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Abstract— This paper presents an algorithm for au-
tonomously calculating active sensing strategies applied to
range sensing. The receding-horizon algorithm we use, called
Ergodic Exploration of Distributed Information (EEDI), in-
volves two major components: a) calculation of an expected
information density map over the search space based on prior
information and a model of the sensor, and b) ergodic trajectory
optimization over the sensor configuration space with respect to
that information map. The ergodic control algorithm does not
rely on discretization of the search or action spaces, and is well
posed for coverage with respect to the expected information
density whether the information is diffuse or localized. We
simulate successful localization and discrimination of targets
in a two dimensional workspace using a fixed-location range
sensor under various noise levels, and compare performance to
an information maximizing strategy.

I. INTRODUCTION

Active sensing, i.e. control of sensor parameters to acquire
information or reduce uncertainty, is of critical importance
in many robotic applications including search and rescue [1],
[2], [3], mine detection [4], and object recognition [5]–[7].
The ability to actively steer or focus sensory attention in each
region of the sensor configuration space can significantly
improve performance for a broad class of sensing tasks.
In this paper we apply a receding-horizon algorithm, called
Ergodic Exploration of Distributed Information (EEDI) to
active steering of a range sensor. Active steering of range
sensors is likely to be beneficial in scenarios where sensor
steering may be slow or expensive, for low frequency or for
long distance measurements [8]. In addition to improved per-
formance in search and tracking applications, active sensing
for range sensors is also likely to improve performance of
robot localization and map building [9]–[11].

In Section IV, we present a series of simulated experi-
ments using the EEDI algorithm. The sensing objective is to
estimate the planar location of a circular target using only a
single range sensor that can be steered around a fixed axis.
We compare the EEDI algorithm to two standard control
alternatives: a uniform sweep strategy (the sensor repeatedly
covers the whole search space at a constant velocity) and an
information maximizing controller (the sensor is steered to
the configuration that maximizes the expected information
gain). We first demonstrate localization when the sensor
position is fixed (only the beam angle is controlled). We
then perform the same localization task, but consider a larger
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search space and allow the sensor to translate along 1D as
well as rotate around the (translating) axis.

A. Background and related work

A number of active sensing strategies have been pro-
posed for controlling mobile sensors based on expected
information, including gradient-based methods [12], [13] and
information maximizing strategies [14]–[17]. While such
myopic (selecting only the optimal next configuration or
control input) approaches have an advantage in terms of com-
putational tractability, they are likely to fail in the presence
of local information maxima or high estimate uncertainty and
are typically applied to situations where the sensor dynamics
are not considered, and are likely to suffer when uncertainty
is high and information diffuse (as argued in [18]–[20]).
To avoid sensitivity of single-step optimization methods
to local optima, methods of planning control actions over
longer time horizons—nonmyopic approaches—are often
used. Various heuristics have been developed to approximate
the general (otherwise computationally intensive) dynamic
programming solution to the nonmyopic optimal control
problem [19], [21], [22]. Alternatively, variants of commonly
used sampling-based motion planners for maximizing the
expected information over a path for a mobile robot have
been applied to sensor path planning problems [4], [23], [24].

In our approach, we solve for continuous trajectories based
on a map of the expected information density (EID), which
is then used in a receding horizon framework as the EID is
updated. The aspect of the EEDI algorithm that is distinct
from other strategies is the way in which the control is
calculated based on the expected information. Ergodic trajec-
tory optimization, originally presented in [25] (for open-loop
control), uses iterative trajectory optimization to calculate
dynamically feasible, fixed time-horizon trajectories that
minimize an objective function based on the ergodicity of
the trajectory with respect to the EID and a norm on the
control effort.

A maximally ergodic trajectory is one for which the
percentage of time spent (equivalent to the distribution of
measurements for fixed sampling rate) in regions of the state
space is proportional to the expected information gain in
those regions (characterized by the EID). As opposed to
many commonly used information maximization or entropy
minimization approaches, the control is designed explicitly
to distribute the resulting measurements proportionally to
the EID [25] (not the maximum or the mean). We therefore
expect increased robustness in the presence of uncertainty or
modeling errors. Additionally, ergodic trajectory optimiza-



tion produces uniform coverage-like trajectories when the
expected information is uniformly distributed and localized,
and focused search when the information is minimally dif-
fuse. Using ergodicity as an objective therefore results in
an algorithm that is suitable for both exploration-prioritizing
coverage sampling or exploitation-prioritizing localized sam-
pling, without modification (policy switching or user-defined
weighted objectives [20], [22], [26]–[28]).

