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Abstract— Lie group variational integrators have the advan-
tages of both variational and Lie group integrators, which pre-
serve the momentum, symplectic form, holonomic constraints
and the Lie group structure. In addition, their long-time energy
stable behaviour and coordinate-independent nature make it
quite suitable to simulate a variety of mechanical systems. The
structure-preservation of a Lie group variational integrator im-
plies its linearization is structure-preserving as well, thus we call
such a linearization “structured linearization”. However, due to
the implicit nature of variational integrators and the non-trivial
differential structure of Lie groups, the structured linearization
of Lie group variational integrators is much more complicated
than that in generalized coordinates. In this paper, we formulate
the structured linearization of Lie group variational integrators
to synthesize existing analysis and control tools. To illustrate the
utility of the paper, LQR controllers are constructed directly
on constrained Lie groups for the asymmetric 3D pendulum
and quadrotor with a suspended load, simulation results show
that both controllers have a large basin of attraction.

Index-Terms— structured linearization; Lie groups; varia-
tional integrators; LQR.

I. INTRODUCTION

Different from the usual approach to simulate mechanical
systems, which first derives continuous dynamic equations
through the Lagrange-d’Alembert principle and then dis-
cretizes the system to yield a numerical integrator, varia-
tional integrators approximates the action integral discretely
and employ the discrete Lagrange-d’Alembert principle to
obtain the update rule for the discrete trajectory [1], [2].
Compared with other numerical integrators, variational inte-
grators preserve the momentum, symplectic form and holo-
nomic constraints [1]. Most importantly, though the energy is
not preserved, the variational integrator demonstrates the be-
havior of long-time energy stability, which is very important
to simulate complex systems [3]–[5]. Recently increasing
attention has been paid to Lie group variational integrators
[6]–[11]. Besides preserving motion invariants, Lie group
variational integrators also preserve the Lie group structure
and do not have the problem of singularity [10].

Linearization is one of the most important and frequently-
used techniques in both analysis and control, such as op-
timization, stability analysis, LQR regulators etc.. One of
the things that interest us most is the linearization of varia-
tional integrators. Due to the structure-preserving properties,
the linearization of variational integrators, in particular Lie
group variational integrators, remains structure-preserving,
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which we call “structured linearization”. Though structured
linearization of variational integrators in generalized co-
ordinates has been studied in [12], little work has been
done to the structured linearization of Lie group variational
integrators. In fact, the structured linearization of variational
integrators on non-abelian Lie groups is much more com-
plicated due to the non-trivial differential structure. As a
comparison, linearization of the other Lie group integrators
is relatively trivial.

Continuous-time linearization of Lie group dynamical
system has been studied in [13] through perturbation theory,
which derives and then linearizes the control-input-perturbed
trajectory in exponential coordinates. Another way to derive
continuous-time linearization is to linearize the approximate
discrete-time system and take limits of the resulting lin-
earized dynamics as the time step approaches zero.

The main contribution of this paper is the derivation
of structured linearization of discrete mechanical systems
on Lie groups, including constraints, and compared with
other (structured) linearization techniques in generalized
coordinates, there is no need to do chart switching to avoid
singularity. The secondary contribution is to illustrate how
structured linearization enables one to use classical control
synthsis for vector spaces directly on Lie groups, even when
the Lie group is non-abelian. We illustrate these results with
a demonstration of classical LQR theory applied to examples.

The organization of the paper is as following: Section II
provides some background information for Lie group vari-
ational integrators. Section III derives the structured lin-
earization and the exact expressions of derivative terms used
in structured linearization. In Section IV LQR controllers
for two examples, the asymmetric 3D pendulum and the
quadrotor with a suspended load, are presented, which
demonstrates the utility of the paper.

II. LIE GROUP VARIATIONAL INTEGRATORS

A. Preliminaries

Instead of focusing on a certain type of motion group, such
as R3, SO(3) or SE(3), we’ll represent the n-dimensional
configuration space Q as the direct product G1 × G2 ×
· · · ×Gn of motion groups Gi. Nearly all finite-dimensional
mechanical systems can be depicted in this way and it
will be particularly useful for mechanical systems comprised
of interconnected rigid bodies. Moreover, the configuration
space Q itself can also be regarded as a Lie group (more
definitely, matrix Lie group), whose topological, geometric
and Lie group properties can be obtained exactly from each
Gi through the direct product representation. In addition,



TeQ, i.e. the Lie algebra of Q, is the direct sum TeG1 ⊕
TeG2⊕· · ·⊕TeGn of Lie algebra TeGi for each Gi. And if
a basis Bi = {E1

i , E
2
i , · · ·E

ai
i } is specified to each TeGi

(dimGi = ai), the disjoint union B =
∐
i

Bi forms a basis

for TeQ as well. The dual space T ∗eQ of TeQ and its basis
can also be defined in a similar way.

