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Abstract:
This paper presents a hybrid control method that controls to unstable equilibria of nonlinear
systems by taking advantage of systems’ stable manifold of free dynamics. Resulting nonlinear
controllers are closed-loop and can be computed in real-time. Thus, we present a computationally
efficient approach to optimization-based switching control design using a manifold tracking
objective. Our method is validated for the cart-pendulum and the pendubot inversion problems.
Results show the proposed approach conserves control effort compared to tracking the desired
equilibrium directly. Moreover, the method avoids parameter tuning and reduces sensitivity to
initial conditions. Finally, when compared to existing energy based swing-up strategies, our
approach does not rely on pre-derived, system-specific switching controllers. We use hybrid
optimization to automate switching control synthesis on-line for nonlinear systems.
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1. INTRODUCTION

This paper presents a hybrid control technique that ex-
ploits the free, i.e. uncontrolled, dynamics of nonlin-
ear (control-affine) systems to reach a desired (unstable)
equilibrium state. The method generates a closed-loop
switching-type control, by which challenging and underac-
tuated control problems such as pendulum inversion can
be solved in a numerically efficient way. As a preliminary
step, we compute the stable manifold for the desired target
state based on the free dynamics. This manifold consists of
the set of states for which the free dynamics guide the sys-
tem to the equilibrium (cf. Section 2). Using the recently
developed Sequential Action Control (SAC, Ansari and
Murphey (2015)), we generate a sequence of constrained,
least-norm optimal actions that track the nearest points
on the manifold on-line, in a receding horizon fashion.
By tracking the manifold rather than the desired state,
controllers can conserve control effort by leveraging free
dynamics as much as possible in reaching the desired state.

The idea of exploiting free dynamics in control problems
originates from astro-dynamics. For instance, Marsden and
Ross (2006) make use of inherent structures of nonlinear
mechanical systems such as invariant (un)stable manifolds
to design complex space mission trajectories with minimal
control effort. In Flaßkamp et al. (2012), this idea was
extended to general mechanical systems by defining mo-
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tion primitives along the manifolds and sequencing them
with control maneuvers into a motion plan. The work (and
application in Flaßkamp et al. (2014)) focused on the off-
line synthesis of single open-loop plans to serve as initial
seeds for optimal control. In contrast, this work aims to
directly track stable manifolds, i.e. objects in state space
instead of time-dependent trajectories, in closed-loop.

Since manifolds can often only be approximated numeri-
cally, we require controllers that are robust to noisy data
and, in particular, to derivative information. Control syn-
thesis should also be computationally efficient for real-time
requirements. Finally, we seek controllers that take advan-
tage of free dynamics to conserve effort as often as possible,
even before the system is close to the stable manifold. For
these reasons, our approach is based on a switching control
strategy that provides nonzero input only when it is most
efficient. This paper achieves the desired control strategy
using a specialized SAC controller with a system’s free
dynamics as a nominal mode and defines an alternate con-
trol mode that optimizes a manifold tracking objective. As
a benefit, SAC automates the process of determining the
switching policy (it decides when to switch and the value of
the optimal control mode) on-line for nonlinear systems. In
benchmark swing-up examples for a cart-pendulum and a
pendubot, SAC rapidly synthesizes constrained switching
controls over receding horizons that track stable manifolds
with low control effort on-line.

We consider nonlinear control-affine systems,

ẋ(t) = f(x(t), u(t)) = g(x(t)) + h(x(t))u(t), (1)

with state trajectories assumed to be (Lebesgue) square-
integrable curves, x(·) ∈ L2(V,Rn), V ⊂ R, and piecewise-



Fig. 1. SAC sequences finite horizon optimal switching
control laws in receding horizon fashion. The process
results in a piecewise-constant response to state.

constant controls u(·) : V 7→ U , U ⊂ Rm. A switched
system is defined by introducing two different modes.
Mode 1 is the default mode and corresponds to the
system’s free dynamics, i.e. f1 : Rn 7→ Rn such that

f1(x) = g(x) ∀x ∈ Rn.
In mode 2, the system is controlled by a constant control
action u∗2 ∈ U , i.e. the vector field in mode 2 is defined by
f2 : Rn × Rm 7→ Rn, such that

f2(x, u∗2) = g(x) + h(x)u∗2 ∀x ∈ Rn, u∗2 ∈ Rm.
In an on-line process, we use SAC to compute a finite
horizon, optimal switching sequence to apply from the
current state assuming the mode sequence {1, 2, 1}. The
algorithm determines the optimal value of mode 2 by
selecting u∗2. It chooses an optimal time, τ , to insert this
mode, and selects a short duration, λ, which yields mode 2
switching times τ ± λ

