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Abstract— This paper presents the details and experimental
results from an implementation of real-time trajectory gen-
eration and parameter estimation of a dynamic model using
the Baxter Research Robot from Rethink Robotics. Trajectory
generation is based on the maximization of Fisher information
in real-time and closed-loop using a form of Sequential Action
Control. On-line estimation is performed with a least-squares
estimator employing a nonlinear state observer model computed
with trep, a dynamics simulation package. Baxter is tasked
with estimating the length of a string connected to a load
suspended from the gripper with a load cell providing the single
source of feedback to the estimator. Several trials are presented
with varying initial estimates showing convergence to the actual
length within a 6 second time-frame.

I. INTRODUCTION

A fundamental goal of artificial intelligence and learning
in robotics is to provide the means for a robot to auto-
matically synthesize actions which improve estimates of the
robot’s internal dynamics and dynamical interactions with
real-world objects. From an early age, humans are able
to constantly learn and improve upon their motor skills
and interactions with objects in the physical world. We
aim to provide this form of learning on robots using real-
time processing of feedback from active exploration of the
environment.

Since the general problem of model synthesis and learning
remains a formidable one, we restrict ourselves in this
paper to creating a method for real-time active synthesis of
dynamic trajectories to estimate a single model parameter in
a known dynamical model.

Active estimation of parameters within dynamical systems,
also referred to as optimal experimental design, uses Fisher
information as the primary metric [1]. Fisher information
provides a best-case estimate of the estimator’s performance
given a set of measurements from a robot through the
Cramer-Rao bound [2], [3]. A number of works on “excit-
ing” trajectories by Armstrong and others [4]–[6] provide
the theoretical basis for information-based estimation. In
work by Emery [1], least-squares and maximum-likelihood
estimation techniques are combined with Fisher information
to optimize the experimental trajectories. In this case and
several others, dynamics are solved as a discretized, con-
strained optimization problem [7]–[9]. One downside is that
this time discretization can lead to high dimensional opti-
mization problems (dimensions of 107 to 1012 are common
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Fig. 1: Baxter performing real-time active parameter estima-
tion on the length of a suspended payload.

in practice).
Previous works by the authors have demonstrated a tra-

jectory optimization algorithm for information maximiza-
tion on continuous and discrete systems [10], [11]. The
algorithms successfully improve the expected information
by perturbing the trajectories using first-order optimization
techniques. While effective, these algorithms remains too
computationally expensive for real-time application.

Sequential Action Control (SAC), a model-based control
approach recently developed by Ansari and Murphey [12],
has shown promise in simulation as a closed-loop receding-
horizon style controller that can compute optimal actions in
real-time for nonlinear systems, similar to a nonlinear model
predictive controller [13], [14]. Results have shown that
the algorithm can outperform off-line trajectory optimization
techniques on a number of canonical examples. This work
encompasses one of the first practical implementations of
the algorithm on a robotic platform, including coupling of
the algorithm with a nonlinear state observer as described in
Section III-B.3.

The main contribution of this paper is the experimental
trial of the SAC algorithm coupled with an on-line estimator
for real-time active estimation of a dynamical system, shown
in Fig. 1. Detailed derivations of the underlying control
principles and information theory can be found in [10], [12],
[15]. The Baxter Research Robot has been used as a practical



platform for a number of studies [16]–[18] while also pre-
senting a number of challenges including high compliance
and actuator saturation. Despite these potential sources of
unmodeled dynamic effects, results show that the estimator
successfully converges to the actual parameter value across
several trials.

This paper is organized as follows: Section II provides
an overview of the trajectory synthesis and estimation algo-
rithms. The specific implementation details for Baxter and
the suspended load estimation task are provided in Section
III. Section IV provides results from several trials of the real-
time estimation task, and Section V concludes the paper with
notes on future work. One trial of the algorithm presented
in this paper is also shown in the accompanying video.

II. REAL-TIME CONTROL STRUCTURE

This section presents a detailed overview of the active
trajectory synthesis and estimation problem which is imple-
mented in Section III. As shown in Fig. 2, there are two
primary modules interacting with the robot hardware: the
SAC controller for trajectory synthesis and the nonlinear
least-squares estimator. At the highest level, the least-squares
estimator requires the control inputs provided by the SAC
controller to compute a predicted output which is compared
to the actual measurements provided by the robot. The SAC
controller is updated with new parameter estimates and state
estimates by the least-squares estimator and optionally can
receive state feedback directly from the robot hardware if
available. These modules can be run asynchronously and
at different rates with the use of a nonlinear state observer
model.

