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Abstract— Autonomous active exploration requires search
algorithms that can effectively balance the need for workspace
coverage with energetic costs. We present a strategy for plan-
ning optimal search trajectories with respect to the distribution
of expected information over a workspace. We formulate an
iterative optimal control algorithm for general nonlinear dy-
namics, where the metric for information gain is the difference
between the spatial distribution and the statistical representa-
tion of the time-averaged trajectory, i.e. ergodicity. Previous
work has designed a continuous-time trajectory optimization
algorithm. In this paper, we derive two discrete-time iterative
trajectory optimization approaches, one based on standard first-
order discretization and the other using symplectic integration.
The discrete-time methods based on first-order discretization
techniques are both faster than the continuous-time method in
the studied examples. Moreover, we show that even for a simple
system, the choice of discretization has a dramatic impact on
the resulting control and state trajectories. While the standard
discretization method turns unstable, the symplectic method,
which is structure-preserving, achieves lower values for the
objective.

I. INTRODUCTION

Autonomous active exploration relies on the development
of efficient search algorithms. In exploration, there is a
constant tradeoff between coverage of the search area and
energetic cost. In an ideal setting, where there are no limits
on energy or time, the robot would explore the entire search
area, taking a large number of high quality measurements
everywhere in the domain. There are many methods that use
this goal to derive uniform coverage strategies [6]. However,
in applications, there is a cost for time and energy expendi-
ture. Uniform coverage strategies may produce trajectories
that are energetically expensive or dynamically infeasible
for the sensor to perform. Also, coverage does not take
into account the potential need to revisit an area or to take
a higher density of measurements in a particular region.
These realistic limits drive the need for search strategies
that efficiently explore a region taking into account the
information density of the space.

Previous work has developed a method of generating
continuous-time, dynamically constrained search strategies.
We use projection-based trajectory methods to derive trajec-
tories that distribute the measurements proportional to the
spatial distribution of the expected information method [18],
[19]. However, this continuous method nominally requires
the exact solution of a differential equation, which makes the
numerical implementation of the algorithm rely on numerical
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approximations. In this work, we develop a method of
generating dynamically constrained search strategies using
an analogous discrete method. We assume one knows the dis-
tribution of information in a given workspace. We choose to
use an ergodic metric representing the difference between the
time-averaged behaviour and the spatial probability density
function of the information density, as defined by Mathew
and Mezic [16], described in Section III.

In application scenarios such as underwater exploration by
autonomous robots (see e.g. [21]), ergodic control problems
have to be solved iteratively on a receding horizon in order to
take into account the updated information density. Therefore,
efficient algorithms are needed that provide fast system
simulations even for complex dynamics. For this reason, first-
order methods, typically the explicit Euler scheme, are cho-
sen to replace time-consuming simulations with higher-order
numerical integration methods. However, the explicit Euler
scheme is known to provide bad state reconstructions and
turns unstable when used with large step-sizes. Thus, in this
contribution, we also study the combination of the discrete-
time trajectory optimization with a variational integrator of
first order, the symplectic Euler integrator. Unlike standard
integration schemes, variational integrators are derived from
mechanical variational principles, and therefore preserve sys-
tem structures such as symplecticity, symmetry/momentum,
constraints, statistical properties, and have a good long-term
energy behavior [8], [15]. Our simulation results show that
the symplectic Euler scheme leads to an ergodic control
method which is computationally efficient and provides
reliable trajectories.

We begin with a discussion of related work in Section II.
We then describe ergodicity as a metric for representing
information density in Section III. Section IV includes an
overview of ergodic trajectory optimization in continuous
time, as presented in previous work, and in discrete time. It
also includes a brief overview of integration schemes used in
this work (explicit Euler and symplectic Euler). We present
numerical examples in Section V, including comparisons
between continuous-time and discrete-time ergodic trajectory
optimization using different integration schemes.

II. RELATED WORK

The quality of measurements depends on the sensors,
and may relate to their distance, orientation, or motion [4],
[22]. Informative planning methods have employed different
metrics to encode information density and quality of mea-
surements in a search space, and algorithms seek to optimize
their control strategies with respect to these metrics. Some
have used Shannon entropy [2], [23], mutual information



[14], or Fisher Information [17] to represent the information
density.