A preliminary version of the EEDI algorithm was pre-
sented in [29]. In [29], only estimation of a single parameter
(1D location) of a target is considered, and the sensor
movement is constrained to a single dimension. In this
paper, we present an extended EEDI algorithm for estimation
of multiple parameters, applied to target localization in
2D. Additionally, we demonstrate EEDI when both sensor
orientation (bearing angle) and location are considered con-
trol design variables. In [29], EEDI was used to estimate
underwater target location using a bioinspired robot. That
scenario involved a sensor model that was very nonlinear,
and therefore is expected to require careful control of sensor
motion for estimation. Here—in addition to broadening the
scope of the algorithm to multiple parameter estimation in
higher dimensional search space—we verify results from
[29] using a simpler, more commonly used sensor model.
In addition to demonstrating successful localization using
EEDI, we demonstrate improved performance over more
traditional information maximizing approaches.

II. PROBLEM DESCRIPTION

The sensing objective in the following examples is to
estimate the location in R2 of a stationary target object in the
presence of several similar, unmodeled distractor objects. All
target and distractor objects are circular objects with varying
radii, placed at different locations in a 2D workspace. We use
a beam-based sensor model. Assuming that the sensor posi-
tion and bearing angle are known, and that the shape of the
target is known, the expected measurement can be calculated
using ray casting operations on the expected target location.
The measurement model used for estimation only includes
a geometric model of the target object; the model used to
simulate measurements includes additive Gaussian noise and
multiple unmodeled distractor objects. An illustration of the
configuration is shown in Fig. 1.

A sensing trajectory—a “scan”—is produced by rotating
the sensor angle for a fixed time period. An example of a
simulated measurement scan with the distractor objects and
additive noise is shown in Fig. 2, as well as the expected
information density (EID) (explained in the next section) for
the target object. The objective in using ergodic trajectory
optimization is to calculate the optimal scan based on the
current EID.

Ergodic trajectory optimization requires a map of the
expected information density (EID), and a way of updating
the EID iteratively based on measurements. While ergodic
trajectory optimization does not rely on the specific choices
and assumptions that follow (appropriate for this particular
problem), we describe the calculations involved in updating

Fig. 1: The objective is to estimate the location of a circular object with
known radius (black) within a square workspace. The workspace is indicated
by the dashed box. The target object is shown in black, unmodeled distractor
objects are shown in gray. The sensor is located in the center of the
workspace. Blue rays illustrate the ray lengths produced by the simulation
model as a function of the sensor steering angle from zero degrees (light
blue) to 2π (dark blue).

and representing the EID for this sensor model and sensing
task As we will see in Section IV, calculation of the EID
produces a map over the sensor configuration space (bearing
angle and position), although the belief is defined over the
workspace (potential target locations in R2).

III. EEDI FOR STATIONARY TARGET LOCALIZATION
USING ACTIVE RANGE SENSING

The objective is to estimate the unknown 2D location, the
parameters α ∈ R2 describing a single, stationary target. A
measurement z is made according to a known measurement
model z = Υ(α,x) + δ, where Υ(·) is a function of
sensor location and parameters (calculated using ray-casting,
assuming circular target geometry), and δ represents zero
mean Gaussian noise with variance σ2. Pseudocode for the
closed-loop EEDI algorithm is shown in Algorithm 1. The
algorithm is initialized with the sensor state at the initial
time x(0) and an initial probability distribution p(α) for
the parameters α. The initial distribution can be chosen
based on prior information, or in the case of no prior
knowledge, assumed to be uniform on bounded domains.
The EID is calculated over the sensor state space, given a
measurement model that maps sensor state and an estimate
of the target parameters (e.g. location, size) to an expected
measurement. The normalized EID is then used to calculate
an optimally ergodic search trajectory xk(t) for a finite time
horizon [0, T ]. The trajectory is then executed, collecting
measurements zk(t) along xk(t). These measurements are
used to update p(α), which is then used to calculate the
EID in the next EEDI iteration.

