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Abstract— Discrete-time estimation and control techniques
play a crucial role in digital control architectures. These
methods rely on accurate approximations of continuous-time
system behavior. For mechanical systems, this includes not
only the system state, but also mechanical properties such as
symplecticity or the long-term energy behavior. Additionally,
we aim to preserve the Hamiltonian structure of optimally
controlled or filtered systems. In this contribution, it is discussed
how these requirements can be met when replacing the standard
discretization schemes by variational integrators. We show that
if one chooses a symplectic discretization scheme for a Kalman
filtering problem, the discretization inherits the Hamiltonian
structure of the continuous-time linear quadratic problem.
Numerical experiments with this filter show better results than
obtained with standard discretization.

I. INTRODUCTION

Estimation and filtering techniques play a crucial role in
signal processing tasks in robotics, aerodynamics or auto-
motive engineering. A widely used concept in digital control
architectures is the discrete-time Kalman filter. Thus, numer-
ical discretization techniques are required for approximating
the continuous-time dynamics of the system. To meet the
various requirements on a filter in real-time applications,
in particular, the numerical discretization scheme has to be
chosen carefully.

Variational integrators (VI) (cf. [1] and Section II for a
short introduction) provide a simulation method for mechan-
ical systems that has shown great benefits in applications
(cf. [2], [3], [4], [5], for instance). Since VI are derived
from mechanical variational principles, they preserve specific
properties of the continuous-time system in the discrete
solution and show a good long-term energy behavior. This
is important not only for forward simulation, but also for
control and estimation problems for uncertain mechanical
systems. The theory of variational integrators and symplectic
integrators has been extended to stochastic mechanical sys-
tems in [6] and in [7]. In [8], stochastic variational integrators
have been successfully applied for estimation problems on
Lie groups using a method based on uncertainty ellipsoids
instead of the Kalman filtering approach. Both numerical and
experimental evidence for a benefit of VI in comparison to
standard integration schemes is given in [5], [9].
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In this paper, we focus on the (linear) Kalman filtering
(KF) problem, addressing it by transferring results on its
dual, the linear quadratic optimal control (LQ) problem. As
is particularly clear in the extended Kalman filter method,
many optimal control and filtering algorithms for nonlinear
systems are actually based on time-varying linearizations of
the nonlinear system dynamics in combination with the linear
methods.

Variational filters (see e.g. [10]), a class of Bayesian filter-
ing schemes which use variational methods in the sampling
step, are not considered in this work.

The contributions of this paper can be found in Section III
and Section IV. In Section III, we derive discrete state-
adjoint equations for the LQ problem which preserve the
original structure of the time-continuous problem by apply-
ing theory of optimal control methods (cf. [11], [2]). By
this, it is guaranteed that the Hamiltonian structure of the
optimality conditions is mapped to the discretization in terms
of a nearby Hamiltonian (in the sense of backwards error
analysis, cf. [12]).

This type of symplectic state-adjoint discretization
schemes is then transferred to the linear filtering problem,
which is the major focus of this work (cf. Section IV). In
real applications, digital control interfaces apply the discrete-
time Kalman filter (cf. [13]). This requires a discretization
of the continuous-time system dynamics. The choice of
discretization scheme has an impact on the filter performance
(see e.g. Section IV-A), but it is not clear from the discrete-
time filter definition which discretization should be chosen.
For this reason, we take the continuous-time Kalman filter
(see [14]) as the starting point and derive a discrete-time
version which provides a clear structure-preserving relation
to the original problem (cf. Section IV-B). As a consequence
of duality (cf. [13], [14]), the optimal filter of a continuous-
time system can be also determined by a state-adjoint system
with Hamiltonian structure. Thus, we choose a symplectic
state-adjoint discretization scheme as developed for LQ
problems in Section III. The resulting new version of a
discrete Kalman filter is structure-preserving w.r.t. i) the
Hamiltonian structure of the mechanical system and ii) the
symplectic relationship between state and adjoint equations
of an optimal filter in the discrete update equations for the
estimated state and its covariance matrix. This is numerically
illustrated with the stochastic harmonic oscillator example.
Providing a comparison to standard implementations which
are typically based on an explicit Euler method, we use a
symplectic scheme of the same order, namely the symplectic
Euler method (cf. [12]). From computational results, we
found that for the symplectic Euler method, state estimates



with better statistical properties and better approximation of
the system energy can be obtained.

