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Abstract— This paper reformulates an optimization algo-
rithm previously presented in continuous-time to one using
structured integration and structured linearization methods
from discrete mechanics. The objective is to synthesize trajecto-
ries for dynamic robotic systems that improve the estimation of
model parameters by using a metric on Fisher information in a
nonlinear projection-based trajectory optimization algorithm. A
simulation of a robot with a suspended double pendulum is used
as an example system to illustrate the algorithm. Results from
the simulation show that the change to a discrete mechanics
formulation reduces the computation time by a factor of 19
when compared to the continuous algorithm while maintaining
the same two orders of magnitude improvement in the Fisher
information from the continuous-time formulation. Through the
Cramer-Rao bound, the improvement in the Fisher information
results in a maximum expected error reduction of the parameter
estimates by up to a factor of 102

I. INTRODUCTION

When creating models of robotic systems, the need to esti-
mate model parameters arises in widely ranging applications
such as industrial manipulation [1], [2], motion planning and
localization [3]-[5], and control [6], [7] in order to improve
model accuracy with possibly unknown parameters such as
inertias, damping ratios, and geometric quantities. Improving
the accuracy of the parameters allows for better control
and overall performance of the robot. Typically, a robot
executes an experimental trajectory and measurements are
taken and compared to the model predictions to improve the
model parameter set. However, the choice of experimental
trajectory itself may have a significant impact on the overall
precision of the estimation algorithm. Ideally, a robot could
automatically generate this experimental trajectory to give
the best possible estimate of the parameter set given the
current best guess of the model and parameter values.

This paper provides a discrete-time formulation of the
continuous-time Fisher information maximization algorithm
published in [8]. The Fisher Information Matrix (FIM)
provides a best-case estimate of the estimator’s performance
given a set of measurements from a robot through the
Cramer-Rao bound [9]. The algorithm uses a gradient-
descent projection-based trajectory optimization algorithm
[10] to find a trajectory that locally maximizes the infor-
mation of an experimental trajectory to produce the best
estimate of the model parameters.

The motivation for designing an estimation algorithm us-
ing discrete mechanics is two-fold. First, the continuous-time
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algorithm requires numerical solutions to several differential
equations which provides flexibility in its implementation;
however, continuous-time algorithms may result in long
computation times depending on the numerical method that
is used. Using a result of much recent work in the area
of discrete mechanics, variational integrators, also known as
structured integrators [11], can be used to provide a time-
discretized version of the action integral which results in
a symplectic form with stable long-term energy behavior,
even with large time-steps [12]. These integrators have been
applied to the simulation of complex mechanical systems
using generalized coordinates with accuracy comparisons to
traditional numerical integrators in [13].

Second, the continuous-time algorithm requires a contin-
uous cost function which necessitates the approximation of
Fisher information, defined as I (9) in [8] as a continuous
measure along the trajectory. This is an approximation which
converges to the actual Fisher information as the measure-
ment frequency increases. Formulating the optimization in
discrete-time allows for a discrete cost, which includes the
exact Fisher information of the trajectory.

An important step of the trajectory optimization algorithm
is obtaining accurate linearizations of the nonlinear models
for use in an LQ regulation problem along the robot’s trajec-
tory. Computing the linearizations can be difficult in discrete-
time due to numerical instability [14]; however, we base
our derivation on exact representations of the linearizations
which have been obtained for arbitrary mechanical systems
in [15].

A number of related works in the field of optimal experi-
mental design have generated a variety of methods for non-
linear and linear systems [16]-[20]. An algorithm developed
by Emery [21] presents a Fisher information maximization
technique to create an optimal trajectory. Although this work
and others [22] perform the optimization in discrete-time, the
dynamics are not structurally discretized using a symplectic
technique, which in turn does not guarantee stable long-term
energy behavior.

The main contribution of this paper is the formulation
of the FIM maximization algorithm in discrete-time using
discrete mechanics for the modeling, linearization, and inte-
gration of the system. First-order sensitivities are computed
for use in the LQ calculation at each iteration of the trajectory
optimization algorithm. The first-order sensitivity has previ-
ously been used by Caldwell [7] in a least-squares parameter
estimation experiment. While the formulation of the discrete-
time algorithm preserves the same cost function and is
expected to perform similarly in terms of the improvement



of information to the continuous algorithm, the results in
Section V show a significant reduction in computational time
due to structure discritization of time from using the discrete
mechanics techniques.