Methods of exploring search spaces typically involve
balancing the exploration of the space with the feasibility
and cost of the control effort. Some methods of deter-
mining search strategies highly prioritize exploration (i.e.,
lawnmower search strategies [6]), typically incurring high
control costs or producing trajectories that are infeasible
when considering the dynamics of the system. Instead, many
methods use different techniques to balance the control cost
with the search trajectory.

Most methods require an expectation of the belief and
control, which is computationally expensive, requiring dif-
ferent strategies to make them computationally tractable.
Some methods require the decomposition or discretization
of the workspace to represent the workspace in a tractable
setting [6]. Other methods build the control trajectory it-
eratively by determining the next, single optimal control
step locally, rather than optimizing the full control trajectory
[7]. These methods, however, are particularly vulnerable to
local information maxima or regions of high uncertainty.
To mitigate the effect of local extrema, many methods
use control strategies over longer time horizons- nonmy-
opic methods. Some nonmyopic algorithms use dynamic
programming [5], which is computationally expensive, or
heuristics to approximate the dynamic programming results,
which are not necessarily accurate [5], [13]. Some methods
optimize the expected measurement utility using a set of
predefined candidate control actions or a search graph [10].
However, these techniques that use computationally tractable
methods may produce trajectories that, while feasible, have
a high energetic cost to execute.

In addition, it is often difficult to incorporate the dy-
namics of the mobile sensor itself. Some methods ensure
feasibility by combining the planning methods with feedback
controllers [14] or using a search graph with a predefined set
of feasible control actions [10]. While many of the methods
described above optimize with respect to the information
density and account for the feasibility of the various control
actions, they do not necessarily directly optimize with respect
to the control costs or dynamics, producing trajectories that
may be feasible and explorative, but nevertheless costly to
execute.

The algorithm presented in this paper uses first-order inte-
gration methods in order to remain computationally tractable,
particularly for high-dimensional or large-scale systems. The
ergodic metric addresses the need for informative planning,
producing trajectories that not only cover regions of interest
efficiently, but spend a longer amount of time in those
regions in order to obtain sufficient measurements to explore
these information-dense regions. Furthermore, the algorithm
optimizes with respect to the dynamics of the sensor, in-
cluding them as a constraint to the optimization problem.
This allows the algorithm to generate trajectories that are not
only feasible, but are dynamically efficient for the sensor to
execute, reducing the cost of the control signal.

III. ERGODICITY

As mentioned in Section I, a trajectory is ergodic with
respect to the distribution if the time spent in a region is
proportional to the information density of the region; ergod-
icity encodes the idea that trajectories should spend more
time in highly informative regions. The spatial distribution is
defined by a probability density function (PDF) and denoted
by φ(x).

We define the metric to be minimized as the distance
from ergodicity ε of the trajectory (x(t)). The ergodicity of
a trajectory can be quantified as the sum of the weighted
squared distance between the Fourier coefficients of the
spatial distribution φk and the distribution representing the
trajectory ck, defined below:

ε =

K∑
k1=0

· · ·
K∑

kn=0

Λk|ck − φk|2, (1)

where K+1 is the number of coefficients (nominally infinite,
but K <∞ in computation) along each of the n dimensions
and k labels the set of all combinations. The coefficients Λk
place a larger weight on lower frequency information and
are defined as Λk = 1

(1+||k||2)s , where s = n+1
2 [16].

To compute the Fourier basis functions, we use

Fk(x) =
1

hk

n∏
i=1

cos

(
kiπ

Li
xi

)
, (2)

where hk is a normalizing factor, as defined in [16].
The Fourier coefficients φk of the spatial distribution φ(·)

are determined using an inner product

φk =

∫
X

φ(x)Fk(x)dx,

and the Fourier coefficients of the basis function along the
time-averaged trajectory x(·) are computed as

ck =
1

T

∫ T

0

Fk(x(t))dt,

where T is the final time [16]. One thing to note is that the
Fourier basis functions are periodic in nature, causing the re-
construction of the PDF representing the spatial distribution
using these basis functions to be periodic as well. This will
be important in Section V-B.

