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Abstract— Ergodic exploration has been shown to be an
effective framework for autonomous sensing and exploration.
The objective of ergodic control is to minimize the difference
between the distribution of the time-averaged sensor trajectory
and a spatial probability distribution function representing in-
formation density. Therefore, the time a sensor spends sampling
a particular region is manipulated to correspond to the antici-
pated information density of that region. This paper introduces
a trajectory optimization approach for ergodic exploration in
the presence of stochastic sensor dynamics. The stochastic dif-
ferential dynamic programming algorithm is formulated in the
context of ergodic exploration. Numerical studies demonstrate
the proposed framework’s ability to mitigate stochastic effects.

I. INTRODUCTION

Autonomous sensing and exploration is essential in sys-
tems that operate in unknown environments. In this context,
the high-level goal is to use resources (e.g. time and energy)
judiciously to maximize the amount of acquired information.
Specifically, effective active sensing or sensor path planning
requires the optimization of sensor parameters, such as
position and orientation. For example, in UAV surveillance
the airframe’s position/attitude and the orientation of a gim-
baled camera should be controlled to maximize the visual
information captured [1]. Many algorithms and frameworks
have been proposed that allow for autonomous sensing and
exploration. Developed archetypes include random walk [2],
lawnmower coverage, and information maximization [3].

Recently, autonomous exploration based on ergodic prin-
ciples has been studied [4]. In this research thrust, sensor
paths are computed to minimize the difference between the
distribution of the time-averaged sensor trajectory and a spa-
tial probability distribution function representing information
density [5]. That is, in this framework the time a sensor
spends sampling a particular region should correspond to the
perceived information density of that region. The ergodic
exploration of distributed information (EEDI) algorithm,
proposed by Miller and Murphey [6], [7], generates feasible
trajectories for general sensors with nonlinear dynamics. Ex-
perimental validation of the algorithm was conducted on the
SensorPod robot, a platform inspired by electric field sensing
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fish [2]. When compared to previously proposed algorithms,
such as the Information Gradient Ascent Controller [8] and
the Information Maximization Controller [3], the SensorPod
robot had a larger probability of successfully locating an
object when the EEDI algorithm was used [7]. Further-
more, unlike exploration algorithms that rely on way-point
selection, EEDI explicitly considers sensor dynamics and,
therefore, remains effective for systems exhibiting complex
behavior. However, the effects of stochastic dynamics on the
ability of a sensor to perform ergodic exploration have not
been explored.

The differential dynamic programming (DDP) algorithm
generates optimal open and closed-loop control policies
by computing a quadratic approximation of the cost-to-
go function and utilizing quadratically approximated state
space dynamics around a trajectory [9]. The same basic
principles were used to develop iterative linear quadratic
regulators (iLQR) [10], [11]. Extensions of the DDP algo-
rithm have been developed in order to address state and
control constraints [12], [13]. Furthermore, the algorithm
has been successfully implemented in simulation to enable
robust bipedal robotic walking [14] and has been successfully
flight tested in suspended load operations [15]. Finally,
the stochastic differential dynamic programming (S-DDP)
algorithm considers stochastic system dynamics with additive
control- and state-dependent noise and finds optimal open
and closed-loop control policies to minimize the expectation
of a given cost [16]. In this paper, the S-DDP algorithm is
used to enable a system to mitigate the effects of stochasticity
while performing ergodic exploration.

The main contribution of this paper is the development
of an algorithm for ergodic exploration in the presence of
stochastic and nonlinear dynamics. A new ergodic metric
that is compatible with the S-DDP algorithm is introduced.
Numerical studies compare the proposed algorithm to one
where deterministic dynamics are considered. It is demon-
strated that the proposed algorithm results in trajectories with
greater and more predictable ergodicity. Furthermore, the
total cost of trajectories, including the control cost induced
by the computed closed-loop controller, is reduced when the
proposed algorithm is used.

The organization of this paper is as follows. Section II
gives an overview of the S-DDP algorithm. The concept of
ergodicity and ergodic metrics are introduced in Section III.
In addition, Section III formulates the trajectory optimiza-
tion problem that is considered. Section IV presents results
from numerical experiments. Conclusions are discussed in
Section V.