The paper is organized as follows: Section II provides an
overview of the discrete mechanics necessary to form the
Discrete Euler-Lagrange (DEL) equations for the system.
Section III presents the objective function and sensitivity
equations used in the optimization algorithm. Section IV
provides the formulation of the discrete-time trajectory opti-
mization algorithm and Section V presents results of a robot
cart-pendulum simulation.

II. DISCRETE MECHANICAL SYSTEMS

In this paper, we simulate mechanical systems in a
discrete-time framework. Given a system with a config-
uration ¢ € (), where () is the configuration space, a
sequence {(to,qo0), (t1,41), ..., (tn,qn)} can be found that
approximates a trajectory in continuous time where g =~
q(tx). Instead of numerically integrating differential equa-
tions derived from a continuous Lagrangian, L., a discrete
Lagrangian, L4, is chosen such that the action integral is
approximated over a discrete time-step

th4+1
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The action integral can then be approximated by a discrete
action sum given by
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Given the discrete action sum, the DEL equations includ-
ing forcing have been derived for the discrete-time system
[23]. The unconstrained DEL equations are given by'

DaLa(qk-1,qx,0) + Ff (qr—1, qr, ur—1,0)+
D1 La(qks gk+1,0) + Fy (i, qrs1, u, 0) = 0.
where Fdi are the right and left discrete force approximations
of a continuous forcing model, F,. For clarity, we will drop

the arguments to the discrete Lagrangian and instead refer
to the indexes using the following subscript notation.

Li+1 = La(qr, qr+1,9)
+ +
Fi = Fy(ar, Qrr1,uk, 0)
In order to create a suitable analog to the continuous time
framework, the DEL equations can be rewritten in a one-step
map using a discrete momentum term, py. The first equation

is implicit in terms of g1 and is solved using a root-finding
algorithm. The following is the one-step update of {qx, px+1}

pe+ DLy +F =0
Prt1 = DaLiy1 + Fif g (1)

I'The slot derivative notation, D, a(x,y, 2) represents the partial deriva-
tive of o w.r.t the x*P argument.

Therefore the discrete states, xj, are of the form

gk
A .
g {pk}

A. Variational Integrators

In order to solve the DEL equations, the discrete La-
grangian and discrete forcing functions must be specified. A
variational integrator is created by specifying the approxima-
tion model used to convert the continuous-time Lagrangian to
a discrete-time analog. For the scope of this paper, we will
use the most common form with midpoint approximation.
The discrete Lagrangian is approximated as:

Qk+1 + qk Qk+1 — Gk
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The discrete forcing function is chosen using the same
approximation resulting in the following discrete forces

_ Qk+1+ Q. Qk+1 — Qk
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Since the right discrete force is zero using this approximation
method, the derivations and equations that follow will not
include the right discrete force term for simplicity; however,
if a different approximation method is used, this term may
need to be added to the derivations.

B. Kinematic Configuration Variables

In the example provided, we employ the use of kinematic
configuration variables when simulating and optimizing the
system. For certain subsets of a robot model, it may be rea-
sonable to assume a kinematic model where the actuators are
strong enough to accurately realize any reasonable trajectory
in the configuration space. For the cart-pendulum example,
the position of the cart = will be treated as kinematic, i.e., the
input at any time 5 will be the position of the cart rather
than the force upon the cart. While this separation is not
required or essential, it tends to simplify implementation in
practice by allowing a higher frequency, low-level controller
to provide position control for the kinematic states while
running a lower frequency controller on the dynamic states.

To implement the kinematic configuration variables, new
states are added for the kinematic components. Thus, the

state becomes

dk
Pk
T = ’
Pk
Vg

where p, € R™ is the set of kinematic configuration
variables and v, € R™ is the set of kinematic velocities.
The discrete Lagrangian and discrete forces are expanded to
include these kinematic configurations; however, the solution
to the equation remains the same since the variables are
predefined as inputs.