II. VARIATIONAL INTEGRATORS

We give a short introduction to variational mechanics and
discuss VI advantages in applications.

Consider a mechanical system with configuration q(t)
and velocity q̇(t), for time t ∈ [0, T ], whose dynamical
behavior is described by a Lagrangian L. This is typically
the difference of kinetic and potential energy, whereas the
Hamiltonian H is the sum of all energies. In addition, there
are forces f(q, q̇, u) such as friction or a control input force
that influence the system’s dynamics. These dynamics are
described by the variational equation (cf. [1], [2])

δ

∫ T

0

L(q, q̇) dt+

∫ T

0

f(q, q̇, u) · δq dt = 0. (1)

Equivalently, (q, q̇) satisfy the forced Euler-Lagrange equa-
tions (for a given control input u on [0, T ])

∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
+ f(q, q̇, u) = 0.

Under certain regularity assumption (cf. [1] for details), the
equations can be equivalently written as Hamilton equations
in configuration and momentum variables p = ∂L

∂q̇ (q, q̇) with
Hamiltonian H(q, p) = p · q̇ − L(q, q̇):

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ fH(q, p, u).

In the absence of forces, the flow of a Hamiltonian system
is symplectic1. To derive a discrete variational integration
scheme, the action map, i.e. the first term in Eq. (1), is
approximated over each time step [kh, (k + 1)h] by

Ld(qk, qk+1, h) =

∫ (k+1)h

kh

L(q(t), q̇(t))dt

and the forcing term is discretized in a similar manner with
discrete forces f+k , f−k . Taking variations of the discrete con-
figurations qk for k = 1, . . . , N − 1 leads to discrete forced
Euler-Lagrange equations ([1], [2]) for k = 1, . . . , N − 1,

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) + f−k + f+k−1 = 0.

Discrete momenta are given by the relationships pk =
−D1Ld(qk, qk+1) − f−k and pk+1 = D2Ld(qk, qk+1) + f+k
which implicitly define a symplectic one-step integration map

Ψk+1 : (qk, pk) 7→ (qk+1, pk+1).

It is shown in [12] that (in the unforced case) a big class
of variational integrators has a symplectic map Ψk and it
falls into the category of symplectic partitioned Runge-Kutta
methods. In [2], the theory is extended to external forces.

Example 1: Throughout this work, we will consider the
symplectic Euler integrator which is a symplectic partitioned

1In general, a map is symplectic if it preserves a symplectic form ([1],
[12]). To get an intuition for symplecticity, it is helpful to consider the fact
that symplectic transformations are area-preserving. Linear symplectic maps

A : R2n → R2n satisfy AT JA = J with J =

(
0 I
− I 0

)
.

Runge-Kutta scheme of order one. For a system given in
Hamilton equations, it is implicitly defined by(
qk+1

pk+1

)
=

(
qk
pk

)
+

(
∂
∂pH(qk+1, pk)

− ∂
∂qH(qk+1, pk) + f(qk+1, pk, uk)

)
.

In applications, VI have shown numerous advantages:

• (long-term) forward integration: Besides conservation
of symplecticity and symmetries in terms of invariances,
VI have an excellent energy behavior even in long-term
simulations, which is important in astrodynamics or
molecular dynamics (cf. [12]). Furthermore, VI exactly
satisfy constraints of e.g. multibody systems.

• optimal control: VI can be used to design an indirect or
a direct optimal control method (cf. e.g. [2]) that takes
over the advantages of forward integration. Addition-
ally, it needs fewer optimization variables and provides
structured linearizations for an efficient optimization
(cf. [3]).