Given a smooth map F : Q −→M from Lie group Q to
smooth manifold M , we can define a linear operator∇qF

∣∣
q

:
TeQ −→ TF (q)M such that

∇qF
∣∣
q
· η =

d

ds
F (q · exp(sη)) ∈ TF (q)M

for all η ∈ TeG. If corresponding bases are specified for TeG
and TF (q)M , then ∇qF |q can be represented as a Jacobian
matrix. It could be found later that ∇qF |q is the most basic
operator for structured linearization in both derivation and
numerical computation. For brevity, the dependence |q will
be dropped and ∇qF |q will be simply written as ∇qF .

In this paper, we assume readers have a basic knowledge
of Lie group theory, which can be found in a variety of
textbooks, e.g. [14].

B. The Continuous Lie Group Dynamics

There is an abundance of literature on Lie group dynamics,
such as [15]–[17]. Here we only give a brief introduction to
provide some background information.

In Lie group context, the Lagrangian on the configuration
space Q is a R-valued function L : Q × TeQ −→ R such
that given (g, ξ) = (g, g−1ġ) ∈ Q × TeQ, the Lagrangian
L(g, ξ) is defined to be

L(g, ξ) := K(g, ξ)− V (g)

where K(g, ξ) is the kinematic energy and V (g) is the
potential energy.

Given a generalized control force f ∈ T ∗eQ, the Lagrange-
d’Alembert Principle requires that∫ T

0

〈∇gL, η〉+ 〈∇ξL, δξ〉 dt+

∫ T

0

〈f, η〉 dt = 0

where η = g−1δg ∈ TeG and 〈, 〉 is the innerproduct pairing
vector and dual-vector. It is not hard to derive the relation
of δξ and η:

δξ = η̇ + adξη. (1)

Hence we have

d

dt
∇ξL− ad∗ξ∇ξL = ∇gL+ f (2)

where adξη = ξη − ηξ and ad∗ξ : T ∗eQ −→ T ∗eQ is a linear
operator such that 〈ad∗ξµ, η〉 = 〈µ, adξη〉 for any ξ ∈ TeQ
and µ ∈ T ∗eQ.

One thing we should mention is that these equations may
fail to hold if Q is not a matrix Lie group.

C. The Variational Integrator on Lie Groups

Instead of discretizing continuous equations of motion,
which is the case for a number of numerical integrators,
e.g. Runge-Kutta method, the variational integrator is de-
rived through the discretization of the Lagrange-d’Alembert
Principle [1], [2], [18], [19].

Like variational integrator in generalized coordinates, the
trajectory on Lie group is discretized through certain approx-
imation

Ld(gk, gk+1) ≈
∫ (k+1)∆t

k∆t

L(g, ξ) dt.

To do this is, we can find a map τ : TeQ −→ Q so that τ is
invertible around the origin and the tangent map at the origin
is the identity map. If such a τ exists, the “average velocity”
can be estimated as ξk ≈ τ−1(gk

−1gk+1)
∆t and the action

integral
∫ (k+1)∆t

k∆t
L(g, ξ) dt can be approximated through

the trapezoid rule

Ld(gk, gk+1) :=
∆t

2
[L(gk, ξk)︸ ︷︷ ︸

=:

L1

+L(gk+1, ξk)︸ ︷︷ ︸

=:

L2

]. (3)

In fact, we can always find such a map τ and a more formal
definition is given as follows [6].

Definition II.1. [6] The retraction map τ : TeQ −→ Q on
a Lie group Q is a C2- diffeomorphism around the identity
such that τ(0) = I and the tangent map at the origin Dτ |0 :
TeQ −→ TeQ is the identity map1.

It can be easily checked the exponential map exp :
TeQ −→ Q is a retraction map. Another choice is the Cayley
map cay : TeQ −→ Q where

cay(ξ) = (I− ξ

2
)−1(I +

ξ

2
).

