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Abstract: Power network regulation is presented as a benchmark problem for assessing and
developing switched-mode optimal control approaches like mode scheduling, sliding window
scheduling and modal design. Power network evolution modeled by the swing equations and
coupled with controllable switching components is a nonlinear, high-dimensional problem. The
proposed benchmark problem is the 54 generator IEEE 118 Bus Test Case composed of 106
states. Open questions include scalability in state and number of modes of operation, as well as
real-time implementation, reliability, hysteresis, and timing constraints. Can the entire North
American power network be regulated? Can every transmission line have independent switching
control authority?
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1. INTRODUCTION

This paper presents a benchmark problem for switched-
mode systems regulation of a power network. The power
network’s dynamics are dictated by the swing equations
(Grainger and Jr., 1994), which are sufficiently rich to
both assess and develop new switched-mode system con-
trol strategies. Power networks have a large number of
generating nodes that operate as coupled oscillators for
which conditions for synchronization have been studied
Dörfler et al. (2013). We investigate the problem of active
control to respond to a disturbance. For benchmark, we
propose study of the 54 generator IEEE 118 Bus Test
Case (Christie, 1993) depicted in Fig. 1. The Test Case
has 106 states composed of each generator’s rotor angle
and angular velocity.

The swing equations are nonlinear differential equations,
which, when coupled with controllable switching compo-
nents, are switched-mode. The proposed benchmark prob-
lems are practical for assessing and developing switched-
mode system control and design strategies like mode
scheduling, sliding window scheduling, and modal design
as proposed in this paper.

Mode scheduling is an integer-constrained optimal control
problem. Solving the benchmark problem through direct
methods (Alamir and Attia, 2004; Lincoln and Bernhards-
son, 2002; Lincoln and Rantzer, 2001) is an optimization
with dimension in the range of 1010 to 1011. Direct meth-
ods require a fine timing discretization in order to capture
equivalent fast switching solutions of indirect methods
like the projection-based mode scheduling method we pre-
sented and analyzed in (Caldwell and Murphey, 2015). Im-
plemented in a sliding window framework, the projection-
based mode scheduling method successfully computes a

solution at roughly twenty times slower than real-time on
a standard desktop machine.

Benchmark questions include both scalability in state
(can the entire U.S. network be regulated?), scalability
in switching signals (can every transmission line have
independent switching control authority?), reliability, hys-
teresis, timing constraints, et cetera.

Numerical methods vary for solving the optimal mode
schedule. Many discretize in time (Alamir and Attia, 2004;
Lincoln and Bernhardsson, 2002; Lincoln and Rantzer,
2001) while others in space, (Bemporad et al., 2002; Shaikh
and Caines, 2003a; Caines and Shaikh, 2005; Giua et al.,
2001a,b; Hedlund and Rantzer, 2002; Schild et al., 2009;
Seatzu et al., 2006), but often such approaches result in
a combinatoric search (Shaikh and Caines, 2003b; Caines
and Shaikh, 2005; Gorges et al., 2011; Lincoln and Bern-
hardsson, 2002; Lincoln and Rantzer, 2001; Seatzu et al.,
2006). An alternative is embedding methods (Bengea and
DeCarlo, 2005) which transforms the space of controls
to boundary constrained functions and relies on the fact
that the set of switched system trajectories is dense in
the set of embedded trajectories. A final alternative taken
in (Axelsson et al., 2008; Caldwell and Murphey, 2015;
Egerstedt et al., 2006; Gonzalez et al., 2010; Kawashima
et al., 2012; Wardi and Egerstedt, 2012; Wardi et al., 2014)
pursues variational methods which repeatedly vary the
schedule to reduce the cost. The projection-based mode
scheduling algorithm (Caldwell and Murphey, 2015) is a
member of this final group.

This paper is organized as follows: Section 2 introduces
the power network regulation benchmark along with the
IEEE 118 Bus Test Case. Section 3 presents and provides
results for mode scheduling, sliding window scheduling,



Fig. 1. Representation of the IEEE 118 Bus Test Case. The network is composed of 118 buses, 186 lines, and 54
generators. The generators are depicted by green circles and the reference generator is depicted by the blue square.
The location of the 26 capacitor are shown.

and modal design of the benchmark problem. Section 4
discusses switched-mode optimal control extensions and
future advancements using the benchmark problem.