• estimation: VI can be extended to stochastic integrators
(see [7], [6]) which almost surely preserve the symplec-
tic structure. They have great statistical properties and
show further benefits in real-time filtering (cf. [9]).

III. VI FOR LINEAR QUADRATIC OPTIMAL
CONTROL

We consider a standard optimal control problem for a
linear mechanical system and a quadratic cost criterion.

Problem 1:

min
x,u

J =
1

2

∫ T

0

(
xTQx+ uTRu

)
dt+ x(T )TP0x(T )

w.r.t. ẋ = Ax+Bu, x(0) = x0, (2)

with x =

(
q
p

)
and A a Hamiltonian matrix.

Further, we assume symmetric weighting matrices satisfying
Q ≥ 0, P0 ≥ 0, and R > 0. We emphasize that all matrices
are allowed to be time-varying, but we neglect the time-
dependence in the notation for simpler reading. An optimal
solution (x, u) to Problem 1 satisfies the necessary optimality
conditions

(i)
∂H
∂u

= 0, (ii) ẋ =
∂H
∂λ

, λ̇ = −∂H
∂x

,

(iii)

(
x(0)
λ(T )

)
=

(
x0

P0x(T )

)
,

where the problem’s HamiltonianH is given byH(x, u, λ) =
1
2

(
xTQx+ uTRu

)
+ λT (Ax + Bu) and λ denotes the

adjoint variable.
By applying a numerical integration scheme to the state

and discretizing the control input, we obtain a discrete-time
version of Problem 1.

Problem 2: Fix a time grid {t0 = 0, t1, . . . , tN = T},
and, for simplicity, tk − tk−1 = h for k = 1, . . . , N .
Then, a discrete-time LQ problem for xd = {xk}Nk=0, ud =



{uk}N−1
k=0 is given by

min
xd,ud

=

N−1∑
k=0

1

2

[
xTkQkxk + uTkRkuk

]
+ xTNP0xN

w.r.t. xk+1 = Ψk

(
xk, uk

)
, for k = 0, . . . , N − 1, x0 = x0.

The linear one-step map Ψk can be obtained from an
integration scheme extended by the forcing term and it
approximates the continuous-time state transition matrix be-
tween tk and tk+1.

Example 2: (a) The discrete map Ψk of a forced explicit
Euler integrator with step size h for a system (2) with
control input is given by

Ψk(xk, uk) =
(
I + hAk, hBk

)
·
(
xk
uk

)
since xk+1 = xk + h(Akxk +Bkuk).

(b) The update matrix for the discrete map Ψk of a forced
symplectic Euler with step size h and with x =

(
q, p

)T
is given by(

Sk SkhA
12
k SkhB

1
k

hA21
k Sk h2A21

k SkA
12
k + I + hA22

k h(B2
k + hA21

k SkB
1
k)

)
,

with Sk = (I− hA11
k )−1. This can be derived from the

linear update equation(
qk+1

pk+1

)
=

(
qk
pk

)
+ h

[(
A11

k A12
k

A21
k A22

k

)(
qk+1

pk

)
+

(
B1

k
B2

k

)
uk

]
.

Here and in the following, when applying a symplectic
Euler to similar systems, we assume the matrix (I −
hA11

k ) to be invertible.
Proposition 1 (Symplectic discretization of Problem 1):

Assume a symplectic Euler integration scheme is used for
the state map Ψk in Problem 2. Then, we subsume from [2]
and [12]:
(i) Discrete adjoints can be derived from the discrete

Hamiltonian of Problem 2 which satisfy the equations of
the symplectic Euler scheme applied to the continuous
time adjoint equations.

(ii) The combined discrete state-adjoint trajectories generate
a symplectic Euler scheme for the continuous-time
Hamiltonian of Problem 1.

(iii) A symplectic Euler scheme applied to the state-adjoint
system exactly samples a modified Hamiltonian.

