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Abstract— Interactions with complex systems require safe
and reliable interfaces. However, such interfaces must be
able to account for substantial uncertainty resulting from
the unpredictable nature of human behavior. In this study
we demonstrate that a controller/filter unit operating as a
“Maxwell’s Demon” can be used to synthesize human-machine
interfaces that effectively filter user input in real time. Our
Maxwell’s Demon Algorithm (MDA) was applied in mechanical
and software filtering of user actions for the cart-pendulum
inversion task. Software filtering was implemented and tested
using a custom Android application. Additionally, a haptic
device was employed to create a mechanical filter. Results from
nine healthy subjects show that both software and mechanical
filters increased the success rate of subjects in the swing-up task.
This result suggests that the MDA may be applied to design
reliable human-machine interfaces for rehabilitation, training,
teleoperation and other shared control tasks.

I. INTRODUCTION

Human-machine interfaces have become necessary to en-
sure safe, reliable interaction with complex systems in ac-
tivities ranging from driving a car to rehabilitation therapy.
Effective interfaces can reduce the cognitive load on a human
operator by planning efficient routes, automating obstacle
avoidance, managing low level controls of robotics, and
filtering input signals [1]–[3]. Interfaces may also provide
feedback aimed to improve task performance and training
([3], [4]), even after neurological injury [5]–[7]. However,
such interfaces must be able to manage substantial noise
and uncertainty that stems from the unpredictable nature of
human behavior [8]–[11].

One approach to manage noise and uncertainty has been
proposed in [12] on the basis of a philosophical demon
suggested by Maxwell to contradict the second law of
thermodynamics. The demon selectively opens a molecule-
size door in the center of a partitioned box filled with gas
in thermal equilibrium. Maxwell’s demon allows faster or
slower gas particles to move from one side of the box to the
other until the two sides of the box are filled with hot and
cold gases, respectively [13], [14]. It has been shown that
this Maxwell’s Demon Algorithm (MDA), can use Gaussian
noise to provide sufficient control authority to accomplish
dynamic swing-up tasks [12]. This concept can be applied
as a controller/filter unit, “a demon”, which accepts or rejects
user input on the basis of an optimal controller.

This “demon” can be realized through software or by
means of mechanical impedances such as a haptic interface.
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Haptic interfaces are useful for both teleoperation and vir-
tual training, because of the ability to realize many virtual
environments on the same device and the ability to easily
realize force cues that are not physically realizable. In [15],
virtual fixtures were used as perceptual overlays to improve
the performance of a pick and place task. Virtual fixtures
constrain the position of the operator in the workspace. In
[3], this was accomplished by defining virtual walls, modeled
as a spring and damper in parallel, providing guidance on
the shortest straight line trajectory from one target to the
next. Assistive haptic feedback has been shown in many
cases to not only enhance task performance, but also to
enhance motor training and learning of tasks, including
walking, reaching, and path following [16]–[18]. Optimal
controllers have also been used to generate haptic feedback
signals; results in [19] show that using the output of a Linear
Quadratic Regulator (LQR) to create a vibrotactile “teacher”
signal improved training outcomes for a dynamical balancing
task.

The contribution of this paper is two-fold: we show that
the Maxwell’s Demon Algorithm in [12] can be effectively
used as a means to synthesize reliable human-machine inter-
faces through a) software and b) mechanical filtering of user
interactions with a complex system. Both implementations
of the algorithm described in this paper are tested by nine
healthy subjects in a cart-pendulum swing-up task. As a
software-filtering platform we use a touchscreen, Android
phone where the Maxwell’s Demon filter is strictly applied
in software (in real time). The second implementation (me-
chanical filtering) utilizes the concept of virtual fixtures from
haptics to create a unit that filters subject input mechanically
by generating transient virtual walls. Updates of the software
and mechanical fixtures are performed in real time according
to a receding horizon optimal controller known as sequential
action control (SAC) [12], [20]–[23]. Both implementations
maximize user effort by providing assistance only when user
inputs are incongruous with the optimal controller signal.
The use of SAC in this context has the additional benefit
of not requiring a reference trajectory such that the user is
allowed to find a “good enough” solution.