In this paper, we assume that one parameter is uncertain
with additive noise on observer measurements but negligible
process noise. The same cost function with several unknown
parameters is presented in [10]. For SAC, the state is usually
derived assuming control-affine dynamics [12]. Thus, the
model of the system is defined as

ẋ =f(x, u, θ) = g(x, θ) + h(x, θ)u (1)
ỹ =y(x, u, θ) + wy

where x ∈ Rn defines the system states, ỹ ∈ Rh defines the
measured outputs, u ∈ Rm defines the inputs to the system,
θ ∈ R defines the parameter to be estimated, and wy is
additive output noise where p(wy) = N(0,Σ).

A. Nonlinear Least-Squares Estimator

While the robot is executing a motion, a nonlinear least-
squares estimator is used on-line to update the estimated
value of the parameter as well as the robot state.

The least-squares estimator can be written as

θ̂ = arg min
θ
β(θ) (2)

where

β(θ) =
1

2

h∑
i

(ỹ(ti)− y(ti))
T · Σ−1 · (ỹ(ti)− y(ti)). (3)

Trajectory 
Synthesis (SAC)

Robot Hardware
Nonlinear Least-

Squares Estimator

Fig. 2: Overview of the real-time control structure.

ỹ(ti) is the observed state at the ith index of h measurements,
Σ ∈ Rh×h is the covariance matrix associated with the
sensor measurement error, and θ̂ is the least-squares estimate
of the parameter. The estimator recomputes a new estimate
at a set frequency, incorporating any new measurements
received since the last iteration.

Given this estimator, we will use gradient descent with a
backtracking line-search to find optimal parameter values by
minimizing the least-squares error in (3). To perform this
optimization, the first derivative of β(θ) w.r.t. θ must be
calculated.

The first derivative can be computed using the following
equation:1

Dθβ(θ) =

h∑
i

(ỹ(ti)− y(ti))
T · Σ−1 · Γθ(ti)

where

Γθ(ti) =Dxy(x(ti), u(ti), θ) ·Dθx(x(ti), u(ti), θ)

+Dθy(x(ti), u(ti), θ).

This equation requires the evaluation of
Dθx(x(ti), u(ti), θ) of (1), which is computed by the
following ordinary differential equation (ODE):

ψ̇(t) = Dxf(x(t), u(t), θ) · ψ(t) +Dθf(x(t), u(t), θ),

where

ψ(t) = Dθx(x(t), u(t), θ) ∈ Rn and ψ(0) = {0}n.

Since the estimator requires a predicted output, y(t)
which is based on current estimates of θ and x(t), a
nonlinear state observer is also required for systems with-
out full-state feedback. While any numerical differential
equation solver may be sufficient, for this implementa-
tion, we are using the trep software package available at
http://nxr.northwestern.edu/trep.

1The notation, Dκα(κ) represents the partial derivative of α w.r.t κ.



B. Sequential Action Control

The SAC control synthesis process follows a receding-
horizon style format to sequence together separately short op-
timal control actions into a piecewise continuous constrained
feedback response to state. In SAC, actions are defined by
a pair composed of a control vector value and its associated
(typ. short) application duration which is computed for each
action. The blue shaded region in Fig. 3 shows a SAC action
for a 1-D control.

This paper expands the use of SAC to include a cost on
the Fisher information of the uncertain parameter. For this
implementation, we assume that the measurement noise of
the system is normally distributed with zero process noise.
Therefore the Fisher information is given by

I(θ) =

kf∑
k=k0

Γθ(tk)T · Σ−1 · Γθ(tk). (4)

The algorithm iterates on the following 4-step process to
synthesize each action:

1) Predict: The SAC algorithm predicts system motion
from current state feedback, x(t0) = x0. The process
involves simulation of a state and adjoint system (x, ρ) for a
fixed time horizon, T , until (receding) final time tf = T+t0.
For the purposes of this paper, the nominal control value used
for simulations (x, ρ) is u = 0 so that SAC computes optimal
actions relative to the free (unforced) system motion.