2 . In receding horizon format, SAC
applies controls (based on the optimal sequence) for a brief
sampling interval, updates the current state, and repeats
the process to obtain the next optimal sequence. Figure 1
shows how the u∗2 from mode 2 are sequenced together into
a piecewise-constant response.

Combining SAC with stable manifold tracking objectives
resembles energy-based control methods (Fantoni et al.
(2000); Xin and Yamasaki (2012); Åström and Furuta
(2000); Spong (1995); Zhong and Röck (2001); Shiriaev
et al. (2000); Chung and Hauser (1995)), which exploit
dynamical structures (e.g. energy conservation and homo-
clinic orbits of closed-loop systems) for analytical control
design. This is in contrast to our method, which is an
optimization-based numerical technique that utilizes sta-
ble manifold structure of the free dynamics (cf. Section 3.2)
and automates switching control synthesis.

Following this introduction, in Section 2 we formally
introduce stable manifolds and discuss their numerical
approximation. Section 3 provides an overview of SAC
based on the switching structure and modes previously
described (with f1 equal to the free dynamics). We present
our approach to manifold tracking based on the SAC
algorithm. To validate our approach, Sections 4 and 5
present results for two underactuated examples systems.
Section 4 formulates the manifold-tracking problem to

invert a cart-pendulum system, while Section 5 solves
a pendubot swing-up control problem and includes a
comparison to prior results. Finally, Section 6 provides
concluding remarks and future work.

2. (UN)STABLE MANIFOLDS IN FREE DYNAMICS

Stable and unstable manifolds belong to invariant objects,
such as equilibria. They are subsets of the state space that
are invariant w.r.t. the flow and form important organizing
structures of the global dynamics (consider the separatrix
in the phase portrait of a spherical pendulum, for in-
stance). The stable manifold of an equilibrium, x̄, consists
of all points that approach x̄ under the system’s flow.
Analogously, the unstable manifold contains all points that
show the same behavior if time was reversed.

Formally, we start with a local definition of (un)stable
manifolds. Denoting the system’s flow by Φ(x, t), the local
stable manifold for a neighborhood Ux̄ ⊂ X of the state
space X is given by (cf. e.g. Guckenheimer and Holmes
(1983))

W s
loc(x̄) = {x ∈ Ux̄ |Φ(x, t)→ x̄ for t→∞

and Φ(x, t) ∈ Ux̄ ∀t ≥ 0}.
For the local unstable manifold, Wu

loc(x̄), the definition
holds in backward time, i.e. with t ≤ 0 and t → −∞.
The stable manifold theorem (cf. e.g. Guckenheimer and
Holmes (1983)) ensures the existence and defines the di-
mension of the (un)stable manifolds under certain assump-
tions. For instance, if f is a smooth vector field and x̄ a
hyperbolic fixed point, the (un)stable manifold is a smooth
manifold tangent to the (un)stable eigenspace of the lin-
earization of f at x̄ and of the same dimension. Therefore,
(un)stable manifolds can be seen as generalizations of
the stable and unstable eigenspaces of linear dynamical
systems. The global stable manifold W s is governed by the
preimages of the flow on W s

loc(x̄), that is

W s(x̄) =
⋃
t≤0

Φ(W s
loc(x̄), t)

and, respectively, the global unstable manifold Wu is
obtained from images of Wu

loc(x̄) under the flow.

An overview of different numerical approaches for the
computation of (un)stable manifolds can be found in
Krauskopf et al. (2005). In this paper we use the publically
available software, GAIO (Global Analysis of Invariant
Objects, Dellnitz and Junge (2002); Dellnitz et al. (2001)),
for manifold approximation. GAIO, like several other
numerical packages, iteratively grows the manifold object
from a local neighborhood of the equilibrium.