IV. TRAJECTORY OPTIMIZATION

Using a projection-based method [9], we can define a
local quadratic model of the ergodic objective function and
calculate the steepest descent direction to use in iterative
first-order optimization methods. The analogous discrete
projection-based optimization method is derived from [11].

The sections below describe the system dynamics, ergodic
objective function, and the trajectory optimization for both
the continuous and discrete cases.

A. Continuous-time Projection-based Trajectory Optimiza-
tion

The dynamics of a general, nonlinear dynamic mobile
sensor can be modeled as ẋ(t) = f(x(t), u(t)), where
x ∈ RS denotes the state and u ∈ RM denotes the control.

The objective function J(·) is comprised of the ergodic
metric as defined in Eq. (1) and the integrated magnitude of



the control effort, and takes as an argument the dynamically
unconstrained curve ξ = (α, µ),

J(ξ(·)) = q ·
K∑
k=0

Λk

(
1

T

∫ T

0

Fk(α(t)) dt− φk

)2

+

∫ T

0

1

2
µ(t)TR(t)µ(t) dt, (3)

where q ∈ R represents the weight of the ergodic metric
[18], [19]. Let T denote the trajectory manifold of curves
ξ = (x, u) which satisfy ẋ(t) = f(x, u) and x(0) = x0.
The goal is to find a feasible trajectory that minimizes the
objective function, i.e.

arg min
ξ(·)∈T

J(ξ(·)). (4)

The optimization in Eq. (4) can be reformulated as an
unconstrained trajectory optimization problem using the pro-
jection operator from [9]. We define the projection operator
as

P (ξ(·)) :

{
u(t) = µ(t) +K(t)(α(t)− x(t))
ẋ(t) = f(x(t), u(t)), x(0) = x0.

(5)

The optimal feedback gain K(t) is computed by solving
a linear quadratic regulator problem. Using the projection
operator, the optimization problem can be reformulated with
the goal to minimize J(P (ξ(·)). This reformulation has
the benefit of removing the nonlinear constraints from the
dynamics during the descent direction.

The descent direction ζi(·) must be calculated at each
iteration i in order to use first-order optimization methods.
To determine the descent direction, we minimize the
quadratic model of the form

ζ∗i (·) = arg min
ζi

∫ T

0

aT (τ)zi + bT (τ)vi (6)

+ 1
2zi(τ)TQn(τ)zi(τ) + 1

2vi(τ)TRn(τ)vi(τ)dτ,

subject to the differential equation ż = Az + Bv, where
A = D1f(x(t), u(t)) and B = D2f(x(t), u(t)), since the
descent direction ζi(·) is constrained to lie in the tangent
space of the trajectory manifold. a is the derivative of the
objective function (Eq. (3)) with respect to x(·) and b is the
derivative of the objective function (Eq. (3)) with respect to
u(·). Q and R are both symmetric matrices that represent
the weight on the state and control, respectively. The basic
algorithm is outlined in previous work [19], and is analogous
to the discrete version described in Algorithm 1, Section IV-
B.

B. Discrete-time Projection-based Trajectory Optimization

For an implementation of the ergodic trajectory optimiza-
tion, numerical integration methods are required to solve the
LQR/LQ problems. Alternatively, one starts with a discretiza-
tion of the system dynamics and the cost function, such that
discrete-time LQR/LQ theory can be applied (cf. [1], [11]).
We follow the latter approach because we want to explicitly
choose the integration method that leads to the discrete-time

model. As it turns out in the simulated examples (Section V),
this choice is crucial for the algorithm’s performance.

In the discrete-time case, the mobile sensor is modeled as

xn+1 = g(xn, un, tn), (7)

for n = 0, 1, . . . , N − 1 on a discretized time grid ∆ =
{t0, t1, . . . , tN} with t0 = 0, tN = T and given initial point
x0 = x0. The discrete-time model g(·, ·, ·) can be obtained
from applying an integration scheme to the continuous time
dynamics as shown in Section IV-C. For the discrete-time
trajectory optimization method, linearizations of the discrete
dynamics are required, which we represent in discrete state-
space form

xn+1 = Anxn +Bnun, for n = 0, 1, . . . , N − 1. (8)

In the discrete case, the time integral of the continuous
objective function, (3), i.e. the ck term and the control
effort, is approximated by the left Riemann sum,

J = q ·
K∑
k=0

Λk

(
1

T

N−1∑
n=1

h · Fk(xn)− φk

)2

+

N−1∑
n=1

h

2
uTnRnun,

(9)

where N is the total number of discrete points, h = tn+1−tn
for n = 0, 1, . . . , N − 1 is the step size (assumed to be
constant for ease of notation), and the Fourier basis functions
Fk (Eq. (2)) are now evaluated at the discrete states xn.