Before applying the discrete Lagrange-d’Alembert Princi-
ple, we also ought to relate the velocity variation δξk ∈ TeQ
with the configuration variations ηk, ηk+1 ∈ TeQ, where
ηk = g−1

k δgk, as Eq. (1) in continuous settings. However,
this is not trivial and some operators are needed to derive
this relation.

Definition II.2. [6]–[8] Given a retraction map τ : TeQ −→
Q on Lie group Q, the right trivialized tangent dτξ :
TeQ −→ TeQ and the right trivialized tangent inverse
dτ−1
ξ : TeQ −→ TeQ are defined to be linear operators

such that for any η, η′ ∈ TeQ we have

dτξ|η · η′ · τ(η) = ∇ξτ |η · η′ (4)

dτ−1
ξ |η · (η

′ · τ(−η)) = ∇ξτ−1|η · η′. (5)

For the exponential map, we have [20]

d expx y =

∞∑
j=0

1

(j + 1)!
adjxy

1The requirement that Dτ |0 is the identity map is important because it

ensures
K(gk, ξk) +K(gk+1, ξk)

2
∆t ≈

∫ (k+1)∆t
k∆t K(g, ξ) dt.



d exp−1
x y =

∞∑
j=0

Bj
j!

adjxy

where Bj are Bernoulli numbers and for the Cayley map

dcayxy = (I− x

2
)−1y(I +

x

2
)−1

dcay−1
x y = (I− x

2
)y(I +

x

2
).

Note if the corresponding Lie group is abelian, then
d expx, d exp−1

x , dcayx and dcay−1
x are all identity maps,

which is the case in coordinates.
Eqs. (4) and (5) are very useful, in particular Eq. (5) and its

derivatives will be frequently used in derivation of structured
linearization on Lie groups in this paper.

By taking derivatives on ξk ≈ τ−1(gk
−1gk+1)

∆t and then
applying Eq. (5), the velocity variation and configuration
variation can be related as follows

δξk =
1

∆t
· dτ−1

ξ∆t(−ηk + Adτ(ξ∆t)ηk+1) (6)

where Adg : TeQ −→ TeQ is a linear operator such that
Adgξ = gξg−1 for any g ∈ Q and ξ ∈ TeQ, .

Now we can apply the discrete Lagrange-d’Alembert
Principle to derive the update rule for Lie group variational
integrators. If the system is unforced, we have

δ

N−1∑
k=0

Ld(gk, gk+1) = δ

N−1∑
k=0

L(gk, ξk) + L(gk+1, ξk)

2
= 0,

hence

D2Ld(gk−1, gk) +D1Ld(gk, gk+1) = 0 (7)

where

D1Ld(gk, gk+1)=
∆t

2
· ∇gL1−

1

2
dτ−1
ξ∆t

∗ · (∇ξL1 +∇ξL2)

D2Ld(gk, gk+1)=
∆t

2
·∇gL2+

1

2
Ad∗τ(ξ∆t)·dτ−1

ξ∆t

∗·(∇ξL1+∇ξL2).

The star operators (#)∗ appear in D1Ld and D2Ld is defined
in the same way as ad∗ξ in Eq. (2).

In this paper we prefer to rewrite Eq. (7) in an equivalent
position-momentum form only depending on the current and
future time steps, so we have a one-step map, which results
the update rule

pk +D1Ld(gk, gk+1) = 0 (8a)

pk+1 = D2Ld(gk, gk+1) (8b)

where pk, D1Ld(gk, gk+1), D2Ld(gk, gk+1) ∈ T ∗eQ.
Taking the same approach, we can also get the update

rules of Lie group variational integrators for forced systems

pk +D1Ld(gk, gk+1) + F−k+1 = 0 (9a)

pk+1 = D2Ld(gk, gk+1) + F+
k+1 (9b)

and constrained forced systems

pk +D1Ld(gk, gk+1) + F−k+1 −Dh
T (gk)λk = 0 (10a)

h(gk+1) = 0 (10b)

pk+1 = D2Ld(gk, gk+1) + F+
k+1. (10c)

Eqs. (9) and (10) will be used to derive structured lineariza-
tion in Section III.

D. Conclusion

In this section, we reviewed the continuous Lie group dy-
namics and derived the update rules for Lie group variational
integrators. We also introduced the idea of retraction map,
right trivialized tangent and the right trivialized tangent in-
verse. The right trivialized tangent inverse will be frequently
used in the derivation of the structured linearization. For
more details about Lie group variational integrators as well as
other approaches to derive the update rule, interested readers
can refer to [6]–[11].