As detailed in [10], a cost function on Fisher information
from (4) also requires the simulation of the gradient of x
w.r.t. θ, i.e. ψ(t) = Dθx. These additional states are referred
to in the paper as extended state dynamics and notated as
x̄ = (x, ψ).

For this implementation, we use only a running cost for
the Sequential Action Controller which is written as

Jcost =

∫ tf

t0

l(x̄(t)) dt (5)

where

l(x̄(t)) =
[
Γθ(t)

T · Σ−1 · Γθ(t)
]−1

+ x(t)T ·Qτ · x(t)

i.e., the minimization of the inverse of the information and
an optional trajectory tracking cost to bias the system toward
a particular part of the state space.

The adjoint variable ρ : R 7→ R2n provides information
about the sensitivity of the cost function to the extended
state, x̄. The algorithm maps this sensitivity to a control
sensitivity provided by an inner product between the adjoint
and dynamics (1). The process of control synthesis uses
this sensitivity, dJcost

duτ
, to search for least norm actions that

optimize the expected change in cost (5). Thus SAC actions
optimize the rate of trajectory improvement. These optimal
actions depend directly on the adjoint, which is determined
from open-loop simulation of the following equation,

ρ̇ = −Dx̄l(x̄)T −Dx̄f(x̄, u)T ρ

with a terminal condition ρ(tf ) = 0.

Fig. 3: SAC actions for a 1-D control are sequenced in
receding-horizon fashion.

2) The Value of Optimal Action: After simulating the
open-loop system (x̄, ρ) under nominal control, SAC com-
putes the value of actions that it should apply to optimally
improve nominal trajectory cost (5). Because SAC has not
yet decided on a time, τ , specifying when to act,2 it searches
for a curve u∗ that provides the value of the optimal action
it should apply as a function of time. The algorithm will
search this curve to determine the best (optimal) time to
act. The entire curve that provides the value of the optimal
actions that maximize trajectory improvement is provided
analytically from the expression,

u∗ = (Λ +RT )−1 h(x̄)T ραd (6)

with Λ , h(x̄)T ρρTh(x̄) [12].
As opposed to traditional receding-horizon and nonlin-

ear trajectory optimization routines, SAC actions optimally
improve rather than minimize a trajectory cost over the
current horizon. The process is often less sensitive to local
minima and examples in [12] show that actions based on
(6) actually outperform nonlinear trajectory optimization in
terms of cost and computational efficiency on a variety of
benchmark nonlinear control problems. Furthermore, [12]
proves min/max input constraints of the form umin,k < 0 <
umax,k ∀k ∈ {1, . . . ,m}, can be applied on-line to actions
from (6) without added computation.

3) When to Act: In application, SAC can pre-specify an
action time τ = t0 so that actions are always applied from
the current time and sequenced into a piecewise continuous,
receding-horizon style response to state. However, SAC
includes the option to search for an optimal time to act. It
can therefore do nothing and choose to wait until a system

2Each cycle of control synthesis assumes SAC will specify / search for
an optimal time to act between the current time, t0, and the end of the
prediction horizon, tf .



“drifts”3 into a more opportune state where control effort
would be better spent. In searching for an optimal time to act,
SAC optimizes an objective measuring the cost of waiting
relative to the expected efficacy of controls (6) in improving
system performance based on (5). It searches for the time, τ
that minimizes the objective

Jt(τ) = ‖u∗(τ)‖+
dJcost
duτ

∣∣∣∣
τ

+ (τ − t0)γ

with γ = 1.6 and dJcost
duτ

as the measure of expected cost
improvement (see [12]).

4) How Long to Act: The SAC algorithm computes a
duration, ∆t, to apply control action values (6) using a
line search with simple descent condition. The line search
process iteratively reduces an initial duration, ∆t = ∆t0,
and simulates the expected cost (5) based on application
of the control action around the application time τ . If the
current duration results in a minimum improvement in cost
(relative to the nominal control), it is selected and the
action is fully specified based on the pair (u∗(τ),∆t). If
the action does not provide the expected cost improvement,
the line search reduces the duration and repeats. The process
is guaranteed to find a duration that provides a minimum
expected improvement in cost [19].

For a more detailed derivation of SAC control synthesis
with examples see [12], [19].