The discrete time projection-based method is similar to the
continuous time and is described in Algorithm 2. However,
rather than yielding a continuous trajectory ξ = (x, u), the
output from this method is of the form ξd = (xd, ud),
where xd = {x0, x1, . . . , xN} and ud = {u0, u1, . . . , uN}
are discrete state and control trajectories. These optimal

Algorithm 1 First-Order Descent for Discrete Ergodic Tra-
jectory Optimization

Calculate φk for k = 0, 1, . . . ,K
Initialize ξd,0 ∈ Td, tolerance ε
while DJ(ξd,i) ◦ ζd,i > ε do

Calculate optimal gains K0, . . . ,KN for the
projection operator (LQR problem):
Solve discrete Riccati Equation
for Pn, n = 0, 1, . . . , N

Calculate descent direction (LQ Problem):
ζi = arg min

ζi∈TξiT
DJ(ξi) ◦ ζi + 1

2 〈ζi, ζi〉

Solve discrete Riccati Equations for Pn, rn
(n = 0, 1, . . . , N )
Use Pn, rn to find descent directions

Calculate γi using Armijo line search [3]
Project the update:

ξd,i+1 = P(ξd,i + γiζd,i)
i = i+ 1

end while



trajectories can be calculated by solving discrete Riccati
equations to determine the optimal gains Kn and the descent
direction ζd in every iteration i.

The projection operator used in the discrete case, P :
(αd, µd) → (xd, ud) (for αd = {α0, α1, . . . , αN}, µd =
{µ0, µ1, . . . , µN}) is analagous to the continuous-time ver-
sion,

P (ξd) :


un = µn +Kn(αn − xn)

xn+1 = g(xn, un, tn), x0 = x0,

for n = 0, 1, . . . , N − 1,

(10)

where g(·, ·, ·) is the discrete model depending on the chosen
integration scheme and x0 the known initial point. To cal-
culate the optimal projection gains K0,K1, . . . ,KN−1, we
solve a discrete linear quadratic regulator problem with the
objective function

J(xd, ud) =

N−1∑
n=0

[xTnQnxn + uTnRnun] + xTNQNxN , (11)

where Rn and Qn are symmetric, positive semidefinite for all
n = 0, 1, . . . , N − 1. The optimal gains Kn are determined
using the discrete backwards Riccati-like equation:

Kn = Γ−1n BTnPn+1An, for n = 0, 1, . . . , N − 1

with Γn = Rn +BTnPn+1Bn,

and PN = QN ,

Pn = Qn +ATnPn+1An −KT
n ΓnKn.

(12)

The descent direction can be found by solving a discrete-
time linear quadratic (LQ) optimization problem, where the
linear quadratic cost is

J(ζd) =

N−1∑
n=0

[aTnzn + bTnvn + zTnQnzn

+ vTnRnvn] + zTNPNzN , (13)

with discrete curve ζd = (zd, vd) consisting of the
discrete states zd = {z0, z1, . . . , zN} and controls
vd = {v0, v1, . . . , vN}. As in the continuous-time case, an
represent the derivatives of the objective function (Eq. (9))
with respect to the state in discrete time and bn represent the
derivative of the objective function (Eq. (9)) with respect to
the control in discrete time. Because the descent direction
is constrained to the tangent space of the (discrete-time)
trajectory manifold, it must satisfy the constraints from the
discrete model

zn+1 = Anzn +Bnvn, for k = 0, 1, . . . , N − 1, (14)

where An and Bn represent the explicit state-space form
for the discrete dynamics linearized at the current discrete
trajectory (xd, ud).