III. STRUCTURED LINEARIZATION

A. An Application of Right Trivialized Tangent Inverse

With the help of the right trivialized tangent inverse, we
successfully relate the velocity and configuration variations.
In fact, we can go much further than that, which the
following proposition indicates.

Proposition 1. Given a matrix Lie group and a C2 map
Fd(gk, gk+1) : G × G −→ Rn, if there exists another C2

map F (gk, gk+1, ξ) : G × G × TeG −→ Rn, a retraction
map τ : TeG −→ G and ∆t ∈ R+ satisfying2

Fd(gk, gk+1) = F (gk, gk+1,
1

∆t
τ−1(g−1

k gk+1)),

then there exists Rn-valued forms D1Fd and D2Fd on TeG

D1Fd = ∇gkF −
1

∆t
· dτ−1

ξ∆t

∗ ◦ ∇ξF (11a)

D2Fd = ∇gk+1
F +

1

∆t
· Ad∗τ(ξ∆t) ◦ dτ−1

ξ∆t

∗ ◦ ∇ξF. (11b)

such that δFd = 〈D1Fd, ηk〉+ 〈D2Fd, ηk+1〉.

The proof of Proposition 1 is simply to take variation and
then apply Eq. (6).

In Eq. (11) linear operators ∇#F are essentially Rn-
valued forms on TeG, i.e. linear maps from Lie algebra TeG
to Rn.

With Proposition 1 it is possible for us to continue taking
derivatives on these update rules and derive the structured
linearization.

B. Derivation of Structured Linearization on Lie Groups

Here we will work on the structured linearization of the
update rules for forced systems (Eqs. (9a) and (9b)).

To make our derivation fully make sense, we need to
first clarify the meaning and interpretation of each term in
Eqs. (9a) and (9b). Though the derivation of Eq. (9) implies
all these terms, i.e. pk, D1Ld(gk, gk+1), F−k+1 etc., are R-
valued forms on TeQ (elements in T ∗eQ), we’ll interpret
them as Rn-valued functions to apply Proposition 1. This

2We suppose τ−1(g−1
k gk+1) always exists.



interpretation doesn’t lose any generality since as long as
the expression of these Rn-valued functions under one basis
of TeG is known, their expressions under other bases will be
uniquely determined through basis transformation matrices.

For simplicity, we’ll denote Ld(gk, gk+1) as Lk+1.
By Proposition 1, we take variation of Eq. (9a)

〈I, δpk〉+ 〈D1D1Lk+1 +D1F
−
k+1, ηk〉+

〈D2D1Lk+1 +D2F
−
k+1, ηk+1〉+

〈D3F
−
k+1, δuk〉 = 0.

(12)

Based on our interpretation of terms in Eqs. (9a) and (9b),
terms like D1D1Lk+1, D2D1Lk+1, D1F

−
k+1 in Eq. (12) are

Rn-valued forms on TeG.
Without loss of generality, let Mk+1 = D2D1Lk+1 +

D2F
−
k+1 and ηk+1 = ∂gk+1

∂gk
ηk + ∂gk+1

∂pk
+ ∂gk+1

∂uk
δuk, where

∂gk+1

∂gk
, ∂gk+1

∂pk
and ∂gk+1

∂uk
are tangent maps to TeQ, we can

write Eq. (12) as

〈I +
(
∂gk+1

∂pk

)∗
◦Mk+1, δpk〉+

〈D1D1Lk+1 +D1F
−
k+1 +

(
∂gk+1

∂gk

)∗
◦Mk+1, ηk〉+

〈D3F
−
k+1 +

(
∂gk+1

∂uk

)∗
◦Mk+1, δuk〉 = 0

which is equivalent to(
∂gk+1

∂gk

)∗
◦Mk+1 +D1D1Lk+1 +D1F

−
k+1 = 0 (13a)(

∂gk+1

∂pk

)∗
◦Mk+1 + I = 0 (13b)(

∂gk+1

∂uk

)∗
◦Mk+1 +D3F

−
k+1 = 0. (13c)

If Mk+1 is non-singular, ∂gk+1

∂gk
, ∂gk+1

∂pk
and ∂gk+1

∂pk
is well

defined from Eq. (13).
To make Eq. (13) computable, bases for corresponding

vector spaces should be specified. Here we adopt the con-
vention in differential geometry, where elements in TeQ are
column vectors, elements in T ∗eQ are row vectors and Rm-
valued forms on n-dimensional vector spaces are m × n
matrices. Then Eq. (13) can be rewritten as

Mk+1 · ∂gk+1

∂gk
+D1D1Lk+1 +D1F

−
k+1 = 0

Mk+1 · ∂gk+1

∂pk
+ I = 0

Mk+1 · ∂gk+1

∂uk
+D3F

−
k+1 = 0.