3. SEQUENTIAL ACTION CONTROL

Sequential Action Control is a closed-loop receding horizon
style method for nonlinear optimal control problems that
has been developed in Ansari and Murphey (2015). Here,
we present the method with free dynamics as a nominal
mode and formulate manifold tracking objectives.

Consider system dynamics (1), a tracking cost functional
to be minimized,

J =

∫ tf

t0

`(x(t)) dt+m(x(tf )), (2)



and the free dynamics as mode 1 of the switched system.
Then, SAC consecutively solves a hybrid optimization
problem by computing

1. the schedule of optimal control values u∗2(·) : V 7→ U
to which J is maximally sensitive,

2. the optimal time, τ , for when to apply u∗2 ∈ U , and
3. the duration, λ, to apply u∗2 ∈ U ,

which together define the control input of mode 2 and the
switching times from mode 1 to mode 2 and back at τ± λ

2 .
Note that with this notation, the mode 2 control is defined
based on the schedule of control values, u∗2(·), and optimal
time, τ , such that u∗2 := u∗2(τ). We now discuss the three
optimization steps of SAC in more detail.

3.1 Control synthesis using free dynamics

The sensitivity of (2) to an infinitesimal insertion of
mode 2 at any time τ is provided by the mode insertion
gradient, denoted by dJ

dλ+ (for a background on the mode
insertion gradient and its use in hybrid mode scheduling
see Caldwell and Murphey (2013); Gonzalez et al. (2010);
Egerstedt et al. (2006); Wardi and Egerstedt (2012)). With
mode 1 as the free dynamics, the mode insertion gradient,

dJ

dλ+
(τ, u∗2) = ρT (f2(x, u∗2)− f1(x))

∣∣
t=τ

= ρT (g(x) + h(x)u∗2 − g(x))
∣∣
t=τ

= ρ(τ)Th(x(τ))u∗2,

measures the effect of applying the control value u∗2 around
a time τ as duration λ → 0+. The ρ term is the adjoint
variable, which is defined by the linear differential equation

ρ̇ = −Dx`(x)T −Dxf1(x)T ρ

= −Dx`(x)T −Dxg(x)T ρ,

ρ(tf ) = Dxm(x(tf ))T .

The first optimization problem to find the schedule of
optimal control values, is stated as

u∗2(·) := arg min
u(·)

1

2

∫ tf

t0

[
dJ

dλ+
(t, u(t))− αd

]2

+ ‖u(t)‖2R dt,

(3)

with αd ∈ R− as a design parameter defining the desired
sensitivity and R = RT > 0 weighting control effort. As
shown in (Ansari and Murphey, 2015, Theorem 1), the
solution to (3), can be written in closed-form as

u∗2(t) =

[ (
h(x)T ρρTh(x) +R

)−1
h(x)T ραd

]
t

.

In each finite horizon switching time optimization, SAC
assumes the mode sequence {1, 2, 1}. Rather than choosing
τ as the current time, SAC provides the option to choose
an optimal time, τ , to apply a control from u∗2(·). This time
(along with the duration, λ) specifies when the switch to
mode 2 occurs. The SAC algorithm determines the optimal
time to apply a control value as a trade-off between the
efficiency of control (based on the value of dJ

dλ+ (·, ·) relative
to a norm on control effort), and the time of waiting,

τ := arg min
t

dJ

dλ+
(t, u∗2(t)) + ‖u∗2(t)‖+ (t− t0)β , β ∈ R+.

Once τ is specified, the next control value, u∗2, is known. As
described in Ansari and Murphey (2015), the control value

can be restricted to satisfy box constraints with minimal
assumptions and without any additional computation.

Finally, in order to fully specify the times to switch from
mode 1 to 2 and back again, SAC computes a duration λ >
0 to define the switching sequence. While formal switching
time optimization can be used to determine an optimal
duration, in practice, λ is very short as controls are only
applied briefly before the next iteration of finite horizon
calculations update the signal (following the receding
horizon process). As such, SAC locally approximates the
change in tracking cost around τ as

∆J ≈ dJ

dλ+
(τ, u∗2) · λ ≈ αd · λ .

The algorithm then uses a line search to reduce λ from
an initial duration until a value is found that provides a
change in cost within tolerance of this model (see Ansari
and Murphey (2015)).

