Φ(·, ·) represents the STM for
open-loop system (1), there exists a STM for the closed-loop
linear system,

~̇x(~u ∗(t), t) = A(t) ~x(~u ∗(t), t) (20)
−B(t) R−1(t) B(t)T P(t) ~x(~u ∗(t), t) .

Where Φ(·, ·) is derived from A(t), this closed-loop STM,
which will be referred to as Ψ(·, ·), is derived from drift

10The proof is based on arguments provided in [19]. In reviewing existing
literature, the authors found nearly all well-known proofs rely on an
expression for the optimal cost in terms of P(t).

11The final relation in (18) results because symmetry permits Cholesky
factorization P(τ) = LTL. Hence, ~νTP(τ)~ν = 0 implies ~ν ∈ N (P(τ)).



vector field Λ(t) , A(t) − B(t) R−1(t) B(t)T P(t). The
solution to (20) is therefore

~x(~u ∗(t), t) = Ψ(t, t0) ~x(t0) , (21)

and the optimal control can be restated as

~u ∗(t) = −R−1(t) B(t)TP(t) Ψ(t, t0) ~x(t0) . (22)

From (21) and (22), the optimal value function satisfies

V (t0, ~x0) =
1

2

∫ tf

t0

[
(Ψ(t, t0) ~x(t0))TQ(t) Ψ(t, t0) ~x(t0)

+ (−R−1(t) B(t)TP(t) Ψ(t, t0) ~x(t0))T R(t)

(−R−1(t) B(t)TP(t) Ψ(t, t0) ~x(t0))

]
dt

+
1

2
(Ψ(tf , t0) ~x(t0))TP1 (Ψ(tf , t0) ~x(t0)).

The (fixed) initial condition can be pulled out of the integral
such that

V (t0, ~x0) =
1

2
~x(t0)T

(∫ tf

t0

Ψ(t, t0)T
[
Q(t)

+ P(t)TB(t)R−1(t) B(t)TP(t)

]
Ψ(t, t0) dt

+ Ψ(tf , t0)TP1 Ψ(tf , t0)

)
~x(t0). (23)

Define the expression in the parenthetical above as M(t0). It
can be directly verified that this matrix is symmetric and pos-
itive semidefinite. Moreover, it is the integral expression for
a corresponding matrix differential equation. Differentiation
reveals its differential equation,

d

dτ
M(τ) =

d

dτ

∫ tf

τ

Ψ(t, τ)T
[
Q(t) + P(t)TB(t)R−1(t)

B(t)TP(t)

]
Ψ(t, τ) dt

+
d

dτ
Ψ(tf , τ)TP1 Ψ(tf , τ)

= −
(

Q(τ) + P(τ)TB(τ)R−1(τ)B(τ)TP(τ)

)
−Λ(τ)T

(∫ T

τ

Ψ(t, τ)T
[
Q(t) + P(t)TB(t)

R−1(t)B(t)TP(t)

]
Ψ(t, τ) dt

)
−
(∫ T

τ

Ψ(t, τ)T
[
Q(t) + P(t)TB(t)

R−1(t)B(t)TP(t)

]
Ψ(t, τ) dt

)
Λ(τ)

−Λ(τ)TΨ(tf , τ)TP1 Ψ(tf , τ)

−Ψ(tf , τ)TP1 Ψ(tf , τ)Λ(τ). (24)

Restated, (24) is equivalent to

Ṁ(τ) = −Λ(τ)TM(τ)−M(τ)Λ(τ)

−Q(τ)−P(τ)TB(τ)R−1(τ)B(τ)TP(τ)

= −A(τ)TM(τ) + P(τ) B(τ) R−1(τ) B(τ)TM(τ)

−M(τ)A(τ) + M(τ) B(τ) R−1(τ) B(τ)TP(τ)

−Q(τ)−P(τ)TB(τ)R−1(τ)B(τ)TP(τ), (25)

with terminal condition M(tf ) = P1. In this form, the
equation for Ṁ(τ) resembles Riccati equation (17). In fact, if
M(τ) in (25) is replaced with symmetric positive semidef-
inite solution P(τ) to the Riccati equation, (25) becomes
(17). Because solutions to the Riccati equation satisfy both
differential equations (25) and (17) subject to the same
terminal condition, the value function can be expressed in
terms of P(τ = t0) as (19).

E. Existence and Uniqueness of Global Feedback Solutions

Mentioned earlier, solutions to Riccati equation (17) are
only guaranteed to exist in a neighborhood of the final
time based on continuity Assumption 2. It is only in this
neighborhood where (3) results in an optimal value function
of the form (19). To show that the optimal value function
exists and is calculable over [t0, tf ], it is necessary to
guarantee solutions to (17) exist over the horizon.

Lemma 6: Based on continuity Assumption 2, solutions to
Riccati differential equation (17) exist and are unique ∀t ∈
[t0, tf ].