To solve the LQ problem of the descent direction, we
use pairs of discrete, Riccati-like equations for matrices Pn
and vectors rn (cf. [1]). We solve for Pn, Kn, and Γn as
defined in Eq. (12), and for rn using

rN = aN

rn = [ATn −KT
nB

T
n ]rn+1 + an −KT

n bn.
(15)

Once Pn and rn are solved for all n = 0, 1, . . . , N , we
obtain the descent direction ζd = (zd, vd) from

vn = bn +BTnPn+1zn +BTn rn+1

zn+1 = Anzn +Bnvn.

Up until now, we have simply showed how one can adapt
continuous-time ergodic trajectory optimization to a discrete-
time setting. What is important to note is that the choice of
integrator has a profound impact on the quality of solution,
even if one is choosing between two first-order methods
(Section IV-C), as demonstrated in Section V-B.

C. Integration Schemes

As mentioned in Section IV-B, the discrete-time model (7)
can be obtained by discretizing the continuous-time model
with an numerical integration scheme. In this work, we
evaluate the discrete trajectory optimization method using
two types of first-order integration schemes: the forward
explicit Euler and the symplectic Euler, which is a variational
integration method. For ease of notation, we assume an
equidistant time grid ∆ with constant step-size h.

The forward explicit Euler integration scheme approxi-
mates the continuous time system, ẋ = f(x, u), x(0) = x0,
by

xk+1 = xk + h · f(xk, uk),

with x0 = x0 and uk being the discrete input to the system
at tk = hk. We also linearize the scheme to the form xk+1 =
Akxk + Bkuk, where Ak = I + hD1f(xk, uk) and Bk =
hD2f(xk, uk).

Variational integrators (VI) are tailored to the integration
of mechanical systems, as they preserve properties of the
original continuous-time dynamics, such as symplecticity
or symmetries (i.e. momentum) [8], [15], [20] independent
of the chosen step size. Therefore, VIs can be beneficially
used in real-time control methods [12]. Moreover, VIs are
guaranteed to have a good energy behavior even for long-
term simulations, i.e. there is no artifical increase or decrease
in the system’s energy as observed in general Runge-Kutta
schemes [8].

The symplectic Euler method can be defined by consid-
ering the Hamiltonian formulation of the mechanical system
in configuration-momentum (q, p) coordinates. These are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ fH(q, p, u),

where q represents the configurations, p represents the mo-
menta, u represents the control, H represents the Hamil-
tonian, and fH represents the state- and control-dependent
forcing. The symplectic Euler integration scheme (cf. [8]) is
a first-order symplectic/variational integrator defined as(

qn+1

pn+1

)
=

(
qn
pn

)
+ h ·

(
∂
∂pH(qn, pn+1)

− ∂
∂qH(qn, pn+1) + fH(qn, pn+1, un)

)
.



Note that this is an implicit update equation in the momen-
tum coordinates pn+1. For computing the projection and the
descent direction in the discrete-time optimization method,
the discrete-time system has to be linearized and tranformed
into explicit state space form (cf. (8)),(

qn+1

pn+1

)
=

(
And11 And12
And21 And22

)(
qn
pn

)
+

(
Bd1
Bd2

)
un. (16)

The block matrices of Ad and Bd for the linearization are
given by

And11 = I + hAn11 + h2An12(I − hAn22)−1An21

And12 = hAn12(I − hAn22)−1

And21 = h(I − hAn22)−1An21

And22 = (I − hAn22)−1

Bnd1 = h2An12(I − hAn22)−1Bn2 + hBn1

Bnd2 = h(I − hAn22)−1Bn2 .

V. SIMULATED EXAMPLES

We present two simulated examples of discrete ergodic
trajectory optimization. We evaluate the algorithm for two
second order, linear mechanical systems with two degrees
of freedom. We apply the trajectory optimization method
using both the forward explicit Euler and symplectic Euler
integrator schemes for a sensor exploring a PDF in a two
dimensional space and compare them to the result from
continuous-time ergodic trajectory optimization1.

A. Double Integrator in R2

The state for this model is X = [x, y, ẋ, ẏ]T , where x and
y are Cartesian coordinates and ẋ and ẏ are the velocities in
the x- and y-directions. We model a double integrator system
with continuous-time dynamics2

f(X) =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ·

xyẋ
ẏ

+

0 0
0 0
1 0
0 1

 ·
[
ux
uy

]
. (17)

For this example, we use a 30 second time horizon, a
step size h = .6s and an initial trajectory (xd, ud) obtained
from forward integration with constant un = (.0001, .0001),
starting at x0 = [0.5, 0.01]T . We consider K = 5 Fourier
coefficients in R2. The problem puts a larger weight on the
ergodic metric with q = 1 and R = .01 · I2, where I2 is the
2×2 identity matrix, and Algorithm 1 runs for 100 iterations.