3.2 Stable manifold tracking objective

If the desired target point is an unstable equilibrium
exhibiting a (nontrivial) stable manifold, a control strategy
can benefit from this structure by steering the system to (a
larger set of) points on this manifold instead of the desired
target. However, a numerical optimization-based approach
is not guaranteed to exploit this structure automatically,
e.g. due to the chosen time horizon in a receding horizon
implementation or because of local optima in the nonlinear
optimization problem. To overcome the issue, we propose
a control method that explicitly incorporates and tracks
stable manifolds in a cost functional.

In general, (un)stable manifolds of nonlinear dynamical
systems can only be approximated numerically. As the
process is computationally costly, we perform this step
off-line using GAIO (see Section 2). With a numerical
approximation of the stable manifold W s(x̄), the task
becomes designing `(x) in (2) such that `(x) = 0 if and
only if x ∈ W s(x̄). The same is true for the final cost
m(x(tf )), if present. Possible design choices for these cost
functions are discussed in Section 4 and Section 5. Note
that due to the numerical manifold approximation, `(x) is
not generally continuous.

Combining SAC with stable manifold tracking objectives
resembles energy-based control methods (Fantoni et al.
(2000); Xin and Yamasaki (2012); Åström and Furuta
(2000); Spong (1995); Zhong and Röck (2001); Shiriaev
et al. (2000); Chung and Hauser (1995)), which have
been developed for various single and double pendulum
alternatives. In these works, feedback controllers are ana-
lytically designed using partial feedback linearization and
Lyapunov functions derived from system energy functions.
For design and stability analysis, dynamical structures
(e.g. homoclinic orbits) of the closed-loop system are ex-
ploited. In contrast, we present an optimization-based nu-
merical approach which automates the exploitation of free
dynamics and synthesizes switching control laws on-line.
Our method is not restricted to energy-preserving systems
and works robustly even with coarse approximations of
the stable manifold. Also, by combining manifold and
state tracking goals, our approach can avoid undesirable
convergence to homoclinic orbits.



Fig. 2. Model of the acceleration controlled cart-pendulum.

4. ENERGY TRACKING FOR THE
CART-PENDULUM

Demonstrating a scenario where stable manifold tracking
reduces to energy tracking, this section includes swing-
up results for a cart-pendulum. We take advantage of the
low state dimension of this example for graphical analysis.
Included control and energy phase portraits (Figs. 3 and
5) illustrate how the proposed switching structure yields
SAC controllers that leverage free dynamics whether or not
manifold tracking goals are included in costs. The example
also shows how trajectories evolve through phase space and
onto stable manifolds under these different objectives.

This section pertains to the frictionless, acceleration con-
trolled cart-pendulum in Fig. 2, with length r = 2 m,
mass m = 1 kg, and gravity g = 9.81 m

s2 . The uncontrolled
pendulum is a Hamiltonian system with energy

E(θ, θ̇) =
1

2
mr2θ̇2 +mgr(cos θ + 1)

such that the free dynamics are(
θ̇

θ̈

)
= f1(θ, θ̇) =

(
θ̇

g

r
sin(θ)

)
.

The dynamics of the acceleration controlled cart are de-
fined as ẍc(t) = u(t), so that the controlled mode 2 is

f2(θ, θ̇, u∗2) =

(
θ̇

g

r
sin(θ) +

u∗2
r

cos(θ)

)
.

4.1 Stable manifold and cost formulation

While the pendulum’s downward equilibrium, (θ̄, ˙̄θ) =

(π, 0), is stable, the upright equilibrium, x̄ := (θ̄, ˙̄θ) =
(0, 0), is not. The eigenvalue spectrum of the linearization
at this point consists of one pair of real, stable and un-
stable eigenvalues. Thus, there are one-dimensional local
(un)stable manifolds. For this low-dimensional system, the
manifolds can be computed analytically by the energy
conservation property, i.e. for (θ, θ̇) ∈ W s

loc(x̄) ∪Wu
loc(x̄)

it holds E(θ, θ̇) = E(x̄) = 2mgr and we define Ē := E(x̄).
Locally around x̄, the stable manifold is given by

W s
loc(x̄) =

{
(θ, θ̇)

∣∣∣∣ θ̇ = −sign(θ)

√
2
g

r
(1− cos θ)

}
and the unstable manifold by the same relation with
opposite sign. Globally, the stable and unstable manifolds
form a so called homoclinic orbit (cf. red curve in Fig. 3).