2. THE BENCHMARK SYSTEM

Due to the complex interconnectedness of multimachine
power networks, it is unclear how to actively respond to
a disturbance. The solution we propose is to compute a
schedule for physical switches that connect and discon-
nect capacitors from the network so that system perfor-
mance improves. A power network is often modeled as
a synchronous machine where the dynamics are given by
the swing equations (Grainger and Jr., 1994). The swing
equations are second-order nonlinear differential equations
which dictate the evolution of each generator’s rotor angle.
The rotors are assumed to be spinning at a constant
frequency—e.g. 60 Hz—but each rotor’s relative phase
may not be constant. The evolution of a single rotor is
dictated by the difference of its relative phase with its
neighboring generators as well as the admittance of the
adjacent transmission lines and buses. Through switch-
ing capacitors, the transmission lines’ admittance value
switches, effectively splitting the system dynamics into
distinct operating modes dependent on the position of the
switches. The only control authority we impose is through
the switches.

Let δi(t) be the rotor phase of generator i relative to a
reference generator, generator 0. The evolution of the ith

rotor is dictated by the difference of the mechanical power
input with the electrical power output:

2Hi

ωs
δ̈i = Pm,i − Pe,i (1)

where ωs, in rads/s is the synchronous speed and Hi

is a normalized inertial constant so that the mechanical
power Pm,i and the electrical power Pe,i are in per unit.
The terms ωs, Hi and Pm,i are assumed to be constant
for the short time horizon for which the disturbance and
resolution occurs. The electrical power output of generator
i, Pe,i, depends on the difference of its rotor’s relative
phase with the neighboring generators’ as well as the
admittance of the adjacent lines and buses:

Pe,i = |Ei|2Gii +
∑
j 6=i

|Ei||Ej ||Yij | cos(δi − δj − ψij) (2)

where Ei is the transient internal voltage, Gii is the real
part of the iith component of the bus admittance matrix,
Yij is the ijth component of the bus admittance matrix,
and ψij is the angle of the ijth component of the bus
admittance matrix.

The power network state is composed of the rotor angles
and the rotor angular velocities x(t) = [δ1(t), . . . , δn/2(t),

δ̇1(t), . . . , δ̇n/2(t)]T , where n/2 is the number of generators.
Through Eq. (1), the dynamics can be written in the
general form

ẋ(t) = f(x(t)), x(0) = x0

with initial condition x0. A disturbance is modeled as an
initial perturbation from a known steady state.

2.1 Switching Control

To impose a control, we switch the line admittances
Yij between set values by connecting and disconnecting
capacitors from transmission lines placed throughout the
network. With such a control authority, the power network
is an autonomous switched system with distinct operating
modes. Depending on the state of the switched capacitor
banks at any given time, the system evolves according
to one of the N modes, f1, . . . , fN . A control trajectory
is a schedule composed of the timings and sequence of
switches between the modes. A schedule of time length
tf > 0 is given by (Σ, T ) where Σ = [σ1, . . . , σM ] is
the mode sequence, T = [T1, . . . , TM−1] is the vector of
strictly monotonically increasing switching times, and M
is the number of modes in Σ. With T0 = 0 and TM = tf ,
the dynamics at time t where Ti−1 ≤ t < Ti, for some
i = 1, . . . ,M are

ẋ(t) = fσi(x(t)).

We say the state and schedule pair (x, (Σ, T )) is a dynam-
ically feasible trajectory if for all t ∈ [0, tf ], there is an
i = 1, . . . ,M such that Ti−1 ≤ t < Ti and

x(t)− x0 −
i−1∑
j=1

∫ Tj

Tj−1

fσj
(x(τ))dτ −

∫ t

Ti−1

fσi
(x(τ))dτ = 0.

(3)



Label the set of all such feasible pairs (x, (Σ, T )) as S.

The power network benchmark problem is the 118 Bus
Test Case which has 118 busses, 54 of which are generators,
and 26 switched capacitor banks which are all connected
or disconnected in unison. The number of operating modes
is N = 2.

2.2 118 Bus Test Case

The example power network has topology and line and bus
parameters from the IEEE 118 Bus Test Case, a 1962 study
of a segment of North America’s midwest grid (Christie,
1993). This network is composed of 118 buses, 186 lines, 54
generators and is shown in Fig. 1. The state of the system
is the relative rotor angle and angular velocity of each
generator excluding the reference generator, for a total of
106 states.