III. BAXTER IMPLEMENTATION

This section describes both the problem formulation and
software specific implementation of the control structure de-
scribed in the previous section on the Baxter Research Robot
created by Rethink Robotics [20]. Results from experimental
trials are presented in Section IV.

A. Problem Description and Model Formulation

To test this control paradigm in real-time on a practical
robotic system, we chose the task of determining the string
length of a suspended payload from one of Baxter’s grippers
using a load cell as the sole output to the estimator. This
configuration necessitates active motion to estimate the string
length as the Fisher information is zero when the robot is
stationary. To simplify the control of Baxter, we chose to
approximate the end effector as kinematic and control motion
only in the Cartesian x-axis, xB . The equations of motion
for the system are given by the following,

f(x, u, θ) =


ẋB
u

φ̇
u
` cosφ− g

` sinφ


where u is the x-axis acceleration of the gripper, m is the
known mass suspended from the robot, and ` is the length of
the string, which will be estimated. Additionally, the equation
for the force output Fs is

y(x, u, θ) = Fs = mg cosφ−m`φ̇2 − u sinφ.

3Under free dynamics and the nominal control u = 0.

It is assumed that the trajectories will maintain tension in the
string; therefore, the distance between the robot and mass is
fixed. Given this system model, the extended state x̄ ∈ R8.

B. Experimental Implementation

As shown in Fig. 2, there are essentially two separate
modules interacting with the robot hardware: the SAC tra-
jectory synthesis module, and the nonlinear least-squares
estimator module. In this section we describe how each of
these modules is implemented for the Baxter experiments.

The backbone of communication between modules and the
robot is provided by the Robot Operating System (ROS) [21].
ROS provides the ability to asynchronously run the control
and estimation modules, implemented as ROS nodes, and
Baxter natively uses ROS as the primary API for motion
commands. Three primary nodes are employed: the SAC
control node, a measurement receiver node, and the estimator
node.

1) Baxter SAC Node: As mentioned in Section III-A,
the end effector of the Baxter robot is approximated as a
kinematic input to the dynamic suspended mass system. The
dynamic model for the suspended mass system assumes only
planar motion, and the kinematic input moves perpendicular
to gravity in this plane. It follows that the SAC module
produces target locations along a one-dimensional line that
Baxter’s end effector should follow. A joint velocity con-
troller for Baxter’s right arm is used to stabilize the right end
effector to these target locations. To avoid issues with kine-
matic singularities in the manipulator while controlling to
these target locations, this one-dimensional line is expanded
to a candidate set of closely-spaced end effector targets
in SE(3). An off-line computation is done to solve the
inverse kinematics problem for each of the targets in the set
producing a set of target joint angles for each target. These
joint angle targets are then stored to disk as a lookup table
between target horizontal positions, like those produced by
SAC, and target joint angles. During an experimental run, the
target locations from SAC are fed into a controller running
at 100 Hz that controls reference joint velocities to stabilize
to the target joint angles from the lookup table. Baxter’s
internal controller runs a real-time loop at high frequency to
stabilize each of the joints to the reference velocities set by
the 100 Hz controller.

2) Baxter Measurement Receiver Node: The payload is
attached to Baxter’s end effector through a one-dimensional
load cell. A microcontroller samples the load cell at 100 Hz
and transmits the measured forces via a serial link back to
a client computer which is communicating with Baxter over
an Ethernet connection. These force measurements represent
the ỹ(ti) in (3). The load cell has been calibrated prior to the
experiment to convert the load cell output to a force (N). The
resulting force is timestamped as it is received and published
at 100 Hz for use by the estimator node.

3) Baxter Estimator Node: The estimator node subscribes
to the actual end effector trajectory which is provided by
the Baxter API. These measurements are used to generate
the y(ti) terms in (3) through the use of a nonlinear state
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Fig. 4: Experimental trials on Baxter using different initial
estimates of the string length. The dashed line indicates the
actual measured length of 0.415 m.

observer. As mentioned in Section II-A, the trep software
package is used as the state observer. The trajectory is used
as the input and trep provides the predicted state evolution
of the suspended load. From these states, the predicted force,
y(t) can be calculated.