Fig. 3. Manifold tracking solution (green) to the inverted
equilibrium, x̄, of the cart pendulum system. The
stable manifold (homoclinic orbit) is in red, and the
inverted equilibrium is indicated by black spheres.
For comparison, classical tracking solutions are given:
only for longer time horizons (see purple, long dashed
curve) comparable results can be obtained, otherwise
solutions (cf. blue trajectory, short dashes) requires
roughly twice the control effort (see Fig. 4).

Manifold Tracking Control

State Error Tracking Control

Fig. 4. The top plot corresponds to the green manifold
tracking solution from Fig. 3. The bottom plot corre-
sponds to the blue trajectory (short dashed curve in
the same figure) that is based on the same parameters
but does not use the manifold to invert.



Because of the system’s periodicity, we can simplify the
manifold tracking problem to tracking the energy of the
homoclinic oribit, Ē. As simulations revealed integral
errors, `(x), in (2) were unnecessary provided a terminal
energy cost, manifold tracking results use

J = JĒ :=
1

2
(E(θ(tf ), θ̇(tf ))− Ē)2.

For comparison, Figs. 3 and 4 include trajectory results
based on directly tracking the inverted equilibrium state,
x̄. These results are derived using a state tracking cost,

Jx̄ =
1

2

∫ tf

t0

‖x(t)− x̄‖2Q dt+
1

2
‖x(tf )− x̄‖2P1

,

with weight matrix Q = Diag({1000, 10}) and P1 = 0. 1

4.2 Discussion of numerical results

Figure 3 includes three different swing-up trajectories in
phase space along with the energy E(θ, θ̇) at each state.
Starting from the downwards equilibrium, (π, 0), with
zero energy, SAC controllers steer each system upwards
toward the equilibrium with Ē = 39.24. The red curve
indicates the stable manifold (homoclinic orbit) of states
with energy Ē, from which the free dynamics will lead the
system to the inverted equilibrium.

The solid green curve in Fig. 3 and control results at the
top of Fig. 4 correspond to the SAC trajectory resulting
from manifold (energy) tracking cost, JĒ . The blue curve
(short dashes) in Fig. 3 results when the same SAC
controller uses the state error cost, Jx̄. The controls for
this trajectory are included at the bottom of Fig. 4.
These controllers are derived with horizons of T = 0.5
s, constraints u ∈ [−5, 5] m

s2 , and R = 1.0. The desired rate
of cost improvement is specified based on the current cost
as αd = γJ − α0. Because closed-form SAC controls (3)
are linear state feedback controllers around x̄ (see Ansari
and Murphey (2015)), one can linearize the dynamics
around x̄ and choose αd to provide local stability based
on eigenvalue analysis of the closed-loop (LTI) system.
Following this approach, we specify α0 = −10 to guarantee
stability as Jx̄ → 0 and apply γ = −5 to scale αd based on
the current cost when the system is away from equilibrium.

Note that the green manifold tracking solution in Fig. 3
reaches the manifold (red curve) well before x̄. Though it
converges to x̄ at t ≈ 9 s, the control plot shows SAC
ceases control at t = 6.5 s. At this point the system
is on the manifold and so follows the free dynamics to
the goal. In contrast, the state tracking solution does not
use the manifold to reach the inverted state. Its control
plot shows effort is required until convergence at t ≈ 8 −
9 s. The manifold tracking solution also better utilizes
the free dynamics throughout the trajectory (indicated
by the intervals of zero control in Fig. 4). As such, the
trajectory uses less effort to invert, with an L2 norm of
35 compared to 60 for the same controller using Jx̄. While
state tracking costs also yield results that use the manifold,
this is only the case for certain parameters and typically
longer horizons. For instance, the long dashed purple curve
in Fig. 3 tracks J = Jx̄ with T = 1.2 s. The controller
reaches the manifold and switches to the free dynamics
1 Numerical simulations revealed these matrices resulted in reliable
tracking of the desired equilibrium.

because the time horizon is sufficient to see it will reach x̄
and it will be detrimental to switch to mode 2.