In addition, we connect switched capacitor banks in se-
ries to 26 chosen transmission lines. The placement of
the switched capacitors is a design decision discussed in
Section 3.3. Each capacitor’s capacitance is chosen so that
when the switched capacitor is “on”, its associated line’s
reactance doubles. The location of each switched capacitor
is shown in Fig. 1 and are chosen so that every generator is
connected to at least one other adjacent generator through
a line with a switched capacitor so that the Ei, Gii, Yij ,
and ψij parameters can be switched for each generator’s
power output Pe,i, Eq. 2. For this study, all 26 switches
are switched in unison so that all are “on” or “off” to-
gether. As such, the network has two modes of operation,
ẋ(t) = f1(x(t)) and ẋ(t) = f2(x(t)).

The control is the scheduling of the fully coupled switching
of all capacitor switches. We wish to schedule the capacitor
switches such that network performance is improved. The
improvement is measured by a cost function that assesses
a greater performance to system trajectories for which
the rotor’s remain nearer steady state and rotor rotation
frequency nearer operating frequency. The disturbance
perturbation is a vector of random angles taken from a
uniform distribution between [−0.3, 0.3] radians.

3. BENCHMARK PROBLEMS

The switched capacitor power network regulation problem
is to reject a disturbance by driving the system toward
synchronicity through connecting and disconnecting ca-
pacitors placed throughout the network. We introduce
three problem types—mode scheduling, sliding window
scheduling, and modal design—and provide results for the
benchmark problem

Optimal mode scheduling computes the timing of modal
transitions and the sequence of transitions, (Σ, T ), that
optimizes a specified performance. It is an offline approach
which computes the optimal state trajectory over a finite
time interval. Sliding window scheduling is an online
approach similar to model predictive control. It repeatedly
computes the optimal (or near optimal) mode schedule
for intervals of time that advance forward with real-time.
Modal design is the problem of designing the physical
system to produce desirable modes of operation. For the
benchmark problem the switched capacitor transmission

line placement is a design choice. Distinct placements
correspond to distinct modes of operation which directly
affects the network’s effectiveness to reject a disturbance.

3.1 Mode Scheduling

Mode scheduling has been thoroughly studied, but to the
best of our knowledge, a preeminent strategy has not
emerged. The problem is to compute a feasible schedule
(Σ, T ) ∈ S that infimizes a cost function J . We only
consider cost functions with the form

J(x, (Σ, T )) =

∫ tf

0

`(x(τ))dτ, (4)

with running cost `(x(τ)) ∈ R which does not directly rely
on (Σ, T ). The mode scheduling problem is

inf
(x,(Σ,T ))∈S

J(x, (Σ, T ))

The minimization is constrained to the set of dynamically
feasible trajectories S (see Eq. 3).

We apply the projection-based mode scheduling method
we presented in (Caldwell and Murphey, 2015) to solve
for the optimal mode schedule (see Algorithm 1 with step
size computation Algorithm 2 in Caldwell and Murphey
(2015)). The method is analogous to numerical optimiza-
tion like steepest descent. It iteratively computes a descent
direction, takes a step in the descending direction that
satisfies a sufficient descent condition, and updates. The
descent direction is the negative mode insertion gradient
which is the sensitivity of the cost J to a switch in the
schedule for infinitesimal duration (Axelsson et al., 2008;
Egerstedt et al., 2006; Caldwell and Murphey, 2015; Gon-
zalez et al., 2010; Wardi et al., 2014; Wardi and Egerstedt,
2012). Specifically, the mode σ ∈ {1, . . . , N} insertion
gradient at time t ∈ [0, tf ] is

dσ(t; Σ, T ) := ρ(t)T (fσ(x(t))− fσi
(x(t))), ρ(tf ) = 0

where Ti−1 ≤ t < Ti
(5)

where Σ = [σ1, . . . , σM ], T = [T1, . . . , TM−1] and the
adjoint ρ(t) is the solution to

ρ̇(t) = −Dfσi(x(t))T ρ(t)−D`(x(t))T ,
where Ti−1 < t < Ti.

The step size is chosen through backtracking which com-
putes a step size large enough to guarantee algorithm
convergence. The update is a projection to S. The solution
to each step of the iteration is a dynamically feasible
trajectory. Convergence is with respect to θ, the minimal
value of the mode insertion gradient d, Eq. 5:

θ(Σ, T ) := min
σ∈{1,...,N},t∈[0,tf ]

dσ(t; Σ, T ). (6)

The value |θ| is analogous to the norm of the gradient as
the optimality condition in smooth optimization (Caldwell
and Murphey, 2015).