Litv1 = La(qr, Gr+1, Pks Prs1,9)

Fki+1 = Fdi(qkaqk+l7pk7pk+l7uk70)



The input vector is then defined as the force inputs uy, at the
current time ; and the kinematic configuration at the next
time-step px41 which will be notated as

_ Uk
Uy, = .
* [ Pl+1 ]

III. PROBLEM FORMULATION

For this algorithm, we consider the estimation of a set of
model parameters in a system which is subject to measure-
ment noise but negligible process noise. Unlike the previous
work, both the parameter estimation and information max-
imization are done in a discrete-time setting. The system
model is represented by the discrete update map (1) with the
output yi given by

Y = g(xk, Uk, 0) + wy.

x), € R?" defines the discrete system state, 1, € R” defines
the measured output, @i, € R™+"* defines the inputs to the
system, # € R® defines the set of model parameters to be
estimated, and w, is additive output noise where p(w,) =
N(0,%).

A. Parameter Estimation

Given the assumption of normally distributed measure-
ment noise on ¥y, the least squares estimator is equivalent
to a maximum likelihood estimator which can be written as

0 = argmin 5(0) 3)
where
1
BO) =5 > @ =)= (g — wr)-
k

Ui, is the observed state at the k'" index of t;/dt mea-
surements, 3 € R'"*" is the covariance matrix associated
with the sensor measurement error, and 0 is the least-squares
estimate of the parameter set.

Given the estimator, we may use a gradient descent method
to find the optimal set of parameters, 6. Therefore, the first
derivative of 3(6) must be calculated w.r.t 6.

where

dzk

Fk - Dlg(xkaak76) : do

+ Dsg(zy, ux, 0)

This requires the evaluation of % which can be found
using first-order linearizations of x; from the DEL equations.
Since p and v are kinematic configurations, % and dd%o" are
zero for all k. To match notation in the continuous time
problem, we note that the sensitivity v is given by

dqi
zzjkz{p@k].
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The first-order sensitivity is thus given by

al‘k
Y41 = Ap - Yr + 20 4)
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We refer readers to [15] for the equations representing the
components of Ay and M which are derived and presented
in full.

B. Fisher Information

The FIM for this system is formulated in the same manner
as the previous work. Assuming that the measurement noise
of the system is normally distributed with zero process noise,
the FIM is given by,

kg
10)= Y T{ 57! Ty
k=ko

A lower bound on the precision of the parameter estimate
returned by the least-squares estimator can be quantified by
the Cramer-Rao bound given by

covg(0) > I(0)*
where 6 is the least-squares estimator defined in (3).

IV. DISCRETE-TIME TRAJECTORY OPTIMIZATION

The same trajectory optimization algorithm is used in the
results to follow as the continuous-time case; however, the
algorithm itself has been reformulated in [24] into a discrete-
time framework. This discrete-time version is extended in
the following section to include Fisher information as an
additional objective.

A. Objective Function

The objective function will consist of three components:
the Fisher information cost, a trajectory tracking cost, and a
control cost. Since the optimization algorithm is formated in
discrete-time, the Fisher information can be directly used
in the algorithm versus the continuous-time formulation
presented in the previous work. Since the FIM is a matrix
quantity, we use E-optimality, which uses the minimum
eigenvalue of the FIM as the cost metric.

The optimization objective function is defined as

@p

/\min

J =

ks
+ 3 [k — 20" Qr - (wk — 1)
k=ko
+(ay — )" - Ry - (g — k)] (5)
where A, is the minimum eigenvalue of I(6), @, is the
information weight, &, is a reference trajectory, iy is a



reference control signal, () is a trajectory tracking weighting
matrix, and R, is a control effort weighting matrix. The
weights must be chosen such that (), > 0, Q) is positive
semi-definite, and R is positive definite.

The various weights allow for design choices in the opti-
mal trajectory that is obtained. The requirements of positive
definiteness and positive semi-definiteness of the weighting
matrices are necessary to maintain a locally convex opti-
mization problem including the fact that \,,;, > 0 [10].
Increasing the control weight will result in less aggressive
trajectories, generally decreasing the obtained information.
Using a reference trajectory allows for an optimal solution
that remains in the neighborhood of a known trajectory.