Namely, the symplectic adjoint scheme for λ =
(
µ, ρ

)
is(

µk+1

ρk+1

)
=

(
µk
ρk

)
− h

[
AT

k

(
µk
ρk+1

)
+Qk

(
qk+1

pk

)]
;

a proof with detailed derivation has to be left for a future
publication though.

Directing towards real-time implementations in robotics,
we restrict to the symplectic Euler as the simplest, lowest
order VI, but it has to be mentioned that analogous results
can be obtained for general nonlinear systems, and for higher
order integration schemes for the state and higher order
control approximations (cf. [2]). Furthermore, it has to be
pointed out that starting with a non-symplectic scheme for
the state system also results in a symplectic scheme for the
state-adjoint discretization (cf. [11]). Then, however, these
combined schemes may be of lower order and do not take

into account the Hamiltonian structure of the mechanical
system.

In the continuous LQ problem, the optimal state trajectory
together with its adjoint obey a specific structure, namely
they are generated by a symplectic flow defined by the
problem’s Hamiltonian. Underlying, we have the system dy-
namics, which are also Hamiltonian w.r.t. to the mechanical
Hamiltonian augmented by the forcing term.

It is our aim to preserve both these structures in a
discrete-time setting used for numerical computations. As
we see from Proposition 1, starting with a symplectic Euler
discretization (more generally, any symplectic Runge-Kutta
scheme) for the state differential equations and deriving the
discrete adjoint equations as described above meets this goal.

In Section IV, it is shown how these requirements can
be met in the dual problem, i.e. the optimal linear filtering
problem. Then, we go a step further and replace the discrete
state-adjoint update by an update equation of the covariance
matrix which is based on the linear relationship between
states and adjoints, but does not directly depend either on
the discrete state or on the adjoint equations. Numerical
experiments illustrate the improvements compared to stan-
dard explicit Euler discretization, in particular regarding an
approximation of the mechanical system’s energy.

IV. VI FOR KALMAN FILTERING

The goal of this section is to derive a structure-preserving
optimal linear filter for stochastic Hamiltonian systems. As
a starting point, we consider the following formulations of
discrete-time and continuous-time Kalman filters, which have
been originally developed by Kalman in [13] and Kalman
and Bucy in [14]. For a textbook reference, we refer to [15].

Proposition 2 (Discrete-time Kalman Filter, [13]): Let a
model of the system and the measurement be given by

xk+1 = Akxk +Gkwk, x0 ∼ N (x0, P0), wk ∼ N (0, Qk),

zk = Ckxk + vk, vk ∼ N (0, Rk),

with Rk > 0 and {wk}Nk=0, {vk}Nk=0 uncorrelated white
noise processes. Then, the optimal estimation of the state,
x̂k+1, given measurements up to step k, is given by the
following update equations:

Prediction: P−
k+1 = AkPkA

T
k +GkQkG

T
k , x̂

−
k+1 = Akx̂k

Measurement update:

Kk+1 = P−
k+1C

T
k+1(Ck+1P

−
k+1C

T
k+1 +Rk+1)−1,

Pk+1 = (I−Kk+1Ck+1)P−
k+1,

x̂k+1 = x̂−k+1 +Kk+1(zk+1 − Ck+1x̂
−
k+1).

Proposition 3 (Continuous-time Kalman Filter, [14]):
Let the model of the system and the measurement be given
by

ẋ = Ax+Gw, z = Cx+ v

where x(0) ∼ N (x0, P0), w ∼ N (0, Q), v ∼ N (0, R) with
white noise processes {w(t)}, {v(t)} being uncorrelated,



also with x0. Then, the optimal filter is given by

˙̂x = Ax̂+K(z − Cx̂), x̂(0) = x0,

with K = PCTR−1,

Ṗ = AP + PAT − PCTR−1CP +GQGT .
Assume a (linear) mechanical system, modeled with con-

tinuous time differential equations, and an estimation prob-
lem to be given. In order to apply the discrete Kalman
filter (Prop. 2), a discrete-time system matrix Ak has to be
provided which can be generated by an integration scheme
applied to the differential equation. In Section IV-A, we
study the difference between symplectic and non-symplectic
system matrices Ak. However, this has not taken into account
the Hamiltonian structure of the state-adjoint system, yet.
Therefore, in Section IV-B, we start with the continuous filter
of Prop. 3 and approximate the full state-adjoint equations of
this problem by a symplectic integration scheme. This results
in a discrete filter which preserves the symplectic structure
of the continuous-time problem, but it is not necessary to
explicitly solve for the adjoint equations. Instead, a discrete
Riccati equation is derived.