Another benefit we found is that tracking stable mani-
folds reduces sensitivity to control parameters. Sampling
T in the range [0.05, ..., 1.5] s and γ ∈ [−1, ...,−100], we
found solutions with only modest qualitative differences
(even when we varied the control constraints / norm).
In contrast, controlled trajectories derived for Jx̄ vary
dramatically as T changes. 2 Testing of initial conditions
for pendulum angle θ ∈ [0, . . . , 2π] in increments of 0.1 rad
confirmed that manifold tracking is successful in all cases
for a variety of horizons. For state error controllers, hori-
zons near T = 1.2 s proved best, with convergence from
all test conditions. Horizons near T = 0.5 s resulted in
a failure rate of ≈ 58% and became worse as horizon
length further reduced. We emphasize that SAC’s receding
horizon style calculations are (approximately) linearly de-
pendent on horizon length. Because JĒ facilitates shorter
horizons and uses only a terminal cost, manifold tracking
allows higher bandwidth feedback and control. 3

Finally, Fig. 5 shows the state-dependent SAC switch-
ing control computed over a grid (0.01 discretization)
of the phase plane. 4 Controls track JĒ with the pa-
rameters described previously but relaxed constraints,
u ∈ [−10, 10] m

s2 . Streamlines indicate the flow resulting
from closed-loop vector field. The controls have a defined
switching structure that outlines the stable manifold. SAC
applies no control in orange regions, conserving effort by
allowing the system to drift along the free dynamics. Lo-
cally around the homoclinic orbit and in the neighborhood
of the upright equilibrium at (0, 0) and (2π, 0), the color
gradients indicate controls smoothly transition to zero. 5

It is noteworthy that the phase plane plot, Fig. 5, shows
some structural similarities to the energy-based feedback
control laws proposed in Åström and Furuta (2000);
Åström et al. (2005). However, in contrast to Åström
et al. (2005), SAC automatically generates regions in the
pendulum state space where energy is shaped by adding
positive or negative damping. Moreover, although the con-
trol saturation of SAC generates large regions of “bang-
bang-type” control, we do not see the undesirable large
energy overshoots as obtained from the minimum-time
swing up solution of Åström and Furuta (2000) (cf. Fig. 3).

5. SWING-UP OF THE PENDUBOT

The pendubot is a two-link manipulator, see Fig. 6, with
only the first link actuated. The pendubot’s states are its
angles and velocities, x = (θ1, θ̇1, θ2, θ̇2), and its control
is the torque about the attachment point of the first
link, u = τ1. This section uses the methods previously
described to compute a switching control sequence that

2 Shorter time horizons lead to more direct “pushing” toward the
goal and longer horizons yield behaviors similar to energy tracking.
3 As a benchmark, a typical 10 s trajectory with T = 0.5 s and
100 Hz feedback requires ≈ 150 ms to compute using JĒ versus
≈ 250 ms using Jx̄ on a laptop with an Intel i7 processor.
4 These plots take seconds to compute and can be used as look-
up tables to control low dimensional nonlinear systems to stable
manifolds on-line.
5 Future work will show SAC provides linear state feedback con-
trollers in these regions.



Fig. 5. (Constrained) SAC switching controls computed
over a portion of the phase space. Streamlines indicate
closed-loop flow. The controls have a defined switch-
ing structure that outlines the stable manifold (red
curve in Fig. 3). SAC applies no control in orange re-
gions around the stable equilibrium, (π, 0), and drifts
under free dynamics to conserve effort.

swings the pendubot from the down-down equilibrium,
x0 = (π, 0, π, 0), to its unstable up-up equilibrium, x̄ :=

(θ̄1,
˙̄θ1, θ̄2,

˙̄θ2) = (0, 0, 0, 0).

The pendubot’s dynamics match those from simulations in
Ansari and Murphey (2015); Albahkali et al. (2009) and
physical experiments in Orlov et al. (2006), with

m1 = 1.0367 kg m2 = 0.5549 kg
l1 = 0.1508 m l2 = 0.2667 m
lc1 = 0.1206 m lc2 = 0.1135 m
I1 = 0.0031 kg m2 I2 = 0.0035 kg m2 .