II. PRELIMINARIES

A. Maxwell’s Demon Algorithm (MDA)

The MDA algorithm was proposed in [12] for noise-
driven swing-up problems based on the hypothesis that noisy
inputs can be a rich source of control authority if filtered
in a meaningful way. Our MDA filter was implemented by
combining a controller and a filter into a single computational
unit that cancels noise samples not driving the system to
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Fig. 1. Schematic of the cart-pendulum system.

the desired control direction. In this section we present a
modified version of the MDA algorithm that allows filtering
of user input. We show that, using this modified version,
we can synthesize more reliable interfaces between human
operators and complex machines/tasks.

We will now describe Algorithm 1. Given a system and
an operator, assume that a user command is generated every
ts seconds. Further, suppose that at each time instance a
vector of potential control inputs is computed based on a
controller (in this paper we use SAC). Note that the controller
should be capable of driving the system by itself according
to the desired specifications. If the inner product between
the control and the user command vector is positive, and
the corresponding angle of the vectors is small, then the
effect of user input on the system should be similar to that
of the control vector. In that case, if the magnitude of the
user command is within the allowed limits, the command is
applied to the system. Otherwise, saturation may be applied1.
On the contrary, if the inner product or angle condition
is violated, one of two alternatives can be followed: a)
the system input can be set equal to zero (user command
is “rejected”) or b) the system input can be set equal to
the nominal control value. The latter case would result in
potentially never-failing interfaces, serving both training and
safety purposes. Note that in our experimental setup we
followed the first approach; the rationale behind this choice
is that being allowed to fail in the task should provide clear
indications as to whether the MDA algorithm has any effect
on performance. In theory, human-machine interfaces filtered
by this approach should drive the system towards the desired
control direction; in case the MDA is based on an optimal
controller in particular, these directions will improve the
selected objective. This process is illustrated in Algorithm 1.

1Saturation limits may correspond to physical constraints e.g. angle or
torque/force limits etc.

Algorithm 1 MDA approach for filtering user input

• Initialize current time t0, sampling time ts, final time
tf , input saturation usat and angle tolerance γ.

while t0 < tf do
Get user input uuser
Compute nominal controller value uc
Calculate inner product 〈uc, uuser〉
Calculate angle φ between uc and uuser

if 〈uc, uuser〉 > 0 and |φ| ≤ γ (1)

if |uuser| < usat

Use uuser as current input, ucurr = uuser

else
Apply saturated user input ucurr = usat

end if
else

Completely “reject” uuser (ucurr = 0)
or
Use nominal control instead (ucurr = uc)

end if
Apply ucurr for t ∈ [t0, t0 + ts]
t0 = t0 + ts

end while

B. Sequential Action Control

In this study we use sequential action control (SAC),
a recently formulated model-based algorithm for optimal
control of nonlinear systems, as a filter that rejects user inputs
not driving the system to the desired control direction. To
achieve the latter, we use the inner product condition de-
scribed in Algorithm 1. SAC enables rapid, closed-loop con-
strained control synthesis for broad and challenging classes
of systems and objectives. A discussion on local stability is
provided in [20]. Our current work focuses on establishing
global stability guarantees by applying a terminal cost/region
approach as in [24]–[27]. Finally, potential challenges in
hardware implementation are discussed in [23]. For a detailed
description of SAC, the reader is encouraged to consult [12],
[20]–[23].

It must be noted that the MDA algorithm is not SAC-
specific; any controller that can successfully control the
system of interest can be used instead. For the purpose of this
paper, the reader should view SAC simply as a controller that
leads to the desired swing-up behavior when directly applied
to the tasks in Section III.