If Mk+1 = D2D1Lk+1 +D2F
−
k+1 is invertible, we have

∂gk+1

∂gk
= −M−1

k+1 · [D1D1Lk+1 +D1F
−
k+1] (15a)

∂gk+1

∂pk
= −M−1

k+1 (15b)

∂gk+1

∂uk
= −M−1

k+1 ·D3F
−
k+1. (15c)

Taking the same approach to Eq. (9b) and substituting
Eq. (15), we can get ∂pk+1

∂gk
, ∂pk+1

∂pk
and ∂pk+1

∂uk

∂pk+1

∂gk
= D1D2Lk+1 +D1F

+
k+1+

[D2D2Lk+1 +D2F
+
k+1] · ∂gk+1

∂gk

(16a)

∂pk+1

∂pk
= [D2D2Lk+1 +D2F

+
k+1] · ∂gk+1

∂pk
(16b)

∂pk+1

∂uk
= D3F

+
k+1 + [D2D2Lk+1 +D2F

+
k+1] · ∂gk+1

∂uk
. (16c)

Eqs. (15) and (16) are exactly the structured linearization for
forced systems, which will be used to design LQR controllers
in Section IV.

C. Derivatives Computation

Though Eqs. (15) and (16) look the same as structured
linearization of mechanical systems in generalized coordi-
nates [12], the computation of derivatives, such as D1D1Ld,
D2D1Ld, D2D2Ld, are not so trivial if Q is a non-abelian
Lie group.

If the trapezoid rule (Eq. (3)) is used, the first derivatives
are

D1Ld(gk, gk+1)

=
∆t

2
· ∇gL1 −

1

2
dτ−Tξ∆t · (∇ξL1 +∇ξL2)

D2Ld(gk, gk+1)

=
∆t

2
· ∇gL2 +

1

2
AdTτ(ξ∆t) · dτ−Tξ∆t · (∇ξL1 +∇ξL2).

For second derivatives D(·)D(∗)Ld, we have

D1D1Ld(gk, gk+1)

=
∆t

2
∇2
gL1 −

1

2
dτ−Tξ∆t · ∇g∇ξL1 −

1

2
∇ξ∇gL1 · dτ−1

ξ∆t+

1

2∆t

[
dτ−Tξ∆t · (∇

2
ξL1 +∇2

ξL2)+

(∇Tξ L1 ⊗ I +∇Tξ L2 ⊗ I) · ∂ξ(dτ−Tξ∆t)
S
]
· dτ−1

ξ∆t

D2D1Ld(gk, gk+1)

=− 1

2
dτ−Tξ∆t · ∇g∇ξL2 +

1

2
∇ξ∇gL1 · dτ−1

ξ∆t · Adξ∆t−
1

2∆t

[
dτ−Tξ∆t · (∇

2
ξL1 +∇2

ξL2)+

(∇Tξ L1 ⊗ I +∇Tξ L2 ⊗ I)·∂ξ(dτ−Tξ∆t)
S
]
·dτ−1

ξ∆t ·Adξ∆t

D1D2Ld(gk, gk+1) = D2D1Ld(gk, gk+1)T

D2D2Ld(gk, gk+1)

=
∆t

2
∇2
gL2 +

1

2
AdTτ(ξ∆t) · dτ−Tξ∆t · ∇g∇ξL2+

1

2
∇ξ∇gL2 · dτ−1

ξ∆t · Adτ(ξ∆t)+

1

2∆t

[
AdTτ(ξ∆t) · dτ−Tξ∆t · (∇

2
ξL1 +∇2

ξL2)+

(∇Tξ L1 ⊗ I +∇Tξ L2 ⊗ I) · ∂ξ(AdTτ(ξ∆t) · dτ−Tξ∆t)
S
]
·

dτ−1
ξ∆t · Adτ(ξ∆t)

where “⊗” is the Kronecker product and “(·)S” is the stack
operator [21]. If Q is abelian, these derivatives will be
reduced to the case of multi-variable calculus.