We design a SAC controller that performs swing-up control
tasks by tracking the pre-computed stable manifold for the
inverted equilibrium. Final stabilization is provided by the
same LQR controller as in Ansari and Murphey (2015),
with state feedback gains

Klqr = (−0.23, −1.74, −28.99, −3.86 ).

Through numerical simulations, we roughly estimated the
region of attraction for the LQR controller and defined
the switch to LQR stabilization to occur once |θ1|, |θ2| ≤
0.25 rad and |θ̇1|, |θ̇2| ≤ 0.5 rad

s . Future work will use
formal Sums of Squares methods from Parrilo (2005) to
optimize and better define the region of attraction. Results
described in this section apply the same control constraints
to the LQR controller as enforced for SAC.

5.1 Stable manifold approximation and cost formulation

The inverted equilibrium, x̄, is a hyperbolic equilibrium of
the pendubot’s free dynamics that is structurally equiva-
lent to a frictionless planar double pendulum. The equilib-
rium has 2-D stable and unstable manifolds (cf. Flaßkamp
et al. (2014)), which are computed using GAIO as de-
scribed in Section 2. Figure 7 shows the box approximation
of the stable manifold.

Fig. 6. Model of the pendubot
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Fig. 7. Box approximation of the stable manifold of the
pendubot’s inverted equilibrium. The box coloring
indicates the value of the fourth coordinate, θ̇2.

Over the region depicted, states on the stable manifold
can be characterized as a function of angular coordinates,
S : R2 7→ R4, S(θ1, θ2) := (θ1, S1(θ1, θ2), θ2, S2(θ1, θ2)),
where Si : R2 7→ R, i = 1, 2, map from angular coordinates
to manifold velocities. The cost,

J(x, u) := JS =
1

2

∫ tf

t0

‖x(t)− S(θ1(t), θ2(t))‖2Q dt

+
1

2
‖x(tf )− S(θ1(tf ), θ2(tf ))‖2P1

,

tracks these stable manifold states. We apply Q =
Diag({0, 5, 0, 10}) with P1 = 0. After testing 25 initial
conditions with angles (θ1, θ2) sampled (linearally) in a
0.4 rad windows centered around their (down-down) equi-
librium values, these weight matrices lead to the highest
inversion rate for a variety of SAC parameters (T and γ).

In practice, S(θ1, θ2) is obtained from GAIO’s discrete
manifold representation by sampling over a 64×64 grid of
the (θ1, θ2) plane and storing the corresponding manifold

velocities (θ̇1, θ̇2) in two 64 × 64 matrices, S1 and S2.
Through the same initial condition trails just described, we
tested different techniques for approximating derivatives
(the adjoint variable from SAC requires the derivative of
the integrand and terminal cost of JS w.r.t. x) and inter-
polating the coarsely sampled manifold representation. As
an unexpected benefit of SAC calculations, tests showed
no significant differences when using manifold derivatives,
dS
dx , versus approximating the cost derivatives by zeroing
these terms. This was true when computing derivatives
by forwards, backwards, and central differences and for



different parameters Q, P1, T , and γ. Similar experiments
showed bilinear interpolation of the manifold performed
no better than rounding (using the value of the nearest
sample point in the 64× 64 grid).

The manifold derivatives likely prove of little use due to
noise in GAIO data. Similar noise issues may limit the
effectiveness of bilinear data interpolation. In either case,
the fact that SAC calculations can be applied to coarsely
sampled data and sampled cost functions with only ap-
proximated derivatives is ideal in that it reduces computa-
tion (no finite differences) and filtering requirements. The
following subsection shows that, in spite of these issues,
SAC can outperform alternatives and successfully inverts
the pendubot with only manifold tracking goals.

5.2 Discussion of numerical results

For comparison with previous pendubot swing-up results
from Ansari and Murphey (2015), which are based on a
SAC controller performing state tracking with Jx̄, Q =
Diag({100, 0.0001, 200, 0.0001}), and P1 = 0, we present
results based on the same SAC control parameters. As
such we use γ = −15, α0 = 0, T = 0.6 s, R =
0.1, u ∈ [−7, 7] Nm, and receding horizon style control
computations occur at a 200 Hz feedback sampling rate.