II. OVERVIEW OF S-DDP
The stochastic differential dynamic programming (S-DDP)

algorithm numerically solves nonlinear stochastic optimal
control problems using first and second order expansions of
stochastic dynamics and cost along nominal trajectories. The
algorithm is iterative in nature such that it computes optimal
control deviation given a nominal input signal. The nominal
input is then updated using the computed optimal deviation
and the process can be repeated. In this section, we give an
overview of the approach and refer to Reference [16] for a
complete and detailed treatment of the topic.

Consider a class of stochastic dynamical systems that
evolve according to

dx = f(x, u) dt+

m∑
i=1

Fi(x, u) dωi, (1)

where x ∈ Rn is the state vector, u ∈ Rp is the control input,
and ωi ∈ R are independent Brownian noises. Furthermore,
the considered cost is of the form

v(x, u, t) = E
[
h(x(tf) +

∫ tf

t0

l(x(τ), u(τ), τ) dτ
]
, (2)

where h(x(tf)) is the terminal cost and l(x(t), u(t), t) is
the running cost. The S-DDP algorithm attempts to find
the optimal sequence of discrete inputs to minimize the
given cost such that the continuous input is then defined as
u(Tk) = uk, Tk ∈ [t0 + k∆t, t0 + (k+ 1)∆t) where ∆t is
the discretization time step. The algorithm also approximates
continuous trajectories with a sequence of state vectors using
a numerical integrator such that x1 = x(t0), x2 = x(t0 +
∆t), . . . , xN = x(tf). It should be noted that the S-DDP
algorithm is iterative. Specifically, given the ith iteration of
the sequence of discrete inputs Ui = {u1, . . . , uN−1} the
S-DDP algorithm finds the optimal control deviation, δU?i ,
such that the control input is updated as

Ui+1 = Ui + γδU?i , (3)

where γ is a user defined constant or is selected from an
automated process (e.g. Armijo line search [17]). However,
several iterations may be needed in order to arrive at a control
input that is sufficiently close to the optimal solution.

To begin an overview of the derivation of the S-DDP algo-
rithm it is assumed that a sequence of nominal discrete inputs
Ū = {ū1, . . . , ūN−1} and the associated state trajectory
X̄ = {x̄1, . . . , x̄N} are given. The first-order linearization
around the nominal trajectory is given as

δxk+1 = Akδxk +Bkδuk +

m∑
i=1

Γikωik. (4)

where1

Ak = I + fx(x̄k, ūk)∆t,

Bk = fu(x̄k, ūk)∆t,

Γik = Fix(x̄k, ūk)δxk + Fiu(x̄k, ūk)δuk + Fi(x̄k, ūk),

1For ease of exposition, notation for derivatives is condensed to ∇zg =
gz and ∇xzg = gxz .

and ωik ∼ N (0,∆t). Note that the discretization time
step, ∆t, needs to be sufficient small in order to accurately
represent the considered dynamics. However, the lineariza-
tion scheme given in equation (4) is not unique. Replacing
the Euler linearization with a linearization derived from
a variational integrator allows the use of relatively large
discretization time steps with minimal degradation to the
performance of the S-DDP algorithm [18]. In order to focus
on the main contributions of this paper variational integrators
are not discussed here.

Continuing with our derivation, in discrete time Bellman’s
Principle of Optimality is stated as:

V (xk, tk) = min
uk

[
E
[
L(xk, uk, tk) + V (xk+1, tk+1)

]]
(5)

where V (xk)2 is the optimal cost-to-go function and
L(xk, uk, tk) = l(xk, uk, tk)∆t. Therefore, the optimal con-
trol deviation, δu?k, can be found by considering an appro-
priate expansion of equation (5). Utilizing the derived first-
order linearization of the system dynamics a second-order
expansion of the expectation cost-to-go function around the
nominal trajectory is obtained:

E
[
V (x̄k+1 + δxk+1)

]
≈ E

[
V (x̄k+1)

+ Vx(x̄k+1)Tδxk+1 +
1

2
δxT
k+1Vxx(x̄k+1)δxk+1

]
= V (x̄k+1) + Vx(x̄k+1)T(Akδxk +Bkδuk)