III. MATERIALS AND METHODS

A. Overview

In this experiment we used two testing platforms, i.e. a
haptic and a touchscreen platform, to test the proposed MDA
approach. Each test platform included an assistance mode,



where the MDA interface was applied, and a no-assist mode.
Trials utilized a simulated two-dimensional cart-pendulum
system, which subjects were instructed to swing up to the
unstable equilibrium (the system was initially resting at the
downward stable equilibrium). The equations that describe
the underactuated cart-pendulum system (Fig. 1) are given
by:

ẋ = f(x, u) =


θ̇

g
l sin θ + u cos θ − b

ml2 θ̇
ẋc
u

 (2)

where the state vector x consists of the angular position
and velocity of the pendulum and the position and lateral
velocity of the cart, x = [θ, θ̇, xc, ẋc], the input u is the
lateral acceleration of the cart, g is the acceleration due to
gravity, b is the damping coefficient, l is the pendulum length
and m the mass at the tip.

On the haptic platform, subjects held the stylus of a haptic
device and kinematically controlled the cart acceleration (and
thus position) by moving the stylus in the horizontal plane.
The touchscreen platform used a custom Android application
running on a Samsung Galaxy Note 4 to generate the cart-
pendulum simulation and filter the input signal provided by
the subject. Subjects used either a stylus or their index finger
to kinematically control the acceleration (and thus position)
of the cart in the horizontal plane. The experimental setup
is illustrated in Fig. 2. All subjects were tested on both
platforms in both no-assist and assistance modes and in a
counterbalanced fashion. Because there is only one control
input in the task, the control and user input vectors were
always parallel and their relative angle, φ was either 180◦

or 0◦; thus the parameter γ of Algorithm 1 was set to 0 for
both platforms.

B. Haptic Platform

The haptic platform was comprised of the state sensing and
simulation of the cart-pendulum system, and the computation
of SAC control actions used to update the haptic feedback
law. The position of the cart was given by the horizontal
position of the haptic device stylus. The sensed position of
the cart along with the simulated angle of the pendulum were
used by SAC to compute an optimal action. The feedback
law was the addition of a saturation component and a virtual
wall, which updated according to the calculated optimal SAC
action. The major components of the haptic platform include:

1) Robot Operating System: ROS [28] provides the ser-
vices of a typical operating system such as device
drivers and communication between processes. ROS
uses distributed framework of process which commu-
nicate by passing messages. It is used to integrate the
software and hardware components of this experiment
and to record trials.

2) Phantom Omni Haptic Device: The Phantom Omni
(Sensable) is a compact robotic arm with a stylus end-
effector. It has six degrees of freedom – three of which
are actuated. The Omni has a device driver compatible

Fig. 2. Experimental setup used for the haptic and touchscreen platforms.

with ROS, through which the position of the end-
effector can be sensed and the force at the end effector
can be controlled.

3) trep:A simulation package called trep (available at
nxr.northwestern.edu/trep) which follows
the variational integrator approach [29] to simulate
arbitrary mechanical systems was used to simulate the
dynamics of the cart-pendulum system.

4) Haptic Feedback Law: The amount and direction of
force generated by the Omni was determined by sum-
ming two feedback terms, i.e. a saturation term and a
virtual wall term, aiming to mechanically implement
usat and the inner product/angle conditions (1) of Al-
gorithm 1 respectively. In particular, the saturation term
given in (3) creates a zone where no opposing force
is generated by the Omni when ẋc ∈ [−4m/s, 4m/s],
i.e. when the velocity of the cart, as controlled by the
subject, is within the specified limits. If the subject
moved out of that region, an opposing force of up to
4N was applied. The feedback law as given in (4)
creates transient virtual fixtures based on the cart/stylus
position xc and velocity ẋc.

Fsat = −
15

(1 + e−1.25(ẋc−4))
+

15

(1 + e1.25(ẋc+4))
(3)

Fwall =

{
Kp(xwall − xc) +Kdẋc if (1) is false
0 otherwise

(4)



The position of the fixtures, xwall, was determined by
the latest SAC value, in agreement with the MDA. In
our study we used Kp = 300N

m and Kd = 50 N
m/s .

The graphical interface and state information of the
system was updated at 30Hz, while the optimal control
action from SAC was computed at 5Hz, updating the
position of the virtual wall. The force feedback loop
ran at 300Hz, using the most current position and the
velocity of the cart/stylus.