Note even if the commutativity of Lie algebra elements
in the same TeGi may not hold, the Lie algebra elements in
TeGi is always commutative with these in TeGj if i 6= j.
This means the computational process can be simplified by
computing the derivatives in terms of blocks.

Let blocks of derivatives for Lagrangian L : Q×TeQ −→
R associated with Gi and Gj be denoted as follows

∇(·)iL =
[
∇(·)1iL (∇(·)2iL · · · ∇(·)ai

i
L
]T
ai×1

∇(·)i∇(#)jL=


∇(·)1i∇(#)1j

L · · · ∇(·)ai
i
∇(#)1j

L
...

. . .
...

∇(·)1i∇(#)
aj
j
L · · · ∇(·)ai

i
∇

(#)
aj
j
L


aj×ai

where “·” or “#” are either E as derivatives taken in Gi3 or
ξ as derivatives taken in TeGi. Then we have

[D1Ld(gk, gk+1) ]i

=
∆t

2
∇EiL1 −

1

2
dτ−Tξi∆t · (∇ξiL1 +∇ξiL2)

[D2Ld(gk, gk+1) ]i

=
∆t

2
∇EiL2 +

1

2
AdTτ(ξi∆t)

· dτ−Tξi∆t · (∇ξiL1 +∇ξiL2).

And for second derivatives

[D1D1Ld(gk, gk+1)]i,j

=
∆t

2
∇Ei
∇Ej

L1 −
1

2
dτ−Tξj∆t · ∇Ei

∇ξjL1−
1

2
∇ξi∇Ej

L1 · dτ−1
ξi∆t

+

1

2∆t
dτ−Tξj∆t · (∇ξi∇ξjL1 +∇ξi∇ξjL2) · dτ−1

ξi∆t
+

δi,j
2∆t

(∇TξiL1 ⊗ I +∇TξiL2 ⊗ I) · ∂ξi(dτ−Tξi∆t)
S · dτ−1

ξi∆t

[D2D1Ld(gk, gk+1)]i,j

=− 1

2
dτ−Tξj∆t · ∇Ei∇ξjL2 +

1

2
∇ξi∇EjL1 · dτ−1

ξi∆t
· Adξi∆t

− 1

2∆t
· dτ−Tξj∆t · (∇ξi∇ξjL1 +∇ξi∇ξjL2)·dτ−1

ξi∆t
·Adξi∆t

− δi,j
2∆t

(∇TξiL1 ⊗ I +∇TξiL2 ⊗ I)·∂ξi(dτ−Tξ∆t)
S

·dτ−1
ξi∆t
·Adξi∆t

[D1D2Ld(gk, gk+1)]i,j = [D2D1Ld(gk, gk+1)]Tj,i

3∇Ei
denotes derivatives of Lie algebra elements in TeGi ⊂ TeQ

whereas ∇g are derivatives of elements from the whole TeQ.

[D2D2Ld(gk, gk+1)]i,j

=
∆t

2
∇Ei∇EjL2 +

1

2
AdTτ(ξj∆t) · dτ−Tξj∆t · ∇Ei∇ξjL2+

1

2
∇ξi∇EjL2 · dτ−1

ξi∆t
· Adτ(ξi∆t) +

1

2∆t
AdTτ(ξj∆t)·

dτ−Tξj∆t · (∇ξi∇ξjL1 +∇ξi∇ξjL2) · dτ−1
ξi∆t
· Adτ(ξi∆t)+

δi,j
2∆t

(∇TξiL1 ⊗ I +∇TξiL2 ⊗ I) · ∂ξi(AdTτ(ξi∆t)
· dτ−Tξi∆t)

S ·

dτ−1
ξi∆t
· Adτ(ξ∆t).

Note if i 6= j, [D(·)D(·)]i,j = [D(·)D(·)]
T
j,i; and if Gi is

abelian, [D(·)D(·)]i,i = [D(·)D(·)]
T
i,i.

D. Structured Linearization of Constrained Systems

For constrained systems, the Lie group variational inte-
grator firstly solves Eqs. (10a) and (10b) to get gk+1 and
λk, and then updates the discrete momentum pk+1 through
Eq. (10c).

The structured linearization of constrained systems on Lie
groups is quite similar to that in generalized coordinates
[12]. Here we only take ∂gk+1

∂gk
as an example and the other

components can be obtained with the same approach.
The Lagrange multipliers only depend on gk, pk and uk,

so by taking variation on Eqs. (10a) and (10b), we can get
∂gk+1

∂gk
= −M−1

k+1[Cgk −DhT (gk)∂λk

∂gk
] (17)

Dh(gk+1)∂gk+1

∂gk
= 0 (18)

where Cgk = D1D1Lk+1 +D1F
−
k+1 −D2hT (gk)λk.