B. Extended Dynamic Constraints

To extend the optimal control algorithm to include the
FIM metric in (5), the first-order sensitivity 1), must be
computed along the trajectory. In order to directly take
variations on 1, the term is treated as an additional state.
Appending the parametric sensitivity to the state vector as
an additional dynamic constraint allows for variations in vy,
in the optimization algorithm. For convenience, the extended
state will be defined by Ty = (2, ¥x), and 1, = (Tg, Ug)
defines a curve that satisfies the nonlinear system dynamics.

C. Projection Operator

In the same manner as the continuous-time trajectory
optimization problem, the minimization of (5) is subject
to constraints from the dynamics and sensitivity given by
(1) and (4). Instead of attempting to directly solve this
nonlinear constrained optimization problem, the constraints
are linearized and an LQ problem is solved iteratively to
produce a descent direction followed by a projection that
maps the infeasible trajectory, formed by the sum of the
current iterate and the descent direction, onto the nonlinear
constraints as detailed in [10]. The projection operator uses
a stabilizing feedback law to take a feasible or infeasible
trajectory, defined by &, = (@, fix ), and maps it to a feasible
trajectory, ny, = (T, Uk ).

The discrete form of the projection operator used in this
paper is given by
ug = ik — Ki (T — ag)

Zp+1 = solution to (1)
Yr4+1 = equation (4)

P(&) :

The feedback gain K} can be optimized as well by solving
an additional linear quadratic regulation problem. Details of
the optimal gain problem can be found in [10], but any
stabilizing feedback may be used.

D. Optimization Algorithm

Algorithm 1 defines the iterative method using a gradient
descent approach to solve the optimization problem. Each
iteration requires a descent direction, (;, = (Z,Ux) to be
computed from the following equation [10]:

G = argmin DI(P(E)) 0 G+ 3(GG) (©)

Algorithm 1 Trajectory Optimization

Initialize 79 € T, tolerance €, i = 0
while DJ(ni) o ¢" > € do
Calculate descent, ¢*:
¢ = argming: DJ(P(E1)) 0 ¢' + 1(¢,¢7)
minimizing (7) to compute ¢*
Compute ¢ with Armijo backtracking search
Calculate the infeasible step:
) =+
Project trajectory onto dynamics constraints:
m =P
i=1+1
end while

such that
Zkt1 = AgZx + Brog

where (i, € T3, T, i.e., the descent direction for each iteration
lies in the tangent space of the trajectory manifold at .
The components of the descent direction ( = (Zx,0y) are
defined by Zzj, the perturbation to the extended state, and
Uy, the perturbation to the control. The quantity ((x,(x) is a
local quadratic model computed as an inner product of (j.
Matrices A;, and Bj, are the linearizations of the extended
state dynamics. The descent direction (6) can be computed
by solving an LQ regulation problem which is detailed in
the following section.

Given the descent direction (?, a backtracking line-search
of the projection, P(n’+~°¢C"), provides a feasible trajectory
assuming the step size * satisfies the Armijo sufficient de-
crease condition [25]. Iterations upon the feasible trajectories
continue until a given termination criteria is achieved.

E. Calculating the Descent Direction, (j,

To find a descent direction for the optimal control algo-
rithm, (6) must be solved. As shown in (6), the descent
direction depends on the linearization of the cost function,
DJ(P(&)), and the local quadratic model, ((j, (k). Using a
quadratic model and expanding the linearizations of the cost
function, (6) is rewritten as

kg
arg IICIiIl = Z 2a£2k + Qbffjk + Zanék (7
o k=ko

+ 01 Ry, dt

such that -
Zkt1 = Az, + By,

where a; and by, are the linearizations of the cost function
with respect to Z and %, and @, and R, are weighting
matrices for the local quadratic model approximation. Design
of these weighting matrices can lead to faster convergence of
the optimal control algorithm depending on the specific prob-
lem. Since the derivations of the cost function linearizations
follows the same steps as the continuous-time formulation,
we refer reader to [8] for the derivations. We present the
equations here in discrete-time for reference.
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where ws and vs are the left and 2right eigenvzectors of
1() respectively and definitions of 869%; L and %93“1;; L are
available in the Appendix. £ is a tensor of the form E;; =
0ir6;; where § as the Kronecker delta function.