A. Bayesian Probabilistic Update

We update the parameter estimate—the joint distribution
p(α)—at every iteration k of the EEDI algorithm using
a Bayesian filter based on collected measurement zk(t),
the measurement model, and the sensor trajectory xk(t),
p(α|zk(t)) = η p(zk(t)|α)p(α), where p(α) is the belief
calculated at the previous iteration, η is a normalization
factor, and p(zk(t)|α) is the likelihood function for α given
zk(t). The set of measurements zk(t) (e.g. the measurements



collected during a single scan) is actually a set of discrete
measurements (size dependent on trajectory time horizon
and sensor sampling rate). Similar to standard beam-based
models [30], we assume each measurement is independent
and normally distributed. Therefore the likelihood function
for all measurements taken along xk(t) is the product of
the likelihood of taking a single measurement zk(tj) at time
tj , for all times tj ∈ [0, T ]. We use a standard Gaussian
likelihood function,

p(zk(t)|α) =

T∏
j=1

1√
2πσ

exp

[
− (z(tj)−Υ(α,xk(tj)))

2

2σ2

]
,

(1)
although alternative likelihood functions for range sensors
have been proposed [31], [32]. Measurement independence is
commonly assumed, for example in occupancy grid problems
[19], however likelihood functions that do not rely on this
assumption of independence, [33], could be used without
significantly changing the structure of the algorithm.

B. Calculating Expected Information Density using Fisher
Information

Using tools from information theory, a measurement
model can be used to predict which sensor parameter val-
ues (e.g. sensor state) will provide the most informative
measurement for an estimation task. At every iteration of
the EEDI algorithm, the expected information density (EID)
is calculated by taking the expected value of the Fisher
information matrix with respect to p(α). Fisher information
quantifies the ability of a random variable, in our case a
measurement, to estimate an unknown parameter [11], [17],
[34], [35]. The Fisher information is represented as an m×m
matrix, where m is the number of parameters being estimated
(in the examples that follow, m = 2). Each element of
the Fisher information matrix (FIM), assuming independent
parameters and a Gaussian noise model, can be reduced to

Ii,j(x,α) =
1

σ2

∂2Υ(α,x)

∂αi∂αj
. (2)

Algorithm 1 Ergodic Exploration of Distributed Information
(EEDI), Single Target

Define x(t0),Υ(α,x), ε,
Init. p(α) (e.g. to a uniform distribution)
Calculate the Fisher Information I(α,x) (Section III-B)
k = 0
while |SD(α)| > ε do

a) Calculate EIDk (Section III-B)
b) Calculate ergodic control uk(t) (Section III-C)
c) Execute trajectory xk(t), measuring zk(t)
d) Update pk+1(α) given zk(t) (Section III-A)
k++

end while

(a) Simulated measurements as a function of
sensor steering angle.

(b) The expected Fisher information

Fig. 2: A range scan is simulated using the beam model with additive
Gaussian noise with a target object (black) and two unmodeled distractor
objects (gray). In (b), the expected Fisher information is shown for a circular
target object located as indicated by the back circle.

The Fisher information can be pre-calculated for a discrete
set of α, x to reduce online computation.1

Since the estimate of α is represented as a probability
distribution function, we take the expected value of each
element of I(x,α) with respect to the joint distribution p(α)
to calculate the expected information matrix, Φ(x). This is
an m×m matrix, where the i, jth element is

Φi,j(x) =
1

σ2

∫
αi

∫
αj

∂2Υ(α,x)

∂αi∂αj
p(αi, αj) dαjdαi. (3)

This expression can be approximated as a discrete sum as
required for computational efficiency.

The often-used D-optimality metric on the expected infor-
mation matrix, equivalent to maximizing the determinant of
the expected information [11], [35]–[37], is used to define
a scalar metric on the information matrix over the sensor
state space. Therefore, the expected information distribution
(EID) that is passed to the ergodic trajectory optimization is

EID(x) = det Φ(x). (4)

Note that different choices of optimality criteria may result
in different performance for different problems based on,
for example, the conditioning of the information matrix. D-
optimality is commonly used for similar applications and we
found it to work well experimentally, however the rest of the
EEDI algorithm is not in any way dependent on this choice
of optimality criterion.