Figure 8 shows the swing-up solution produced by man-
ifold tracking cost, JS , with the control parameters de-
scribed. These results are similar to those achieved us-
ing Jx̄ (in Ansari and Murphey (2015)). Without any
state error goal, SAC successfully inverts the pendubot in
roughly the same time of ≈ 4 s using the same peak torque
(matching physical experiments in Orlov et al. (2006) and
half that from simulations in Albahkali et al. (2009)). In
both cases (tracking with JS and Jx̄), SAC controllers use
free dynamics and apply control only when needed.

As for the cart-pendulum, typical pendubot swing-up con-
trol laws exhibit sections where no control is applied and
the system is allowed to drift (see Fig. 8). Unlike for the
cart-pendulum, after sampling initial conditions and a va-
riety of parameter values, we found no reliable differences
in control effort according to an L2 norm (in some cases
state tracking outperforms manifold tracking and in other
cases we see the opposite). Of more practical importance
however, 6 results show manifold tracking requires much
less peak control effort for swing-up tasks (better L∞
norm). While, we were unable to find parameters to in-
vert the pendubot using less peak torque with the state
tracking goal, Jx̄, parametric exploration revealed several
combinations of parameters that invert the pendubot using
less peak torque under the manifold tracking goal, JS .
Simply adding the terminal cost P1 = Diag({0, 15, 0, 10})
to JS , yields inversion with |u| < 4 Nm, nearly half that of
the best case state error tracking results.

Also, similar to the cart-pendulum case, tracking the sta-
ble manifold was more robust to both control param-
eters of the SAC algorithm and to initial conditions.
Upon simulating different combinations of time horizon
and cost, we found time horizons as low as T = 0.1 s
would invert the pendulum using only a terminal cost,

6 Peak torque requirements drive motor selection.

t = 0.0 s - 1.62 s t = 1.62 s - 2.62 s

t = 2.62 s - 5.00 s

Fig. 8. Manifold-tracking swing-up solution.

P1 = Diag({0, 15, 0, 10}) in JS , with all the same pa-
rameters and constraints defined earlier. Again, we were
unable to find values of Q, P1 or γ that allow horizons
significantly below T = 0.6 s and still invert the pen-
dubot with a state error cost. As mentioned previously,
the ability to use shorter horizons (and only a terminal
cost) is an advantage to using the stable manifold that
allows control calculation and feedback at higher rates. 7

Initial condition tests (described previously) confirm that
well chosen parameters can invert the pendubot from all 25
sampled conditions for manifold tracking, while the (best
case) parameters identified for tracking Jx̄ fail for 3 of the
25 sampled conditions.

6. CONCLUSION

This paper shows that nonlinear control to unstable equi-
libria can be efficiently computed using a hybrid SAC
controller that tracks the stable manifold of free dynamics.
Two benchmark underactuated swing-up control examples
show the resulting nonlinear controller can be easily com-
puted in real-time and in closed-loop. Using free dynamics
(in stable manifold goals and the choice of SAC switch-
ing modes), our approach requires less control authority
than direct equilibrium tracking in swing-up tasks. Stable
manifold tracking provides a larger target set that reduces
sensitivity to control parameters and initial conditions.
In particular, results show manifold targets allows shorter
horizons in SAC receding horizon calculations. Hence, our
approach facilitates higher frequency feedback and control.
As opposed to existing energy-based strategies, proposed
controllers use hybrid optimization to automate synthesis
and do not rely on pre-derived analytical strategies.

7 At 200 Hz, SAC calculations typically range from < 1s to several
seconds to compute a 20s swing-up trajectory (depending on param-
eters) on an Intel i7 laptop. Time horizon shares a (roughly) linear
relationship with simulation timing.



To generalize the proposed approach, future work will
focus on developing general yet computationally efficient
metrics for tracking of “nearest” points on stable mani-
folds. Furthermore, we intend to evaluate data filtering and
low-dimensional storage methods for an optimal represen-
tation of manifold data. Finally, in terms of stability, Sums
of Squares methods offer a means to numerically define
and optimize regions of attraction around time varying
trajectories. Because SAC controllers are closed-form lin-
ear (time-varying) control laws around desired trajectories,
such methods offer numerical means to guarantee stability
to stable manifold trajectories.
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