+ δxT
kA

T
kVxx(x̄k+1)Bkδuk + 1

2δx
T
kA

T
kVxx(x̄k+1)Akδxk

+ 1
2δu

T
kB

T
kVxx(x̄k+1)Bkδuk + 1

2δx
T
kFδxk + 1

2δu
T
kZδuk

+ δxT
kLδuk + δxT

kS + δuT
kU + 1

2T ,

where

F = ∆t
∑m
i=1 Fix(x̄k, ūk)TVxx(x̄k+1)Fix(x̄k, ūk),

Z = ∆t
∑m
i=1 Fiu(x̄k, ūk)TVxx(x̄k+1)Fiu(x̄k, ūk),

T = ∆t
∑m
i=1 Fi(x̄k, ūk)TVxx(x̄k+1)Fi(x̄k, ūk),

L = ∆t
∑m
i=1 Fix(x̄k, ūk)TVxx(x̄k+1)Fiu(x̄k, ūk),

S = ∆t
∑m
i=1 Fix(x̄k, ūk)TVxx(x̄k+1)Fi(x̄k, ūk),

U = ∆t
∑m
i=1 Fiu(x̄k, ūk)TVxx(x̄k+1)Fi(x̄k, ūk).

Next, a second-order expansion of equation (5) is given as

min
uk

[
E
[
L(xk, uk, tk) + V (xk+1, tk+1)

]]
≈

min
δuk

[Q(x̄k, ūk) + δuT
kQu(x̄k, ūk) + δxT

kQx(x̄k, ūk)

+
1

2
δuT
kQuu(x̄k, ūk)δuk +

1

2
δxT
kQxx(x̄k, ūk)δxk

+ δuT
kQux(x̄k, ūk)δxk] (6)

2The dependence on time is no longer explicitly stated for ease of
exposition.



where

Q(x̄k, ūk) = V (x̄k+1) + L(x̄k, ūk) + 1
2T ,

Qx(x̄k, ūk) = Lx(x̄k, ūk) +AT
kVx(x̄k+1) + S,

Qu(x̄k, ūk) = Lu(x̄k, ūk) +BT
kVx(x̄k+1) + U ,

Qxx(x̄k, ūk) = Lxx(x̄k, ūk) +AT
kVxx(x̄k+1)Ak + F ,

Quu(x̄k, ūk) = Luu(x̄k, ūk) +BT
kVxx(x̄k+1)Bk + Z,

Qxu(x̄k, ūk) = Lxu(x̄k, ūk) +AT
kVxx(x̄k+1)Bk + L.

The optimal control deviation is now solved for by minimiz-
ing equation (6) and is given as

δu?k = −Q−1uu (Qu +QT
xuδx

?
k), (7)

where the optimal state deviation is propagated as

δx?k = Akδx
?
k−1 +Bkδu

?
k−1, δx?0 = 0. (8)

Note that the optimal control deviation given by (7) contains
a feed-forward and a feedback component. Therefore, the
term Q−1uuQ

T
xu gives the optimal state feedback gain for

a particular iteration. The feedback component attempts to
keep the system’s trajectory near the optimized trajectory, x̄.
Explicitly, supposing that x(tk) is the state of the system at
time tk then the input signal is given as

v̄(tk) = ū(tk)−Q−1uu (x̄k, ūk)QT
xu(x̄k, ūk)(x(tk)− x̄k)

(9)

where ū is the optimized feed-forward input. Plugging δu?

back into equation (6) yields a backward propagating second-
order approximation of the value function:

V (x̄k) = V (x̄k+1) + L− 1
2Q

T
uQ
−1
uuQu + 1

2T , (10)

Vx(x̄k) = Qx −QT
uQ
−1
uuQ

T
xu, (11)

Vxx(x̄k) = Qxx −QxuQ−1uuQT
xu, (12)

where initial conditions are given as V (x̄N ) =
h(x̄N ), Vx(x̄N ) = hx(x̄N ), and Vxx(x̄N ) = hxx(x̄N ).

This completes the description of the S-DDP algorithm.
The derived optimal control deviation, δu?, is used to update
the nominal input as in equation (3). The process can then be
repeated using the updated input as the new nominal input.

Recall that the control input is updated using a step size, γ
(see equation (3)). In the S-DDP (and DDP) implementations
presented here an Armijo line search is used to automatically
select an appropriate step size [17]. Note that deterministic
dynamics can be considered by removing the diffusion vector
fields from equation (1), Fi(x, u) = 0. The S-DDP algorithm
is outlined in Algorithm 1.