Proof: Applying the global extension of the Picard–
Lindelöf theorem from [12], solutions to nonlinear differen-
tial equations

~̇h(t) = ~g(t,~h(t)) (26)

with ~h(t0) = ~h0 exist and are unique over arbitrary horizons
[t0, tf ] if ~g(·,~h(t)) is piecewise continuous in t, ~g(t, ·)
is locally Lipschitz continuous in ~h(t), and solutions are
bounded elements of the domain, ~h(t) ∈ Rn×1. As in
[1], [15], this theorem generalizes to the backwards Riccati
matrix differential equation with terminal cost.

Substituting ~h(t) for P(t), initial condition ~h0 for terminal
condition P1, and ~g for Ṗ, one can show (17) is locally
Lipschitz continuous in P(t) by proving that ∂g(t,·)

∂P(t) is
uniformly continuous in P(t) for all fixed t (see [12]). Based
on the partial derivative,

∂g(t, ·)
∂P(t)

= −A(t)−A(t)T+P(t) B(t) R−1(t) B(t)T , (27)

it should be clear that these conditions are met. Further, it
follows directly from Assumption 2 that Ṗ(t) ∈ C̃0 with
respect to t. It therefore suffices to show that solutions to
(17) cannot exhibit finite escape time. A simple proof of this
that relies only on the positive semidefinite form of optimal
value function (19) and the C0 integral expression for P(t)
(see expression for M(t)) is included in [1], [15]. Based on
these results, one can conclude the Riccati equation exists
and is unique for ∀t ∈ [t0, tf ].

In summary, Assumptions 1 and 2 guarantee a continuous,
unique symmetric and positive semidefinite matrix, P(t),
exists. This matrix sets the first variation δJ = 0 contin-
uously, for all C̃0 control perturbations when ~u(t) is defined
by (3). Extremal controls therefore exist and are at least



C̃0 ∀t ∈ [t0, tf ]. As the optimal value function is convex, this
is necessary and sufficient to show controls (3) are globally
optimal over arbitrary time horizon [t0, tf ] and completes the
proof of Theorem 1.

III. DISCUSSION AND CONCLUSIONS

The derivation provided in Section II is organized very
differently than most others. One popular approach in [1]
begins by proving cost (2) must be representable as a
positive semidefinite quadratic form (that of the optimal
value function (19)). After application of (1), (2), and a
completions of squares argument, the authors show the HJB
equations result in

∂V (t, ~x)

∂t
= ~xT Ṗ~x

= −min
~u

[(~u+ R−1BTP~x)TR(~u+ R−1BTP~x)

+ ~xT (Q−PBR−1BTP + PA + ATP)~x] ,

where time dependencies have been dropped for brevity
and V (tf , ~x(tf )) = ~x(tf )TP1 ~x(tf ). In performing the
minimization, they solve for the optimal regulator and arrive
at a differential Riccati equation (17) that must be positive
semi-definite because of its role in the optimal value function.
However, the minimization requires temporary additional
regularity assumptions (quantities in Assumption 2 must be
C2). The approach also obscures the meaning of the Riccati
equation as a linear map between the adjoint variable and
the state required to translate between optimal feedforward
expression (11) and LQR feedback solutions (3).

Also, as mentioned earlier, methods that apply EL equa-
tions and/or PMP usually solve the LQR problem by con-
strained optimization where perturbations are applied to
the state (and constrained to zero at the initial time to
enforce the initial condition ~x(t0) = ~x0). This fixed-time
variable-endpoint formulation is equivalent to maximizing
Hamiltonian system,

H , ~ρ(t)T (A(t)~x(t) + B(t)~u(t))− l(t, ~x(t), ~̇x(t)). (28)

In this Hamiltonian setting, ~ρ(t) represents a generalized
momentum vector, which PMP confirms as satisfying adjoint
equation (15). In the EL interpretation, ~ρ(t) is related to
the vector of Lagrange multipliers that enforce dynamic
constraints (1). In these formulations, the terminal condition
on the adjoint is necessary to accommodate the free endpoint
perturbation and ensure the optimization problem is well-
posed [15]. In the unconstrained optimization setting from
this paper, it is noteworthy that the same variable shows up
for very different reasons. Here, ~ρ(t) is simply part of an
affine term in the first variation of the cost (10) that does not
depend on ~u(t). It is calculated from (15) to avoid explicit
computation of a state transition matrix.

In contrast to these alternatives, the derivation presented
in this paper is constructive. It builds from basic concepts

of variational calculus and shows how critical terms from
LQR theory such as the Riccati equation and adjoint show
up regardless of problem formulation. Though the methods
applied are specific to the LQR problem, they prove the LQR
solution generalizes to systems where the dynamics and cost
are piecewise continuous in time. Thus, the derivation is valid
for a larger array of systems than classical LQR derivations
based on HJB or the EL equations.
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