C. Ergodic Trajectory Optimization

Ergodicity compares the difference between the time-
averaged statistics of a trajectory to the spatial statistics of

1the measurement model generated using ray-casting operations are not
continuously differentiable; we use a piecewise approximation.



the EID. The time-averaged statistics of a trajectory x(t)
are expressed as a distribution over the spatial domain by
calculating the percentage of time the trajectory spends
in a neighborhood of each point x. The distance from
ergodicity, E(x(t)), can be quantified by defining a norm on
the Fourier coefficients of both distributions [38]. This norm
is the sum of the weighted squared distance between the
Fourier coefficients of the spatial distribution (the EID), φk,
and those of the distribution representing the time-averaged
trajectory, ck(x(t)). The ergodic metric E is therefore

E(x(t)) =

K∈Zn∑
k=0∈Zn

Λk [ck(x(t))− φk]
2
, (5)

where K is the number of coefficients calculated along each
of the n dimensions, k is a multi-index (k1, k2, ..., kn), and
Λk is a weighting factor [38]. When E(x(t)) = 0, the
statistics of the trajectory perfectly match the statistics of
the distribution.

Ergodic trajectory optimization assumes a general dy-
namic model for a mobile sensor ẋ(t) = f(x(t),u(t))
where x ∈ RN is the state and u ∈ Rn the control. The
motion model can be nonlinear and dynamic, and is assumed
to be deterministic. For this paper we consider calculating
search trajectories in 1D and 2D, however the trajectory
optimization of the objective in Eq. (6) can be extended to
search in higher dimensional search spaces such as R3 and
SE(2), so long as a Fourier transform exists for the manifold
[39], [40].

We can solve for a continuous trajectory that minimizes
an objective function based on both the measure of the
ergodicity of the trajectory with respect to the EID and the
control effort, defined as

J(x(t), u(t)) = QE(x(t)) +

∫ T

0

1
2u(τ)TRu(τ)dτ, (6)

where E(x(t)) is a norm on the ergodicity of the trajectory
x(t). Q (scalar) and R (n×n matrix) determine the relative
importance of minimizing ergodicity vs. control effort in
the optimization. Minimization of the objective function in
Eq. (6) is accomplished using an extension of the trajectory
optimization method presented in [41]. The infinite dimen-
sional optimization we use provides a tractable method for
optimizing continuous, dynamically constrained trajectories
and does not require discretization of search space or control
actions in space or time.2 For details, see [25].

IV. EXAMPLES

The results we present were performed in simulation, as
this allows us to control noise levels and characteristics
and to evaluate the qualitative behavior of the controllers
in a systematic way. In Section IV-A, we compare the
performance of the EEDI algorithm to the following control
strategies.

2The EID map and ergodic objective function could, however, also be
utilized within an alternative trajectory optimization framework.

1) Uniform Sweep Using the uniform sweep controller,
the sensor is steered from θ = 0 to θ = 2π at a constant
velocity.

2) Information Maximization Controller (IM) The IM
controller performs an uniform sweep initially to ini-
tialize the belief, then uses proportional gain feedback
control to drive the sensor to the the EID maximum.
[17].

In both Sections IV-A and IV-B we introduce uncertainty
by including unmodeled distractor objects, as mentioned
previously (see Figs. 1 and 2). In Section IV-A, we consider
a second form of uncertainty—unmodeled error in the R2

location of the sensor. While the probabilistic update and
the EID calculation do take the noise parameters of the
measurement model into account, the uncertainty in the
sensor position is not explicitly taken into account in the
PDF update or EID calculation.

In all examples, the ergodic optimal control calculation
is performed using single integrator dynamics, although this
could easily be replaced with a more complex, nonlinear
model. We assume that no information about the object
location is initially available, i.e. the initial estimate is a
uniform probability over the workspace, and as mentioned
above, that there is a model of the expected measurement for
a given target object, in this case a solid, two-dimensional
circle with known radius.

We compare the performance of the different controllers
using two metrics; 1) the number of scans required before
the norm of the covariance of the estimate PDF drops below
a threshold (Tr(σ2) < 0.03), and 2) the norm on the error
between the estimated object location and the true object
location when the termination criterion is reached.

A. 2D Target localization: bearing only control

For the results presented in this section, only the bearing
angle of the sensor is controlled (the position of the sensor
is held constant). The search space is limited to a 1 × 1
unit square region, where all points in the region are within
range of the sensor. Each iteration of the EEDI algorithm
calculates a trajectory for a fixed scan time T of 5 seconds.
Measurements are simulated for each trajectory at 100 Hz.

The number of scans required for convergence at different
levels of added measurement noise is plotted in Fig. 3
for the EEDI, IM, and US controllers. Each point on the
plot represents the mean of five simulated trials. All three
controllers exhibit similar convergence rates at low noise
levels, and show reduced convergence rates as the noise
level is increased. The IM controller results in the fastest
convergence of the estimate for low noise levels, but is
requires the most scans as the noise level increases. Using
the IM controller, there were also instances of the belief
converging to the wrong location (finding a distractor instead
of the target) at higher noise levels. This was not observed
using the ergodic controller.