We apply projection-based mode scheduling to schedule
the capacitor switches in order to respond to the distur-
bance. The cost is given by `(x(t), u(t)) = 1/2(δ(t) −
δ̄(t))T (δ(t)− δ̄(t))+1/40(δ̇(t)−2πfs)

T (δ̇(t)−2πfs) where
δ̄(t) is the mean rotor phase at time t and fs is the
generator frequency. The backtracking parameters are set
to α = 0.4 and β = 0.1.

The results of mode scheduling the initial 5 seconds
following a disturbance for 100 iterations of the algorithm



are shown in Fig. 2. We find that the rotor phases do not
diverge with the computed schedule. The cost reduces from
J = 170.68 to J = 54.78 (see Fig. 2b), and the optimality
function increases from θ = −2213.71 to θ = −20.32 (see
Fig. 2a). The total number of modes in the 7th iteration’s
schedule is M7 = 66, while the final switching schedule has
M100 = 120. The schedules at the 7th and 100th iteration
are in Fig. 2c.

The shortest time between switches for any iteration is
10−8s. A direct mode scheduling method (Alamir and
Attia, 2004; Lincoln and Bernhardsson, 2002; Lincoln and
Rantzer, 2001) would need to solve a 1010 − 1011 dimen-
sional optimization to capture equivalent fast switching
over the 5s time horizon and 106 states.

For the initial iterations in which (xk, uk) are far from
an infima, both the optimality function (see Fig. 2a) and
the cost (see Fig. 2b) reduce significantly, which is a phe-
nomenon that commonly occurs with first-order smooth
numerical optimization implementations like steepest de-
scent. Since most of the gained performance occurs in the
first few iterations, it is reasonable to expect that a sliding
window real-time approach is viable. Such an approach
computes only the first or first few mode scheduling itera-
tions for each window.

3.2 Sliding Window Scheduling

For online execution, the optimal schedule can be com-
puted for each time window of a sliding window imple-
mentation. The model predictive control type approach
applies the projection-based mode scheduling algorithm
for intervals of time with fixed length that advance forward
with time. In a real-time implementation, the advances in
time occur with the update of system sensors. Specifically,
the approach computes a schedule for a time window of
duration T = 5 seconds but applies it for only dt = 0.1
seconds before incrementing the window dt seconds and
repeating for the new 5 second time window. The cur-
rent window’s initial state inherits the previous window’s
state at time ti−1 + dt. Instead of computing the full
optimal schedule for each window, we compute a single
projection-based mode scheduling iteration for the time
interval t ∈ [ti, ti + T ]. The goal is for a real-time active
control rejection of the disturbance.

Fig. 2d compares the running cost `(·) for the sliding win-
dow result against the no control result. Without control,
the system destabilizes, while sliding window single-bit
control drives the system toward synchrony. A core i7-
3770K processor computes each window’s schedule in an
average of 1.94 seconds. While the current implementation
is 20 times slower than real-time, it indicates that an
improved implementation on a more advanced computing
machine could execute the sliding window approach real-
time even for the high-dimensional example.

3.3 Modal Design

Modal design is the problem of designing the physical sys-
tem so that its evolution is dictated by the most desirable
set of modes of operation possible. For the benchmark
problem, the space of candidate designs is the switched ca-
pacitors’ line placements. The designs are ranked by their

Tf

θ([σ1], ∅)

dσ2([σ1], ∅)

0

Fig. 3. Example mode insertion gradient of mode σ2 into
schedule ([σ1], ∅) with sensitivity value θ marked.

capability to respond to a disturbance, where a distur-
bance is modeled as before as an initial perturbation from
steady state. We quantify a design’s capability through a
performance metric’s sensitivity to mode switches—recall
the control authority is solely through mode switches. In
other words, the preferred design is the one for which the
control authority can impose the greatest performance.

Each distinct line placement design corresponds to a
distinct set of modes of operation. Given a cost J , Eq. 4, a
design’s capability is a function of the metric’s sensitivity
to switches between the designed modes. For schedule
(Σ, T ), this sensitivity value is θ(Σ, T ), Eq. 6. An example
mode insertion gradient of mode σ2 is in Fig. 3 for the no
switch mode schedule Σ = [σ1], T = ∅, with θ marked.