III. ERGODIC EXPLORATION

As discussed in the introduction, in an ergodic exploration
framework sensor paths are computed to minimized the
difference between the distribution of the time-averaged sen-
sor trajectory and a spatial probability distribution function
representing information density. That is, in this framework
the time a sensor spends sampling a particular region should
correspond to the anticipated information density of that
region. As a result, coverage or centralized sampling can be

Algorithm 1 S-DDP with an Armijo Line Search

Require:
Initial discrete control input u(t), parameters α, β, ε
stochastic dynamics (1), and cost function (2)
while Cost updates results in more than ε in difference do

Propagate the discretized (deterministic) trajectory
Linearize the value function and system dynamics
Back-propagate equations (10)-(12)
Compute δU? and δX?

while Costp > Cost + αβ(vxδX
? + vuδU

?) do
Find the proposed input up ← u+ βjδU?

Propagate deterministic trajectory, xp
Find proposed cost Costp ← v(xp, up, t)
Update j ← j + 1

end while
Update: u← up, x← xp,Cost← Costp

end while

expected, without modification, when the information density
is uniformly distributed or highly concentrated at a single
point, respectively.

To formally introduce the concept of ergodicity define
a spatial probability distribution function (PDF) φ(χ) over
an N -dimensional explorable domain M ⊂ RN defined
as [0, L1] × [0, L2] · · · × [0, LN ]. Furthermore, suppose the
state of the dynamical sensor described by equation (1) is
partitioned as x = [χ, ξ]T. Then, the partial-state trajectory
χ(t) ∈ RN , t ∈ [0, T ] is ergodic if and only if,

lim
T→∞

1

T

∫ T

0

g(χ(t)) dt =

∫
M
φ(χ)g(χ) dχ. (13)

for all Lebesgue integrable functions, g ∈ L1 [4]. The system
state is partitioned in order to distinguish between states that
are contained, χ, and not contained, ξ, in the explorable
domain. For example, velocities are not typically contained
in the explorable domain and, therefore, are not included
in the definition of ergodicity. In general, any system state
can be contained in the explorable domain and, therefore,
included in equation (13).

Ergodicity describes the equality of the time-average
trajectory distribution to a particular spatial distribution.
Conceptually, this requires that the time spent sampling
a particular region corresponds to the information density,
described by φ(χ), of that region. Figure 1 shows the
qualitative difference between an ergodic trajectory and an
information maximizing trajectory.

Though not discussed here, acquired information can be
used to update φ(χ). As demonstrated in Reference [7],
Bayesian inference and Fisher information tools can be
used to update and create information maps. Therefore, as
information is gathered new optimized trajectories can be
computed based on an updated φ(χ).

Note that equation (13) does not lend itself to optimization
since the expressed condition must hold for all Lebesgue
integrable functions. However, ergodic metrics can be de-
fined by considering Fourier decompositions of the spatial



Fig. 1: Conceptual representations of an ergodic exploration
trajectory (solid line) and an information maximizing trajec-
tory (dotted line). In ergodic exploration a correspondence
between the time average of the sensor trajectory and the
information density is desired. Conversely, in an informa-
tion maximizing trajectory only the region with the highest
information density is considered.

and time-averaged trajectory distributions and a finite time
horizon, T . As a result, optimization becomes feasible and
adequate coverage of the L1 function space can be ensured
with sufficient number of Fourier basis functions.

A. Ergodic Metrics

A metric to quantify the ergodicity of a trajectory χ(t)
with respect to a PDF φ(χ) is needed to perform optimiza-
tion. The ergodic metric used in [5] and [6] measures the
differences in the Fourier decompositions of the spatial and
time-averaged trajectory distributions:

E =
∑
k∈K

Λk(ck − φk)2 (14)

where k = (k1, k2, . . . , kN ) ∈ ZN is a multi-index,

K = {k ∈ ZN : 0 ≤ kj ≤ K}, (15)

for some selected K > 0, Λk = 1
1+‖k‖s , and s = N+1

2 .
Furthermore, φk is the Fourier coefficient associated with
the basis function Gk(χ) of the distribution φ(χ) calculated
as

φk =

∫
M
φ(χ)Gk(χ) dχ (16)

and ck is the time-averaged value of the basis function Gk(χ)
evaluated over the trajectory χ(t),

ck =
1

T

∫ T

0

Gk(χ(t)) dt. (17)

The Fourier basis functions used are defined as Gk(χ) =
1
hk

∏N
i=1 cos(kiπLi

χi), k ∈ K where hk is a normalizing
factor. Note that the ergodic metric places a higher impor-
tance on low frequency modes.

Due to the structure of the ergodic metric defined in
(14), trajectory optimization formulations that incorporate
the metric into the cost function are not in the form of a

Bolza problem. It has been shown that a Bolza problem can
be recovered if projection-based optimization techniques are
used [6], [7]. However, a Bolza problem cannot be recov-
ered when the S-DDP algorithm is used since a quadratic
approximation of the cost-to-go function is needed.