A. Discrete Kalman filter for discretized system dynamics

In Kalman’s original work [13], the state transition matrix
of the continuous-time system is used for Ak. In general,
this transition matrix cannot be computed analytically, but it
can be approximated by an integration scheme applied to the
continuous differential equation.

Example 3: Analogous to Example 2, when applying the
explicit Euler scheme to the dynamical system ẋ = Ax
one obtains the discrete update matrix Ak = (I + hA(kh)),
whereas the symplectic Euler scheme leads to the one-step
map

Ak=

(
(I− hA11

k )−1 (I− hA11
k )−1A12

k

hA21
k (I− hA11

k )−1 hA21
k (I− hA11

k )−1A12
k + I+ hA22

k

)
.

a) The stochastic harmonic oscillator: The differential
equations of a harmonic oscillator with configuration q ∈ R
and momentum p ∈ R can be derived from its Hamiltonian
H(q, p) = 1

2

(
q2 + p2

)
as

d

dt
q =

∂H

∂p
= p,

d

dt
p = −∂H

∂q
= −q

⇔ ẋ =

(
q̇
ṗ

)
=

(
0 1
− 1 0

)(
q
p

)
.

We assume that the full state can be measured, Ck = I, and
also Gk = I. We simulate a measurement by taking the exact
state from the continuous-time system at the specific time
and add a random value drawn from a Gaussian distribution,
wk ∼ N (0, Rk).

b) Numerical results: We apply the Kalman filter as
described in Proposition 2 with Ak being either the discrete
update matrix from an explicit Euler or from a symplectic
Euler scheme, as derived in Example 3. We perform 100
runs with N = 60 time steps each and a step size h = 0.5.
The error variances are chosen to be Qk = diag(1, 1),
Rk = diag(1, 100) and we start from state x0 = (5, 1)T
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Fig. 1. Estimated states (configuration and momentum coordinates) from
100 runs of the discrete Kalman filter (cf. Proposition 2) applied to the
harmonic oscillator with system matrix Ak obtained by symplectic Euler
map (red, purple) and explicit Euler map (blue, cyan). In the left figure, it
can be seen that many runs of the explicit Euler shows a larger deviation
than the symplectic Euler runs. From the right figure we see that also the
mean of the symplectic Euler trajectories is closer to the original solution
and approximates the volume of the exact periodical solution.

with P0 = diag(1, 1). In Fig. 1, the individual runs as
well as their means are shown for the explicit Euler in
blue and cyan, respectively and for the symplectic Euler
in red and purple, respectively. For comparison, the exact
solution, i.e. in continuous-time and without noise, is given
in black. When the explicit Euler is used, there are more
runs with high deviation in the estimated states and also
the mean trajectory is not as good as the one obtained for
the symplectic Euler. This has an important influence on the
estimated energy of the oscillator, which is computed by
Êk = q̂2k + p̂2k.

In Fig. 2, we show the energy mean over the explicit Euler
runs (blue) and the symplectic Euler runs (red), respectively,
as well as a moving average (for a window length of 5)
that smoothes the estimates over time (purple and cyan).
For comparison, the exact energy value corresponding to
x0 = (5, 1)T is given in black. The deviation of the energy
value approximated by explicit Euler from the exact energy
value is three to four times higher than that of the symplectic
Euler. The reason why the symplectic Euler’s energy differs
from the true value might be that even in the non-stochastic
case, a symplectic integrator exactly preserves the energy of
a nearby Hamiltonian system and not exactly the continuous-
time system’s energy.