Substitute Eq. (17) to Eq. (18):

Dh(gk+1)·M−1
k+1 ·Dh

T (gk)∂λk

∂gk
−Dh(gk+1)·M−1

k+1 ·Cgk = 0

If Dh(gk+1) ·M−1
k+1 ·DhT (gk) is invertible, we have

∂λk

∂gk
=[Dh(gk+1)M

−1
k+1Dh

T(gk)]−1Dh(gk+1)M−1
k+1Cgk (19)

and then substitute Eq. (19) back to Eq. (17), ∂gk+1

∂gk
is well

defined.

IV. IMPLEMENTATION

In this section, we implement the derived structure lin-
earization on two examples: the asymmetric 3D pendulum
[22]–[25] and the quadrotor with a suspended load [26]–[28],
which synthesizes the current analysis and control tools. Both
systems have been studied extensively by the robotic commu-
nity and various controllers have been designed by exploring
the system dynamics. Instead of suggesting new control
methods, we apply LQR controllers constructed through
structured linearization to these systems. The simulation
results show these LQR controllers work very well and have
a large basin of attraction. Especially for the asymmetric 3D
pendulum, the LQR controller never fails in our tests.

In the simulation we choose the Cayley map rather than
the more standard exponential map as the retraction. The
Cayley map is a 3rd approximation of the exponential map,
i.e. cay(ξ) = exp(ξ) + O(‖ξ‖3), and most importantly, it
doesn’t involve trigonometric functions and the derivatives
are much easier to compute [6].



A. LQR Control on Lie Groups

LQR control is one of the most commonly-used methods
in trajectory tracking. For a discretized reference trajectory
(gkd , pkd) on Lie groups, where gkd ∈ Q and pkd is the
discrete momentum (Eq. (9b)), the LQR problems can be
formulated as seeking control inputs u∗k to minimize the
quadratic cost

V (x0, µ(·)) =

N−1∑
k=0

[xTkQkxk +µTkRkµk] + xTNQNxN (20)

subject to the linearized dynamics

xk+1 = Akxk +Bkµk (21)

where Qk, Rk are positive-definite and symmetric, xk and
µk are perturbations from the desired trajectory

xk =

[
log(g−1

kd
gk)

pk − pkd

]
and µk = uk − ukd .

Here the operation log(·) is obtained from the logarithm op-
eration on each Gi through the direct product representation.

Similar to vector spaces 4, LQR controllers on Lie groups
are also obtained by solving the discrete Ricatti equation and
the control law is [29]:

u∗k = ukd −Kkxk

where Kk is found iteratively backwards in time:

Kk = (Rk +BTk Pk+1Bk)−1BTk Pk+1Ak

Pk = KTkRkKk +Qk + (Ak −BkKk)TPk+1(Ak −BkKk)

PN = QN .

B. Example: The Forced Asymmetric 3D Pendulum

The 3D pendulum is a rigid body supported by a fixed
pivot point having three rotation freedoms and acted upon
by a uniform gravity force as well as some control and
disturbance forces, whose configuration space is SO(3).
Literatures about dynamics and control of the 3D pendulum
can be found in [22]–[25].

Some papers about the control of axially symmetric 3D
pendulum have been published [24], in which case the
model is reduced to a 2D spherical pendulum. However, the
asymmetric 3D pendulum, whose three principal moments
of inertia are distinct and center of mass is not at the pivot
location, demonstrates much richer and much more complex
dynamics, which is very hard to control. Though in [30]
it is proved that the hanging and inverted equilibrium of
the asymmetric 3D pendulum is asymptotically stable, there
seems still a lack of robust controllers to do trajectory track-
ing. Here we employ LQR controllers to track trajectories of
the asymmetric 3D pendulum, which performs very well.

4Essentially the perturbation component ηk = log(g−1
kd
gk) is pulled

pack from the tangent space at gk through g−1
k . Hence, though all ηk

are Lie algebra elements in TeQ, they should have different geometric
meanings if Q is non-abelian. However, this difference has no influence
on the construction of the LQR controller.

Fig. 1: Stabilize the 3D pendulum to the inverted equilibrium.
The pendulum marked by red is at the inverted equilibrium
while pendulums of the other colors denote different initial
conditions. The solid lines are tip trajectories of the pendu-
lum.