Figure 1 shows the optimally ergodic trajectories for
the dynamics in Eq. (17) with respect to the multimodal
Gaussian PDF. We display both the point of the discrete
trajectory, as well as the interpolation of this trajectory in

1The continuous method uses a high-order, adaptive, black box integration
routine provided by Mathematica.

2For the symplectic Euler integrator, Hamilton’s equations are needed.
However, because this system treats the sensor as a point mass and it moves
with linear translational motion in two degrees of freedom, one can trivially
transform between momenta and velocities. By choosing the mass equal to
1, we can use the vector field as defined. Otherwise, transforming the system
to momentum coordinates requires a scalar multiplication only, due to the
simplicity of the system’s Legendre transform.

continuous time. The continuous-time optimal trajectory is
shown in green, and the explicit Euler- and symplectic Euler-
discretized optimal trajectories are shown in red and blue
respectively. Both discrete methods produce trajectories that
are similar to the continuous-time solution. We can also see
quantitively in Table I that the costs of the trajectories are
similar. 3

Continuous Explicit Euler Variational
Cost 0.003496 0.004734 0.003944
Control Cost 0.0000355 0.0000913 0.0000775
Ergodic Metric 0.00346 0.00464 0.003944
Run Time (sec) 257.584 52.223 52.821

TABLE I
COMPARISON OF METRICS FOR DISCRETE AND CONTINUOUS

TRAJECTORY OPTIMIZATION SCHEMES FOR EXAMPLE 1.

Because of the simplistic nature of the mechanical system,
the implicit nature of the symplectic Euler integration scheme
–compared to the explicit Euler solution – has no major
effect on the results, though the trajectories have a marginally
lower cost, as shown in Table I. Moreover, both integration
schemes produce similar control strategies, highlighting the
fact that, for this simple system, both integration schemes
produce nearly optimal trajectories.

However, the run times in the both discrete cases are
significantly faster, by roughly a factor of 5 in Mathematica,
than the continuous time trajectory optimization.

B. Undamped Oscillator in R2

The previous example suggests that the choice of inte-
grator has little effect on control. Now, we demonstrate the
effect of the different integration schemes using a double
integrator system with an undamped oscillator in both the x-
and y-dimensions. As in the first example, the state of this
system is X = [x, y, ẋ, ẏ]T , where x and y are cartesian
coordinates and ẋ and ẏ are the forward velocities in the x-
and y-directions. We model this system in continuous time
state-space form as:

f(X) =

 0 0 1 0
0 0 0 1

−k1 0 0 0
0 −k2 0 0

 ·

xyẋ
ẏ

+

0 0
0 0
1 0
0 1

 ·
[
ux
uy

]
,

(18)

where k1 = 1 and k2 = 1 represent the spring constants
in the x- and y-dimensions respectively. We use a 30 second
time horizon, h = .6, and initial control trajectory of constant
u = (.0001, .0001), starting at x0 = [0,−0.49]T . K =
5 Fourier coefficients are again used. The weights in the
objective function are again q = 1 and R = .01 · I2. We also
tested this example using 10 alternative starting points on a
grid in the workspace, with similar results for all runs.

3We calculate these costs using the interpolations of the output optimal
trajectories and control signals over the 30 second time horizon. The costs
are calculated using the continuous-time cost function metrics with the
interpolations as inputs.



(a) Continuous (b) Symplectic Euler (c) Explicit Euler

Fig. 1. Optimal Trajectories for continuous-time and discrete-time methods for multimodal PDF and dynamics of Eq. (17).

(a) Continuous (b) Symplectic Euler (c) Explicit Euler

Fig. 2. Optimal trajectories from continuous-time and discrete-time ergodic trajectory optimization for multimodal PDF and dynamics of Eq. (18).