The value of the mode insertion gradient of a mode σi
at a time t indicates the increase or decrease to the cost
if σi is inserted into the schedule for a sufficiently short
duration at that time. When dσi

(t; Σ, T ) < 0, a sufficiently
short duration insertion of σi results in a reduced cost
(Caldwell and Murphey, 2015). The optimal mode and
timing arguments that compute θ in Eq. 6 correspond to
the mode and timing for which an insertion for sufficiently
short duration reduces the cost the most.

The sensitivity value θ only provides an indication to the
behavior of the cost for local schedule changes. Since a
cost function’s local behavior is usually a poor indicator
of its optimal value, we find a correlation between the
θ value for a large number of designs and the optimal
cost for the benchmark problem. We selected 200 distinct
sets of capacitor line placements with the requirement
that for a placement set, every generator is connected
to at least one other adjacent generator through a line
with a switched capacitor. The process to generate a
placement set was random. A random line for which at
least one neighboring generator did not yet meet the
requirement was repeatedly chosen until the requirement
was fulfilled. Each capacitor’s capacitance was chosen so
that when the switched capacitors are “on”, its associated
line’s reactance doubles. One could choose to have the
capacitance as a design variable as well. As before, we
consider two modes of operation f1 and f2, where ẋ =
f1(x(t)) when all capacitors are disconnected, or “off”, and
ẋ = f2(x(t)) when all capacitors are connected, or “on”.

The correlation between the optimal cost J?, com-
puted through projection-based mode scheduling (see Sec-
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tion 3.1), and the sensitivity value θ for the no switch
schedule ([σ1], ∅) is shown in Fig. 4. We find that a design
with a more negative θ is more likely to result in a lesser
optimal cost and therefore be more capable at rejecting
the disturbance.

The space of candidate designs is not limited to switched
capacitor line placements. The candidate designs can in-
clude any set of controllable switching component with
differing parameters as long as distinct designs correspond
to distinct modes of operation.

4. DISCUSSION AND OPEN QUESTIONS

We proposed a benchmark problem for switched-mode
optimal control. The benchmark is the IEEE 118 Bus Test

Case with dynamics given by the swing equations and
control authority through connecting and disconnecting
switched capacitor banks. The benchmark has 106 states
for the 54 generating nodes (recall one generator acts as a
reference) and 2 distinct operating modes for the coupled
switching of all switched capacitors.

Scaling in both state and the number of operating modes
are important concerns. For example, can mode scheduling
scale to networks with a greater number of generating
nodes like North America’s Western and Eastern Inter-
connections? The sliding window scheduling executed in
about 20 times slower than real-time on a single processor.
Could an improved implementation execute real-time for
a larger network?

How does switched-mode optimal control scale to more
operating modes? For the IEEE 118 Bus Test Case,
only two operating modes were needed to respond to a
disturbance as shown in Fig. 2d. At any time, only a single
bit of control—i.e. “on” or “off”—is needed, which lowers
computational and communication complexity. Do other
power networks require more operating modes? For the
projection-based mode scheduling, the number of mode
insertion gradients is N but the values of each mode
insertion gradient must be compared with each other,
which at worst case grows N2.

The swing equations are a good representation, but are
a simplification of real power network evolution, which
brings into question the reliability of switched-mode so-
lutions. Can sliding window scheduling or other feedback
strategies reject model disturbances? How practical is



sliding window scheduling to more complex, but accurate
models, like that in Natarajan and G (2014).

Another concern is that we assume that the switched
capacitors can be switched arbitrarily fast, but there may
be a significantly long transition period. Additionally,
there may be preferred switching frequencies which would
need to handle.

Open questions include:

(1) Can switched-mode optimal control scale in state?
What about for real-time implementations?

(2) How many operating modes, N , are needed to re-
spond to a disturbance? Should every transmission
line have independent switching control authority?

(3) How reliable are switched-mode solutions?
(4) How does switched-mode optimal control scale to

more complex models?
(5) Can switching mode control efficiently implement

hysteresis and timing constraints?

Each question is directly relevant to the proposed bench-
mark problem making it an ideal test case for switched-
mode optimal control assessment and development.

5. CONCLUSION

We proposed a benchmark problem for assessing and devel-
oping switched-mode optimal control approaches using the
IEEE 118 Bus Test Case and the swing equations. Coupled
with controllable switching components, the benchmark
is a high-dimensional, nonlinear, switched-mode system.
A baseline for relevant approaches like mode scheduling,
sliding window scheduling, and modal design is given.
Open questions include scalability in state and the number
of modes of operation, as well as reliability, hysteresis, and
timing constraints.
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