B. Structure-preserving discretization of the continuous-time
Kalman filter

In [14], the duality relation to the LQ problem is used to
state a Hamiltonian for the filtering problem,

H(x, λ) = −1

2
‖GTx‖2Q − λTATx+

1

2
‖Cλ‖2R−1 .
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Fig. 2. Estimated energy for the harmonic oscillator corresponding to the
state estimates in Figure 1. First, the mean of the energy values is taken over
all runs and for each time-step leading to discrete energy curves Esymp and
EexEu. Then, a moving average with window length 5 is computed. The
error of the approximated energy when using the explicit Euler is much
higher than for the symplectic Euler.

The corresponding state-adjoint equations are

ẋ =
∂H
∂λ

= −ATx+ CTR−1Cλ

λ̇ = −∂H
∂x

= GQGTx+Aλ

and the covariance matrix P (t) with P (0) = P0 ≥ 0 (P0

symmetric) is determined by

P (t)=[Θ21(t, 0) + Θ22(t, 0)P0][Θ11(t, 0) + Θ12(t, 0)P0]
−1

with Θ(t, 0) =

(
Θ11 Θ12

Θ21 Θ22

)
being the transition matrix of

the state-adjoint equations.
Proposition 4: A structure-preserving discretization of the

continuous-time Kalman filter (cf. Prop. 3) is obtained by(
xk
λk

)
= Ψk

(
xk−1

λk−1

)
with Ψk being a symplectic integration map. Then, the linear
relation Pk between discrete states and adjoints, i.e. Pkxk =
λk, is recursively determined by

Pk+1 = (Ψ21
k+1 + Ψ22

k+1Pk) · (Ψ11
k+1 + Ψ12

k+1Pk)−1

for k = 0, 1, . . . , N , where Ψk =

(
Ψ11

k Ψ12
k

Ψ21
k Ψ22

k

)
.

Proof: Since the continuous-time state-adjoint differ-
ential equations have been derived from the Hamiltonian
H(q, p), Θ(t, 0) is a symplectic map. Thus, we want to derive
a discrete update equation that preserves this property. For
this reason, we apply a symplectic integration map Ψk to
approximate the exact flow:

Θ(kh, 0)

(
x(0)
λ(0)

)
=

(
x(kh)
λ(kh)

)
≈
(
xk
λk

)
=: Ψk

(
xk−1

λk−1

)
.

Note that it is now not necessary to compute the full
discrete state-adjoint trajectory. Instead, we derive a recursive

update equation for the covariance. Starting from the linear
relationship for P at node k + 1, we obtain

Pk+1xk+1 = λk+1

⇔Pk+1

(
Ψ11

k+1xk + Ψ12
k+1λk

)
= Ψ21

k+1xk + Ψ22
k+1λk

⇔Pk+1

(
Ψ11

k+1xk + Ψ12
k+1Pkxk

)
= Ψ21

k+1xk + Ψ22
k+1Pkxk

⇔Pk+1 =
(
Ψ21

k+1 + Ψ22
k+1Pk

) (
Ψ11

k+1 + Ψ12
k+1Pk

)−1
.

As in the continuous-time and standard discrete-time
Kalman filter, the update equation for the covariance matrix
Pk does not depend on the state or on the adjoint. For
known system and error covariance matrices at all time
nodes, {Pk}Nk=1 could be computed beforehand. However,
note that our update equation for Pk differs from the discrete-
time Kalman update. Also, the update for the estimated
state is different because we choose a matching symplectic
discretization, e.g. a symplectic Euler, as well. An implemen-
tation of the VI-discretized Kalman Filter using symplectic
Euler integration is comprised of the following steps

1) take measurement zk+1 = Ck+1x((k + 1)h) + wk+1,
2) update covariance matrix

Pk+1=
(
Ψ21

k+1 + Ψ22
k+1Pk+1

)(
Ψ11

k+1 + Ψ12
k+1Pk

)−1
,

3) compute Kalman gain Kk+1 = Pk+1C
T
k+1R

−1
k+1,

4) update state xk+1 = Φk+1

(
xk
zk+1

)
.