The dynamic equations used are from [23]. The sim-
ulation example is an axially asymmetric one with J =
diag[3, 7, 4]kg · m2, m = 1kg and L = 1.5m. The system
has 3-dimensional control inputs that are torques exerted on
the pendulum body frame. Through structured linearization
we can get Ak, Bk in Eq. (21) and then construct the LQR
controller with diagonal matrices for each cost matrix with
an entry of 100 for the configuration variables and identity
everywhere else.

The first test is to stabilize the pendulum to the inverted
equilibrium (Fig. 1). The second test is to track the trajectory
of an unforced pendulum with random initial position and
angular velocity. Note that the reference angular velocity
(Fig. 2(b)) is no longer periodical. We also construct a LQR
controller through structured linearization in Euler angles
with trep [31] as comparison, which works well with
relatively small initial errors but fails if the perturbed initial
condition is far away from the referenced one (Fig. 2(c)).
From both examples, it can be seen clearly that the controller
can stabilize the system even with large initial errors, as listed
in Figs. 1 and 2.

C. Example: Quadrotor with a Suspended Load

The quadrotor with a suspended load (Fig. 3) has been
studied in [26]–[28]. This system is differentially flat with
the quadrotor yaw angle and the load position as flat outputs.
In [26], [27] a controller is designed to track the flat outputs,
which leads to the tracking of all states.

Here we model it as a constrained system whose config-
uration space is (R, xq, xL) ∈ SO(3) × R3 × R3, where
(R, xq) is the attitude and position of the quadrotor and



(a) Tracking performance of the pendulum
attitude

(b) Tacking performance of the angular veloc-
ity

(c) Failture of an LQR controller constructed
with XY Z Euler angles, the angular velocity
error ‖ω − ωd‖ rises very quickly

Fig. 2: Track a randomly generated trajectory of a unforced 3D pendulum. The reference initial condition is αd =
−0.30, βd = −0.37, γd = 0.55 and ωd = [−0.14 − 0.47 0.62]T rad/s while the perturbed initial condition is
α = 0.30, β = 1.12, γ = −2.70 and ω0 = [3.48 1.14 0.05]T rad/s, where αd, βd, γd and α, β, γ are roll, pitch,
yaw of XY Z Euler angles.

(a) Tracking performance of the quadrotor at-
titude

(b) Tacking performance of the quadrotor po-
sition

(c) Tacking performance of the load position

Fig. 4: Trajectory tracking of the quadrotor with suspended load. The reference initial condition is αd = 0, βd = 0, γd = 0,
xqd = [0 0 1.5]T m, xld = [0 0 0]T m while the perturbed initial condition is α = 0.23, β = −0.32, γ = 0.49,
xq = [−1.15 0.28 2.411]T m, xl = [−0.98 0.38 0.93]T m, where αd, βd, γd and α, β, γ are roll, pitch, yaw of XY Z
Euler angles.

Fig. 3: A quadrotor with a suspended load.

xL is the position of the suspended load [26], [27], with
the constraint ‖xq − xL‖ = L imposed. Here we adopt
a simplified quadrotor model whose control inputs are the
rotor angular velocities ωi (i = 1, 2, 3, 4) and assume the
cable is always in tension. Note by choosing angular velocity
ωi instead of the square of rotor angular velocities ω2

i as

inputs, the LQR controller captures an important feature of
quadrotor dynamics that downward forces can’t be exerted
on the quadrotor body, which is neglected in some papers
on quadrotor control.

In our simulation, a LQR controller is constructed with
diagonal matrices for each cost matrix with an entry of 50 for
the configuration variables, 2 for control inputs and identity
everywhere else. The reference flat outputs xL and yaw
angle γ are all trigeometric functions and then the system
is linearized around the reference trajectory by structured
linearization for constrained systems. The performance of
the LQR controller is as Fig. 4, which successfully tracks all
states of the system despite the relatively large initial errors
as listed in the caption of Fig. 4.

V. CONCLUSION

In this paper we derive structured linearization for forced
and constrained mechanical systems on Lie groups, assuming
that a variational integrator is used to represent time evo-



lution. We demonstrate that vector space methods can be
directly applied to the control of mechanical systems on Lie
groups, even when the Lie group is non-abelian. Lastly we
use two motivated example systems - the asymmetric 3D
pendulum and quadrotor with a suspended load to indicate
the utility of these methods.
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