After computing the linearization of the cost function and
dynamics at each time step along the trajectory, (6) can be
solved using the discrete-time algebraic Riccati equation. The
formulation of this LQ problem is detailed in the appendix
of [24].

V. RESULTS

To examine the results of the discrete-time formulation, the
algorithm is tested in simulation on a 2-link cart-pendulum
robot. The robot has two dynamic configuration variables,
q = (¢1(tx), ¢2(tx)), and one kinematic configuration vari-
able, p = x(tx), where x(¢x) is the horizontal displacement
of the robot, and ¢;(t) is the rotational angle of each link

as shown in Fig. 1.

Fig. 1: Diagram of the cart-pendulum robot.

As indicated in the section on kinematic configuration
variables, the input to the robot is the position z(ty). The
robot can move in one dimension with positive motion to
the right. Rotational friction is modeled at each pendulum
joint, but the joints remain unactuated. For comparision to
the continuous-time results, the goal of the optimization
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(c) Square root of the minimum eigenvalue of the Fisher information
matrix (6) over time.
Fig. 2: Comparisons of the trajectory before and after Fisher
information optimization.

algorithm and the simulated model remains the same as in
[8] - estimating the mass of the top pendulum link m; and
the damping coefficient ¢ of the joints.

A. Discrete-time Model Approximation

An approximation of the continuous Lagrangian in discrete
time is found using (2). The same values for model param-
eters are used as defined in [8]. We will assume that sensor
measurements occur at 50 Hz, which will also be used as
the simulation time-step, dt. In general, measurements may
occur at a lower frequency than the simulation time-step. In
that case, Z,;l should be set to zero for all time-steps k in
which measurements do not occur.



B. Optimization Results

The optimization algorithm was run until a convergence
criterion of |DJ(&) o ¢| < 1072 was satisfied, starting
from an initial cost of 23.0. A comparison of initial and
optimized trajectories can be seen in Fig. 2a-b. The optimized
trajectory improves the Fisher information of the measured
trajectory by a factor of 102, These results can be seen in
Table I. Additionally, the Fisher information gained over
time is shown in Fig. 2c. The optimized trajectory greatly
exceeds the rate of information gained compared to the initial
trajectory. Using the Cramer-Rao bound [26], error estimates
in the parameter set will decrease up to a factor of 10% due
to this increase in Fisher information.

One motivation for creating a discrete-time version of the
information maximization algorithm is to reduce computa-
tion time compared to the continuous version. Since the
structured integration allows for stable results at large time-
steps, such as 0.02 s used for this results, the computation
time for each iteration is reduced by a factor of 19 as shown
in Table II.

While these results show the discrete-time algorithm con-
verging in fewer iterations, we do not expect this trend to
be generally true. In this case, the numerical differences
happen to produce a slightly more efficient descent direction.
However, even on a per iteration basis, the improvement in
computation time is significant. Iterations of the continuous
and discrete algorithms were timed in Mathematica on the
same 3.0 GHz Intel i7 machine. Both algorithms return
similar optimized costs, resulting in expected information
improvements of 102.

Another concern may be that the resulting trajectory of the
discrete algorithm does not precisely track the continuous
trajectory. While the example system and model parameters
are the same for both sets of results, we have incorporated
the notion of kinematic control inputs into the discrete
algorithm. This results in a different set of states compared
to the continuous algorithm and different weights, @, and
R,. Additionally, the formulation in discrete time results
in discrete momenta states pj rather than velocity states.
This also modifies the local quadratic approximation of the
cost function, J.. Finally, the discrete algorithm uses the
exact Fisher information, which slightly modifies the cost
compared to the continuous approximation. Therefore, we
expect that the algorithms will both achieve the goal of
maximizing Fisher information but under slightly different
objectives due to these differences which results in the
varying trajectories.