C. Touchscreen Platform

The touchscreen platform used a custom Android
application running on a Samsung Galaxy Note 4
in landscape mode (the app is available for down-
load at nxr.northwestern.edu/sites/default/
files/files/SACGames.apk). Subjects use their in-
dex finger or the phone’s included stylus to move the
virtual cart along a line on the screen. The application
simulates the system, updates the visualization and calculates
the optimal control values using SAC at 30Hz. Unlike the
haptic platform, where the MDA filtering was implemented
mechanically with the motor-driven force profiles in (3) and
(4), Algorithm 1 in this case was implemented in software.
In particular, if condition (1) or the saturation limits were
violated, user input was completely rejected or saturated
respectively2. Hence, the Android application captures a
kind of infinite actuation scenario, where any action can be
rejected. Finally, the usat value for this platform was set
equal to 15m/s2 (recall that subjects kinematically move the
cart by controlling its lateral acceleration).

D. Experimental Protocol

Nine subjects (3 males, 6 females) consented to partic-
ipate in this study which was approved by Northwestern
University’s Institutional Review Board3. Only healthy adult
subjects with no prior knowledge of the experimental pro-
cedure were allowed to participate. All subjects were tested
on the haptic and touchscreen platforms in both no-assist
and assistance modes. The order in which each platform and
mode combination was tested was randomized to account for
any learning effects.

Subjects were introduced to each interface, and the task
was demonstrated to them. They also completed a practice
“game” on each platform before data collection began. Ten
trials were recorded on each platform/mode combination.
Trials began with the pendulum resting at the downward
equilibrium and subjects were instructed to attempt to swing
up the pendulum to the upward unstable equilibrium. Each
trial automatically ended when the pendulum angle was
between −0.15rad and 0.15rad and the angular velocity of
the pendulum was less than 0.6rad/s. This region of the
state space was selected on the grounds of being a region

2In the haptic platform the efficiency of the virtual fixtures depends on
the amount of force that can be generated by the haptic device.

3This study was reviewed by the NU IRB and approved, though the study
was deemed to not be a human subject study since it does not examine any
scientific questions about people.

of attraction for a linear quadratic regulator (LQR), when
applied to this system. If the pendulum did not reach this
region within 50 seconds, the trial ended and was recorded
as unsuccessful.

IV. RESULTS

A. Sample Response

The haptic platform force feedback as calculated by the
MDA forced changes in the user input. Figure 3 shows a
sample response on the haptic platform in assistance mode.
A virtual wall was triggered on five occasions in the depicted
trial. For instance, around t=4s, when the virtual wall is
triggered according to (4), it causes the position of the cart
to remain almost constant, while the slope of the velocity
curve changes from negative to positive as indicated by
the SAC reference signal. It is also evident that the cart
velocity remains bounded by the damping like feedback of
the saturation constraint in (3). For example observe the
generated forces at approximately t=0.55s and t=2.5s when
the cart velocity was close to -4m/s and 4m/s respectively.
This exhibits how MDA can effectively yield to skilled users
while assisting unskilled users.
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Fig. 3. Sample response of a subject using the haptic platform in
assistance mode. Top: the states of the cart-pendulum system. The subject
kinematically controls the cart position xc (and ẋc) through the cart’s
lateral acceleration. Bottom: The SAC reference signal used in (1) and
corresponding force feedback generated by the haptic device (Omni) based
on (3) and (4). The impulse-like force response correspond to activation of
the virtual wall.



The user inputs on the touchscreen platform were only
filtered in software by the MDA. As a result, the real-world
motion was not directly affected by the interface.