Examples of the trajectories produced using the IM and
EEDI algorithms, plotted with the evolving EID, are shown
for two different noise levels in Figs. 4 and 5. The US



controller is not shown. In Fig. 4, the added noise is small,
and both trajectories quickly focus on the correct target.
Figure 5 is an example of a trial with higher noise levels, and
demonstrates an instance where, although the IM controller
produces the fastest convergence early on, it converges to
the incorrect value. We also see that even for the low
noise scenario depicted in Fig. 4, the EID after the same
number of scans is less diffuse (although it should be noted
that reducing the variance on the EID is not the same as
reducing the variance on the PDF). The evolving PDF and
corresponding EID for both EEDI and IM controllers for a
different trial (similar to those plotted in Fig. 5, but at a
lower noise level), are shown in Fig. 9. The corresponding
EID for each PDF is projected onto a circle as a function of
the sensor angle.

A summary of the performance of the three algorithms
for unmodelled sensor location error is shown in Fig. 6.
The measurement model assumes that the sensor position in

Fig. 3: The number of scans required for the variance of the PDF to meet
the termination criterion is plotted as a function of measurement noise level.

(a) The IM sensor trajectory (b) The EEDI sensor trajec-
tory

Fig. 4: The sensor trajectories calculated using both the IM and EEDI con-
trollers are plotted with the evolving EID (grayscale). For both trajectories,
the variance of the added measurement noise was 0.0016.

(a) IM sensor trajectory (b) EEDI sensor trajectory

Fig. 5: The sensor trajectories calculated using both the IM and EEDI
controllers are plotted with the evolving EID (grayscale). The variance of the
measurement noise was 0.0033. This example illustrates the IM controller
failing in the presence of local maxima in the EID.

the workspace is known exactly; simulations were performed
with a sensor position that was perturbed by various amounts.
For all trials summarized in Figs. 6, the noise level is the
same (added noise variance= 0.0025). All three algorithms
still perform reasonably well when the modeled sensor
location is only slightly perturbed, and all three controllers
fail when the true sensor position is significantly different
from the modeled position. In this scenario, the performance
in terms of estimate error drops off most quickly for the IM
controller as the error in the sensor position increases.

Examples of the IM and EEDI Trajectories, plotted with
the evolving EID, are shown for two different error levels
in Figs. 7 and 8. In Fig. 7, the sensor location is only
slightly perturbed and we see both algorithms converge to
the correct estimate (given the perturbed sensor position). In
Fig. 8, the IM controller converges to the incorrect value as
the error increases. The evolving PDF estimate for the same

Fig. 6: The norm of the estimation error is plotted at different levels of
error between the modeled sensor position and the true (simulated) sensor
position. Measurement noise is held constant at 0.0025.

(a) IM sensor trajectory (b) EEDI sensor trajectory

Fig. 7: The sensor trajectories calculated using both the IM and EEDI
controllers are plotted with the evolving EID (grayscale). The variance of
the measurement noise was 0.0025 and the norm on the sensor position
error was 0.028.

(a) IM sensor trajectory (b) EEDI sensor trajectory

Fig. 8: The sensor trajectories calculated using both the IM and EEDI
controllers are plotted with the evolving EID (grayscale). The variance of
the measurement noise was 0.0025 and the norm on the sensor position
error was 0.14



(a) Initial PDF and EID (b) PDF/EID after 2 IM scans (c) PDF/EID after 4 IM scans (d) Final PDF and EID using IM

(e) Initial PDF and EID (f) PDF/EID after 2 EEDI scans (g) PDF/EID after 4 EEDI scans (h) Final PDF and EID using EEDI

Fig. 9: The evolution of the PDF (grayscale) of the target object in R2 is plotted over the workspace with the EID (colored), at different iterations of the
EEDI algorithm. Dark regions represent a high probability of target location, white a low probability. The EID, a function of the sensor bearing angle, is
also shown projected onto a circle. The locations of the target and distractor objects are indicated by the unfilled black circles. Figures (a)-(d) illustrate
the progression of the PDF and EID using the EEDI algorithm Figures (e)-(h) show the progression using the IM controller, ultimately converging to the
wrong object The additive noise level for this trial was 0.0025.