VI. CONCLUSION AND FUTURE WORK

This paper presented a discrete-time method to automat-
ically maximizing the Fisher information with respect to a
set of model parameters by optimizing the robot’s trajectory.
We compare the method and results to the continuous-
time analog published in [8]. In both cases, the algorithms
significantly result in higher information which improves the
estimation of uncertain parameters within the system model.
The discrete formulation presented in the paper results in a

TABLE I: Optimization Results

AL A2 J
Initial: 5.95 x 102 543.2 23.0
Optimized:  6.91 x 106 7.34 x 10* 9.0
Fisher Information Matrix
Initial: 5.94 x 103 98.6
: 98.6 544.9
Optimized: 6.90 x 106 2.79 x 103
P : 2.79 x 103 8.48 x 10%

TABLE II: Execution Time

Continuous-Time
762.5 s

Discrete-Time
399 s

Avg. Time per iteration:
Number of Iterations: 2 36

Min. Eigenvalue Improvement:  factor of 135 factor of 110

factor of 19 improvement in the computation speed per itera-
tion over the continuous algorithm while maintaining similar
performance on the objective function. The algorithm also
incorporates the actual Fisher information given a discrete
set of measurements along the robot’s trajectory rather than
the approximation used in the continuous-time algorithm.

One question that remains for future work is how to
exactly map weights such as () and R, from a continuous-
time formulation to the discrete-time domain. An exact
mapping may allow for more similar trajectories between
the two algorithms if desired. This is particularly important if
the trajectory tracking is more important than the information
maximization.

While computational speed has been significantly im-
proved, expanding the dimensionality of the system still
poses a formidable problem in terms of computation time.
While the algorithm applies to larger systems, the need for
extended state representations significantly affects general
scalability. There remains a need to investigate alternative
trajectory optimization methods or sensitivity representation
that may eventually allow for real-time application of the
algorithm.

Nonetheless, the improvement in computational efficiency
using structured integration and structured linearization pro-
vides more opportunities to use a information maximization
algorithm on a robot or embedded system where decisions
and trajectory planning need to be made in a matter of
minutes rather than hours. This also may allow for use in
a learning type algorithm in the future where more iterations
of the algorithm can be performed on-line as information is
gained from previous trajectory trials facilitating even greater
performance of the estimator and nonlinear controllers.
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APPENDIX I
DESCENT DIRECTION DERIVATIVES

In order to compute the linearization of the extended state

dynamics, %2;5‘;3 and 89 d’“u“ are required to compute (8)
and2(9).

%9%’“;; is constructed from the following components
Q41 Oqr+1
———— =— M [(DyDsD L DsD
9004, [( o5 D1 L1 + Dalg k+1) 0 +

D1DsDyLyy1 + D1 D F ]
Q41 Oqr+1
T — _ M Y(DyDsD: L DyD
898}% [( 2510 k+1 + 276 k-‘rl) D ]
Opri 3Qk+1 Ok 11
———— =(DyDs D> L D1DyDs L
9004 (D2D2 Do Ly 1 + D1D3Dy Ly 1) 90
0? 0
+ D3 D3 L1 (%%cﬂ + Dy D5 Do L1 g];::l
+ D1D5Ds Ly 11
O’ pri Oqr+1, Oqk+1
———— =(Dy Dy D> L —
0op, — P2P2Dalin =50 =)=
Oqj 4y 0
+ DaDoLig 1 300, + DaDsDaL 1 ki1
and 2 50 6’1“ is constructed from the following components
OGit _ _ p1{(DyDy Dy Ly + DaDyFr, ) 204
8081% k1 3uk
+ DsDeF 4]
Qi1 1 Oqr+1
———— =— M~ [(DyDsD{ L DsDgF, ) ——
000pr+1 [( 2Vs 1541+ D2 e k+1)3ﬂk+1
+ DyDsDy Lyy1 + DyDgF ]

O?pr1 Iqk+1 OQk+1

———— =(DyDyD>L

Fou, — P2D2Delin =5, =)=

g7, Oqr+1
DyDsL DyDsDs L
+ 22k+189a L4 252k+18k
&°pri1 3(1k+1 Oqr+1
————— =(DyDyDs Ly,
900pk+1 (D2D2Ds ) k+1) 00
dq;
+ D2DaLy i1 5552~ + DiDsDa L
PEk+1
0
4 DyDsDoLyyq 22+
Opr+1
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