At a frequency of 2 Hz, the estimation module solves the
optimization problem described by (2), updating the estimate
of the string length. This frequency was chosen as a conser-
vative rate at which the estimator has enough time to provide
an update; however, the rate can be modified depending on
the required computational time for the particular system.
This parameter estimate and new state estimate are provided
as a service to the SAC node which queries the service at
the start of each computation. Updates to the string length
estimate and expected state are reflected in this service call.

IV. RESULTS

This section presents the results of real-time experimental
trials of the algorithm using the Baxter robot. A total of
9 trials are presented with initial estimates of the length
parameter, ` that varied from 0.3 m to 0.5 m in increments of
0.25 m. The tests were conducted for a total of 6 seconds for
each trial. For each trial, the initial position of the gripper was
set to xB = −0.25 m and the suspended load was hanging
in a stationary position.

The convergence of the parameter estimates over time for
all 9 trials is shown in Fig. 4. The estimates clearly converge
toward the actual string length which is noted by the dashed
horizontal line. Qualitatively, the rate of convergence across
all the trials is similar, with estimates beginning to converge
around 2 to 4 seconds. This suggests that for this system,
the trajectories generated by the SAC algorithm provide
relatively similar levels of information despite the initial
estimate. Since the algorithm is based on gradient descent
techniques, estimates deviating too far from the actual value
may cause the estimator not to converge. The mean estimate
of ` from the 9 trials after 6 seconds was 0.411 m with the
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Fig. 5: Measured and predicted force from one Baxter trial
over time for `0 = 0.35 m.
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Fig. 6: Expected information accrued over time during one
Baxter trial for `0 = 0.35 m.
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Fig. 7: Endpoint reference compared to actual endpoint
position of one Baxter trial with `0 = 0.35 m.

actual string length set to 0.415 m. The standard deviation
of the final estimates is 0.0055 m.

The measured and predicted force data is shown from a
single trial in Fig. 5. The figure show that as the suspended
load begins to react to the control inputs, providing a much
better signal for the estimator to track, the estimates begin to



converge. It is also noted in this figure that the measurements
taken by the load cell began to saturate our hardware setup
around 2.5 N, however, the estimator is still able track the
phase of the system even with this saturation.

Additionally, Fig. 6 shows the expected information ac-
crued over time from one experimental trial. A large increase
in information begins to accrue as the suspended load is
excited, leading to the convergence of the parameter estimate.
The Fisher information provides a best-case bound on the
parameter estimate through the Cramer-Rao bound provided
the estimator is unbiased [2].

The generated and executed trajectories can be seen for
one of the trials in Fig. 7. As discussed in Section III,
the motion of the gripper is controlled to move along the
Cartesian x-axis using PID control to follow the generated
reference. The combination of the PID controller and the
compliance of the series elastic actuators leads to moderate
overshoot in the endpoint position; however, for these trials,
it is acceptable. The estimator is provided the actual endpoint
position which allows for accurate prediction of the load
despite this error and SAC receives the estimated state
feedback from the estimator for trajectory synthesis.

V. CONCLUSION AND FUTURE WORK

This paper presented an experimental implementation of
a control structure for real-time active estimation of a pa-
rameter in a dynamic system. Results from several trials
on the Baxter robot with different initial estimates of the
string length quickly converge to the actual length using a
trajectory synthesized on-line using the Sequential Action
Controller. Despite a large amount of overshoot due to high
compliance in the robot’s actuators, the estimation algorithm
is able to use the output from a nonlinear state observer
model implemented with trep to minimize the effect of
the tracking error.

This work represents only the first step toward improving
robot learning on physical systems by exploiting dynamic
models. One possible improvement may include the use of
Lie groups as the fundamental tool to build the dynamic
models. While the models can be more complicated to create,
they can facilitate better-posed solutions to the optimization
problems, reducing some of the singularities and angle
wrapping issues that occur when modeling certain robotic
systems, especially non-holonomic systems.

Additionally, the extension to multiple parameters only
requires that an optimality metric is set as shown in [10];
however, it would be useful for a system to realize which
parameters need to be estimated in the first place. This could
be achieved through forms of sensor fusion and covariance
estimation as well as an exploration-based search algorithms.
Eventually, the addition of a model creation and learning
algorithm would enable a robot to develop not only estimates
of the parameters, but also internal structure without prior
knowledge of the internal dynamic model. The continued
development of dynamics-based methods for robot learning
will allow robots to learn and better interact with real-world
objects and tasks in physical environments.
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