The state update 4) is defined by a linear symplectic
Euler map Φk which is augmented by the measurement term.
Concretely, we use the discrete scheme(
qk+1

pk+1

)
=

(
qk
pk

)
+ h

[
(Ak+1 −Kk+1Ck+1)

(
qk+1

pk

)
+Kk+1zk+1

]
.

c) Numerical results for the harmonic oscillator: We
run the algorithm sketched above for the harmonic oscillator
example for 3000 steps, with step size h = 0.5 and initial
value x0 = (5, 1)T . The variances are set to Q = diag(1, 1)
and R = diag(1, 100).

For comparison, we then replace both symplectic Euler
matrices, Ψk for the covariance update and Φk for the state
update, by the corresponding maps for an explicit Euler
integrator and rerun the algorithm.

In Fig. 3, the estimated state trajectories2 are shown as
a phase plane plot with red for the explicit Euler and blue
for the symplectic Euler solution. The corresponding energy
values of the harmonic oscillator are shown in Fig. 4.

Again, we smooth the stochastic values over time by a
moving average with window length 50 (green for explicit
Euler, cyan for symplectic Euler). Influenced by the step
size h and the error covariance for the measurement R,
the advantage of the symplectic Euler can be clearly seen
in both plots. While the estimated states from explicit
Euler show a considerable offset from the true solution,
the states generated by the symplectic Euler have smaller
variations and, on average over time, approximately preserve
the volume of the cyclic exact solution. This corresponds to

2In contrast to the previous example, we now take a single, but long-term
(T = 1500) simulation.
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Fig. 3. Estimated long-term trajectory from the discretized version of
the continuous-time Kalman Filter for the harmonic oscillator. The solution
from the structure-preserving filter based on the symplectic Euler scheme is
shown in red and the trajectory obtained with the explicit Euler scheme in
blue. While the symplectic method gives good approximations of the true
solution (shown in black), the explicit Euler leads to high deviations.
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Fig. 4. Estimated energy for the stochastic trajectories of the harmonic
oscillator given in Figure 3. Again, the blue curve refers to the filter with
explicit Euler scheme and the red curve to the symplectic Euler. The moving
average for the energy from the symplectic filter (purple) is close to the true
energy value (black).

the good energy values compared to the highly inaccurate
and thus useless approximation of the true energy value of
E = 26.0 by the explicit Euler. Note that after transitioning
from the standard discrete Kalman filter formulation to
the structure-preserving discretization of the continuous-time
Kalman filter, the numerical approximation of the energy,
in particular, has improved reasonably. One reason for this,
which has to be examined further in future work, might
be that we now choose matching update equations for the
state and the covariance matrix which are both based on
symplectic integration schemes.

V. CONCLUSIONS AND OUTLOOK

Recent experimental results showing the excellent real-
time performance of variational integrators in filtering and
control problems (cf. [5]) motivated us to study the inter-
play between symplectic variational integration and Kalman

filtering solutions in this work. To this aim we derive discrete
filter equations for the estimated state and for the covariance
matrix based on variational integrator discretizations. Thus,
the discrete filter inherits the symplecticity of the continuous-
time Kalman filter. As we are able to illustrate even by
the simple example of a stochastic harmonic oscillator, a
structure-preserving discretization of the Kalman filter leads
to a better estimate of the mechanical energy and to better
estimates of filter states.

In future work, we would like to tie together the results
for LQ and KF problems to address the linear quadratic
Gaussian problem. To reveal the relationship between the
standard discrete Kalman filter and the developed structure-
preserving variant, further theoretical studies are necessary,
which can be based on backward error analysis (cf. [12]).
Then, the next step should be to address nonlinear, possibly
constrained, mechanical systems, for which linearizations
have to be included in the Kalman filter. As it has been
shown both numerically and experimentally in [5], [3], the
structured linearizations of variational integration schemes
provide further benefit compared to standard explicit Euler
integrations.
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