In order to formulate a new ergodic metric a set of
auxiliary system states are now introduced

yk(t) =
1

t

∫ t

0

Gk(χ(τ)) dτ −
∫
M
φ(χ)Gk(χ) dχ. (18)

The auxiliary system state, yk(t), provides a distance from
ergodicity at time t. Note that yk(t) is not defined at t = 0
and, therefore, a new auxiliary system state is introduced

zk(t) =

∫ t

0

Gk(χ(τ)) dτ − t
∫
M
φ(χ)Gk(χ) dχ (19)

where zk(t) = tyk(t). Taking the time derivative of (19)
results in the following equations of motion

żk(t) = Gk(χ(t))− φk, zk(t0) = 0, k ∈ K. (20)

Finally, the new ergodic metric is given as

E = qf
2 z(T )TΛz(T ) +

∫ T
0

q
2z(τ)TΛz(τ) dt (21)

where q, qf ≥ 0, z = [z1, z2, . . . , z|K|]
T and Λ ∈ R|K|×|K| is

a diagonal matrix whose elements are defined as in equation
(14). If q = 0 and qf = 2

T 2 then the ergodic metrics (14) and
(21) are equivalent.

B. The Trajectory Optimization Problem

The trajectory optimization problem can now be formally
introduced: Minimize the cost function

v(x, z, u, t) = E
[
qf
2 z

T(t1)Λz(t1)+∫ tf

t0

(
q
2z

T(τ)Λz(τ) + 1
2u

T(τ)Ru(τ)
)

dτ
]
(22)

subject to the stochastic system dynamics augmented with
auxiliary system states[

dx
dz

]
=

[
f(x, u)
G(x)− φ

]
dt+

m∑
i=1

[
Fi(x, u)

0

]
dωi (23)

where R ∈ Rp×p is a positive definite matrix, G(x) =
[G1(χ), G2(χ), . . . , G|K|(χ)]T, and φ = [φ1, φ2, . . . , φ|K|]

T.
Note that the proposed set of auxiliary variables enables

the optimization problem to be posed in Bolza form and,
thereby, allows the S-DDP algorithm to be used.

IV. NUMERICAL EXPERIMENTS

In this section, the trajectory optimization problem given
in equations (22) and (23) is numerically solved using the S-
DDP and DDP optimization algorithms. It is shown that the
S-DDP algorithm can be used to mitigate stochastic effects
and results in a smaller and a more predictable ergodic
metric particularly when the additive noise is significantly
large. That is, the mean (expectation) and variance of the
resulting distribution of the ergodic metric are smaller.
Furthermore, the same is true with the cost function (22)
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Fig. 2: Distributions of the ergodic metric given in equation
(21) for noise intensities, σs, ranging from 0 to 0.3. Circle
markers represent the mean of the resulting data set. Data
outliers are not shown. While the performance of the algo-
rithms are similar when the noise intensity is low, the S-DDP
algorithm results in a smaller ergodic metric variance as the
noise intensity increases.

evaluated with the resultant closed-loop input. The state
vector of the considered stochastic dynamical model is
x(t) = [X(t), Y (t), V (t), θ(t)]T where X(t) and Y (t) are
the sensor’s Cartesian coordinates, θ(t) is the heading angle,
and V (t) is the velocity of the sensor along the heading
angle. The system has two inputs u(t) = [u1, u2]T and is
affected by two stochastic processes. The state of the system
evolves as

dX(t) = V (t) cos(θ(t)) dt, (24)
dY (t) = V (t) sin(θ(t)) dt, (25)

dω(t) = 10u1(t) dt+ V 2(t) dω1, (26)

dV (t) = u2(t) dt+ V 2(t) dω2, (27)

where ω1, ω2 ∼ N (0, σ2
s) are independent random variables.

Initial conditions were set as X(t0) = 8, Y (t0) = 8,
θ(t0) = π/2, V (t0) = 0. Furthermore, φ(χ) was selected
to be a Gaussian PDF with expected values µx, µy = 5
and variances σx, σy = 0.5 defined on the domain M =
[0, 10] × [0, 10]. Set (15) was constructed for K = 8 and a
time horizon of T = 10 was used. Furthermore, q = 100,
qf = 1000, and R = diag(0.1, 0.1).