(a) Initial PDF and EID (b) PDF/EID after 2 EEDI scans (c) PDF/EID after 4 EEDI scans (d) Final PDF and EID using EEDI

Fig. 10: In this example, the simulated measurement level is 0.0025, and the norm on the error between modeled and true sensor position is 0.14 ( 10%
of the workspace). The sensor location used in the EID/PDF measurement model is as indicated by the central black circle, the perturbed sensor location
indicated by the small red circle. These plots correspond to the trajectory in Fig. 8b.

trial shown in Fig. 8b, using the EEDI controller, is shown
in Fig. 10. We see that the ergodic controller produces a
PDF that converges to a value corresponding to the correct
target estimate, offset by the bias in the sensor model. The
IM controller on the other hand (shown in Fig. 8a only)
simply fails to “explore” enough to be robust with levels of
increasing model uncertainty.

B. 2D Target localization: bearing and translation control

We also demonstrate successful target localization, in the
presence of distractors, when controlling both the bearing an-
gle of the sensor and the location (along a single dimension).

In this case, he search space is extended to a 6×1 rectangular
region, where not all points in the region are within range
of the sensor. Three distractor objects were included in the
search space. Each iteration of the EEDI algorithm calculates
a trajectory for a fixed scan time T of 20 seconds. Two
examples of the evolution of the PDF, EID, and the search
trajectories as a function of algorithm iterations are shown in
Fig. 11, for two different noise levels (0.0014 and 0.0017).
Measurements are simulated for each trajectory at 100 Hz,
and the locations of the target and distractor objects were
randomly selected.



(a) PDF, search trajectory, and EID evolution using EEDI, σ2 = 0.0014 (b) PDF, search trajectory, and EID evolution using EEDI, σ2 = 0.0017

Fig. 11: The evolution of the PDF (heatmap), is plotted over the the 6×1 workspace. The position of the sensor is indicated with filled black circles, with
the simulated range scans in green, both potted at 0.1 second intervals. The target object is indicated by the unfilled blue circle, three distractors are shown
as unfilled black circles. The EID evolution, and the ergodic trajectory, are plotted to the right of the PDF at each iteration, over the sensor configuration
space—position x and orientation θ.

V. CONCLUSION

We present a receding horizon control algorithm for active
estimation using mobile sensors. Information theory, the
measurement model, and the belief on the estimates are used
to create a spatial map of expected information gain. Because
the EEDI algorithm performs an optimization based on the
distribution of measurements over a particular scan, the EEDI
is more robust in situations where information maximization
strategies (e.g. high variance or noise, multimodal distribu-
tions) are likely to fail.

The EEDI strategy, because it calculates trajectories based
on a distribution, also seamlessly transitions between sensing
trajectories similar to a uniform sweep strategy (when the
distribution being sampled is uniform) and an information
maximizing strategy (as the distribution approaches a delta
function). This is observed in the series of trajectories,
plotted over the evolving EID in Fig. 11. The information
maximizing controller, on the other hand, requires the belief
to be initialized using a uniform sweep in order to find the
EID maximum. We expect that when the search problem is
extended to higher dimensional sensing spaces—for example
if we are allowed to control the angular position of the sensor
as well as the position in R2—differences in performance

using the different controllers will be even more apparent.
The uniform scan approach becomes increasing inefficient
in higher dimensions, and we expect the higher dimensional
space to result in more local minima in the information space,
resulting in poorer performance of information maximizing
controllers.

In this paper, we make several assumptions for implemen-
tation. We assume a kinematic model for dynamics, although
a major advantage of ergodic trajectory optimization is that
the formulation is suitable for systems with nonlinear motion
constraints. The simulations presented deal exclusively with
localizing a single, stationary target, and the formulation
of ergodic exploration provided here assumes deterministic
dynamics. However, ergodic search generalizes to both time-
varying systems as well as estimation of a continuum of
targets (e.g., fields [21], [42]) in a reasonably straightforward
fashion. Field exploration can be achieved by using an appro-
priate choice of measurement model and belief update in the
EID calculation, and estimation of time-varying parameters
could be achieved by extending the state in Section III-C
to use time as a state. The determinism restriction primarily
makes calculations and exposition simpler; adding stochastic
process noise to the model can be achieved by replacing the
deterministic, finite-dimensional equations of motion with



the Fokker-Planck equations [43] for the nonlinear stochastic
flow, without changing the mathematical formulation of
ergodic control. These extensions will direct future work.
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