(a) PDF from spatial distribution (b) PDF from continuous-time
optimal trajectory

(c) PDF from symplectic Euler
optimal trajectory

(d) PDF from explicit Euler op-
timal trajectory

Fig. 3. PDF reconstruction from discrete-time methods for multimodal PDF and dynamics of Eq. (17) and Eq. (18). Fig. 3(a) displays the PDF based
on the Fourier coefficients φk from the spatial distribution. Fig. 3(b), 3(c) and 3(d) display the PDFs based on the Fourier coefficients ck from the
time-averaged trajectories.

Continuous Explicit Euler Variational
Cost 0.007416 0.004790 0.000907
Control Cost 0.000264 0.002383 0.000443
Ergodic Metric 0.00702 0.00717 0.000463
Run Time (sec) 440.742 139.410 140.244

TABLE II
COMPARISON OF METRICS FOR DISCRETE AND CONTINUOUS

TRAJECTORY OPTIMIZATION SCHEMES FOR EXAMPLE 2.

Figure 2 demonstrates the profound impact the choice of
numerical integration scheme can have on ergodic trajectory
synthesis. While symplectic Euler provides an optimized tra-
jectory close to, and somewhat better than, continuous-time
trajectory optimization, the trajectory optimization based on
explicit Euler diverges quickly from the origin. Moreover,

the optimal control signals (Fig. 4) are substantially larger
(Table II). Nevertheless, the ergodic metric and total cost
(Table II) are comparable to both continuous time and
symplectic Euler. The reason for this inconsistency is that
the ergodic metric in Eq. (1) is periodic in R2 because it
is computed using Fourier transforms. Hence, the energetic
instability of explicit Euler actually creates a situation where
the optimal solution is to use small amounts of control au-
thority to control how divergence passes through the periodic
distribution, rather than use a lot of control authority to drive
the system back to a neighborhood of the origin. Figure 3
illustrates that trajectory optimization based on explicit Euler
is doing exactly that–despite divergence from the origin, the
transform of explicit Euler in Fig. 3(d) is very similar to the
desired reconstructed PDF in Fig. 3(a).

This example highlights the importance of the choice of



(a) Control in x-dimension

(b) Control in y-dimension

Fig. 4. Comparison of control signals in each dimension for continuous
and discrete trajectory optimization methods for Eq. (18).

discretization. The symplectic Euler as a variational integra-
tor does not artificially add energy to the system, as the
explicit Euler integration does for this large time step of
h = .6. Moreover, the optimal trajectory produced is stable
and not artificially ergodic, as is the case for the explicit
Euler example. The periodic nature of the ergodic metric
requires careful choice in integration schemes in order to
ensure that the trajectories produced are not unstable. Though
both discrete methods have a much lower run time than the
continuous-time method, only the symplectic Euler solution
is plausible for implementation.

VI. CONCLUSIONS

We derive a strategy for planning exploratory path to
sample a workspace efficiently with respect to its spatial sen-
sory information density over the space. Previous work with
ergodic trajectory optimization has developed a strategy us-
ing continuous-time trajectory optimization methods. In this
paper, we demonstrate an exploration strategy using discrete-
time trajectory optimization methods. We show significant
improvements in performance speed, without a loss in opti-
mization performance for the symplectic method. Therefore,
we establish the importance in choice of integration methods.
We show that the explicit Euler method can produce highly
unstable, artificially ergodic trajectories, while the symplectic
Euler is more robust to the time-discretization, producing
trajectories that are stable and ergodic due to the structure-
preserving nature of variational integrators.
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[16] G. Mathew and I. Mezić. Metrics for ergodicity and design of ergodic
dynamics for multi-agent systems. Physica D: Nonlinear Phenomena,
240(4–5):432 – 442, 2011.

[17] Lauren M Miller, Yonatan Silverman, Malcolm A MacIver, and
Todd D Murphey. Ergodic exploration of distributed information.
Transactions on Robotics, Submitted.

[18] L.M. Miller and T.D. Murphey. Trajectory optimization for continuous
ergodic exploration on the motion group SE(2). In Decision and
Control (CDC), 2013 IEEE 52nd Annual Conference on, pages 4517–
4522, Dec 2013.

[19] L.M. Miller and T.M. Murphey. Trajectory optimization for continuous
ergodic exploration. In American Control Conference (ACC), 2013.
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