The noise intensity σs was varied to study its effect on
the S-DDP and DDP algorithms. The DDP solution was only
computed once since it does not account for stochastic effects
while the S-DDP solution was recomputed for each value of
σs. A series of 1000 Monte Carlo simulations (Brownian
noise history varied) were conducted for each σs selected.
The optimal feedback gains produced by the S-DDP and DPP
algorithms were utilized in these simulations. However, only
the gains associated with sensor states where used and those
associated with the auxiliary variables were excluded.

Figures 2 and 3 show a summary of the conducted
numerical experiments. Notice that the mean and variance
of the ergodic metric is lower when the S-DDP algorithm
is used. Furthermore, the difference between the S-DDP

0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Noise Intensity, σs

E
rg
o
d
ic

M
e
tr
ic
,
E

 

 

DDP
S−DDP

Fig. 3: Distributions of the ergodic metric given in equation
(21) for noise intensities, σs, ranging from 0.4 to 0.7. Circle
markers represent the mean of the resulting data set. Data
outliers are not shown. The mean and the variance of the
ergodic metric are significantly smaller, in particular for
larger noise intensities, when the S-DDP algorithm is used.
Furthermore, when the typical DDP algorithm is utilized the
distribution of the metric exhibits a greater change when the
noise intensity is increased.
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Fig. 4: Distributions of the cost function given in equation
(22) evaluated with the resultant close-loop input for noise
intensities, σs, ranging from 0 to 0.3. Circle markers repre-
sent the mean of the resulting data set. Data outliers are not
shown. While the performance of the algorithms are similar
when the noise intensity is low, the S-DDP algorithm results
in a smaller closed-loop cost function variance as the noise
intensity increases.

and DDP algorithms becomes more apparent as the noise
intensity is increased. Figure 4 shows the distributions of
the cost function if the closed-loop input cost is considered.
That is, the input signal used to evaluate the control is given
by equation (9). As with the ergodic metric, the mean and
variance of the closed-loop cost function is lower when the
S-DDP algorithm is used.

Figures 5 and 6 show the optimized trajectories at different
noise intensities. Notice that when no stochastic effects are
considered a trajectory similar to those reported in previous
work is computed. However, the computed trajectory changes
when stochasticity is considered. Figure 6 shows how the
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Fig. 5: Optimized trajectories for three noise intensities com-
puted using the S-DDP algorithm. The gray discs indicate the
(σx, σy) and (2σx, 2σy) level sets. The optimized trajectory
is largely dependent on the noise intensity. As the noise
intensity increases, the trajectory is reshaped in order to
mitigate the amount of induced noise while still reducing
the ergodic metric.
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Fig. 6: Optimized velocity trajectories for three noise inten-
sities computed using the S-DDP algorithm. The optimized
velocity trajectory is largely dependent on the noise inten-
sity. As the noise intensity increases, the S-DDP algorithm
attempts to limit the amount of induced noise by reducing
the magnitude of V (t) (see equations (26) and (27)).

S-DDP algorithm attempts to reduce the noise intensity by
reducing V 2(t). Recall that the cost function considered is
an expectation and a policy that induces an unnecessary level
of noise (large V 2(t)) is detrimental. On the other hand, a
trajectory in which V (t) = 0 is not optimal since no ergodic
coverage is achieved. Fundamentally, there exists a trade-off
between completing the task and inducing stochastic effects.

V. CONCLUSION

This paper introduces a trajectory optimization approach
for ergodic exploration in the presence of stochastic sensor
dynamics. A set of auxiliary variables are proposed in order
to pose the ergodic exploration optimization problem in a
Bolza formulation. As a result, the problem becomes solvable
via the DDP and S-DDP algorithms. Numerical studies
demonstrated that the S-DDP algorithm is able to mitigate

the effects of stochastic sensor dynamics better than standard
DDP. Trajectories are optimized in order to limit the amount
of induced noise while still reducing the ergodic metric.

The proposed approach is used to attenuate the effects
of stochasticity when ergodic exploration is performed.
However, an entirely different perspective can be adopted.
Can designed stochasticity be imposed on a system such
that its trajectories become ergodic? That is, can ergodic
exploration occur if induced noise is considered a control
signal? One can imagine, for highly noisy systems, that the
available stochasticity can be utilized, instead of mitigated, to
achieve ergodicity. This perspective will involve an entirely
different solution approach and the feasibility of physical
implementation will need to be investigated.
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