B. Statistical Results

The primary performance metric used to evaluate subject
performance was their success rate, shown in Fig. 4. A
trial was considered successful if the pendulum was inverted
within the 50s time window. In assistance mode, every
subject had a success rate greater than or equal to their
unassisted success rate regardless of platform or order of
testing. In particular, two paired-sample t-tests were per-
formed on the success rate data of all nine subjects. The
assistance mode (mean = 0.96, SD = 0.05) on the touchscreen
platform outperformed the no-assist mode (mean = 0.76, SD
= 0.26), t(8) = -2.35, p < 0.05. On the haptic platform
the assistance mode (mean = 0.92, SD = 0.11) was also
significantly better than the no-assist mode (mean = 0.84, SD
= 0.14), t(8) = -2.80, p < 0.05. These results demonstrate
that both implementations increased the reliability of the
interface, despite the fact that the unassisted success rate
was already very high in the no-assist mode (76% and 84%
for the two touchscreen and haptic platform respectively).

The time to success (TTS) was a secondary performance
metric we used to evaluate the MDA interface. The no-assist
and assistance TTS on each platform were compared using
two paired-sample t-tests. The mean TTS of the no-assist
mode (mean = 23.49, SD = 15.93) and assistance mode
(mean = 22.77, SD = 14.48) on the haptic platform were
not statistically different, t(89) = 0.34, p = 0.734. However,
the assistance mode of the touch screen platform (mean =
16.45, SD = 12.53) produced TTS significantly less than in
the no-assist mode (mean = 23.65, SD = 17.59), t(89) = 3.47,
p < 0.005. These results are illustrated in Fig. 4.

V. DISCUSSION AND CONCLUDING REMARKS

In this study we used two implementations of MDA as a
user input filter, i.e. software filter and mechanical filter, to
improve the subjects’ performance on a dynamic swing-up
task. The touchscreen results with the MDA software filter
indicate higher success rate and lower time to success. It was
immediately evident during testing that subjects found the
task on the touchscreen platform difficult and that the MDA
was particularly effective in preventing over excitation of the
cart-pendulum system. These results support the findings in
previous work where Gaussian Noise provided the input [12].

The second implementation combined the MDA notion of
shared control with haptic feedback strategies to synthesize a
mechanical filter for control inputs. Although the assistance
mode on the haptic platform did increase the success rate,
there was no significant difference in time to success between
the no-assist mode and the assistance mode. This is likely
due to the fact that the haptic interface does not generate
enough force to strictly enforce the Maxwell’s Demon Al-
gorithm. The efficiency of the transient virtual walls could be
improved in future work by utilizing a higher power robotic
system. It is also possible that some subjects employed a
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Fig. 4. Summary of results; error bars indicate standard error. Top: Success
rate, the primary metric, was significantly higher on both platforms in the
assistance mode, even though the average success rate of unassisted trials
was already very high (76% and 84% for the two platforms). Bottom:
The time to success was significantly lower in the assistance mode of the
touchscreen platform. The same was not true on the haptic platform, possibly
due to the limited power capabilities of the haptic device which led to less
strict enforcement of the MDA as a mechanical filter.

different strategy than the optimal controller we used, and
that these alternative strategies may have also been sufficient
to complete the task. However, note that in certain situations,
subjects have to follow a specific set of rules. For example,
in an actual therapy session, subjects have to adhere to the
therapist’s understanding of a task. It may be reasonable to
expect the same thing, e.g. in software-enabled therapy.

Both platforms demonstrate the utility of MDA in synthe-
sizing reliable human machine interfaces. Perhaps the most
important feature of these MDA interfaces is their adapt-
ability in real-time. They require no predefined trajectory,
run on an indefinite time horizon, and automatically adapt
to operator skill. With only the current state information,
MDA can meaningfully reject or impede unhelpful inputs or
be completely transparent to operators with significant skill.
For complex tasks that require human operators (e.g. walking
with an exoskeleton, operating a crane, or flying an aircraft),
these features can alleviate or minimize the need for training
with virtual simulators by ensuring safety of the physical



system and the operator. For therapeutic applications, an
MDA interface may prevent slacking by patients, can relieve
frustration, and utilize intentioned but noisy signals (e.g.
tremor and spasticity) of patients with neuromotor disorders
[5], [8]–[11].
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[24] H. Chen and F. Allgöwer, “Nonlinear model predictive control
schemes with guaranteed stability,” in Nonlinear model based process
control. Springer, 1998, pp. 465–494.

[25] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, 2000.
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