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Discrete Lagrangian Mechanics for Nonseparable Nonsmooth
Systems †
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SUMMARY

We consider event-driven schemes for the simulation of nonseparable mechanical systems subject to
holonomic unilateral constraints. Systems are modeled in discrete time using variational integrator (VI)
theory, by which equations of motion follow from discrete variational principles. For smooth dynamics, VIs
are known to exactly conserve a discrete symplectic form and a modified Hamiltonian function. The latter
of these conservation laws can play a pivotal role in stabilizing the energy behavior of collision simulations.
Previous efforts to leverage modified Hamiltonian conservation have been limited to integrators using
the Störmer-Verlet method on separable, nonsmooth Hamiltonian mechanical systems. We generalize the
existing approach to the family of all VIs applied to nonseparable, potentially nonconservative Lagrangian
mechanical systems. We examine the properties of the resulting integrators relative to other structured
collision simulation methods in terms of conserved quantities, trajectory errors as a function of initial
condition, and required computation time. Interestingly, we find that the modified collision Verlet algorithm
(MCVA) using the Störmer-Verlet integrator defined as a composition method leads to the best accuracy.
Although, relative to this method the VI-based generalized MCVA method offers computational savings
when collisions are particularly sparse. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modeling and simulating mechanical systems subject to unilateral constraints is challenging due to
the complex and nonsmooth nature of contact mechanics. Although at the microscale these systems’
dynamics are dependent upon material deformation and elasticity, a common approach is to adopt
a rigid body assumption for modeling and simulation [1, 2]. This assumption provides the benefit
of a relatively low-dimensional description of system dynamics but at the cost of modeling errors
created by disregarding the dynamics associated with elastic deformation. For engineering systems
that exhibit minimal elastic deformation during operation, this tradeoff is highly favorable.

Working under the rigid body assumption there remains varied approaches to modeling
nonsmooth systems. Barrier methods [3, 4] regularize contact impulses into smooth potential forces
such that nonsmooth mechanics are approximated with smooth differential equations. Measure
differential inclusions [5, 6, 7, 8] more accurately capture impulses by extending the classical theory
for differential equations to admit set-valued forces. Alternatively, complementarity dynamical
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systems [9, 10] capture impulses by pairing differential equations with complementarity conditions.
Lastly there are variational models of contact, in which system dynamics may be captured as the
solutions to variational inequalities [11, 12] or through stationarity principles [7, 13, 14]. As we
are primarily concerned with the conservation properties associated with nonsmooth mechanics,
variational models are a natural choice.

Regardless of modeling approach, it is typically intractable to identify analytical solutions to
nonsmooth system dynamics and thus numerical simulation is required. Simulation methods for
nonsmooth dynamics [15] are generally classified as either time-stepping schemes or event-driven
schemes. Time-stepping schemes express discrete dynamics as a balance of discrete impulses (the
integral of measure-valued quantities over time) and are capable of fixed advances in time regardless
of changes in contact conditions. This is desirable in that time-stepping methods gracefully handle
cases of dense accumulations of impact events. Schemes within this family [16, 17, 18, 19]
may vary the quadrature used to compute impulses as well as the level (position or velocity) at
which constraints are enforced. A comprehensive account of these variants is provided in [20]. Of
particular note, relative to our work’s focus on conservation laws and stabilization, is the symplectic
time-stepping scheme provided in [21].

In contrast to time-stepping schemes, event-driven schemes [22, 23, 24] use adaptive time-
stepping to identify precisely the time and configuration at which a change in contact occurs. This
provides an opportunity for improved accuracy in resolving collisions, but makes these schemes
only suitable for applications in which collisions a relatively sparse in time (a dense accumulation of
impact events cannot be processed). We mention “an opportunity for improved accuracy” because it
remains a problem that during event-driven simulations, maintaining conservation of energy through
impacts is nontrivial. Figure 1, which depicts event-driven simulation results for a constrained
double pendulum system undergoing perfectly elastic impacts, illustrates that even reasonable
choices of a discrete time impact model–in this case the collision Verlet algorithm found in [22]–
can introduce energy errors far greater than those associated with smooth dynamics simulations.
Energy errors may enter during the process of identifying the collision time and configuration, or
during the impulsive momentum update associated with impact. In either case, compounding these
errors over multiple impacts effectively destabilizes a given simulation. Hence, within the context
of event-driven simulations of systems with impacts sparse in time, we wish to address methods that
counteract the above potential for destabilization.

In developing an event-driven scheme focused on energy stabilization and conservation laws, we
build upon the prior work [14] that leverages variational nonsmooth mechanics and its extension to
numerical methods through variational integrator (VI) theory [25, 26]. VIs [27, 28, 29] are generated
through discrete variational principles rather than discretized equations of motion. The resulting
integrators are considered attractive for their multiple structure preserving properties, including
conservation of discrete momenta, a discrete symplectic form, and a modified Hamiltonian (MH)
function. The last of these conservation laws is derived through a process known as backwards
error analysis [30, 26], and is often cited as the reason for VIs’ stable energy behavior when
simulating smooth dynamics. As seen in the development of the event-driven modified collision
Verlet algorithm (MCVA) [24], respecting MH conservation through discrete time impacts is the
key to avoiding the aforementioned energy destabilization. However, the MCVA method is specific
in its scope as it requires use of the Störmer-Verlet method and that the system of interest is
conservative with a separable Hamiltonian.† In this work we produce a definition of the MH
in terms of a general discrete Lagrangian, the central object in VI theory, that facilitates the
creation of a general MH conservation based event-driven integrator for nonseparable, potentially
nonconservative mechanical systems.

It is worth noting, while our expression of the MH in terms of the discrete Lagrangian is motivated
by applications involving nonsmooth systems, in actuality it represents a more general contribution
to structured integration theory. VIs can be considered a subset of the broader family of symplectic

†A separable Hamiltonian is one which can be expressed as H(q, p) = T (p) +V (q). For such Hamiltonians, the
vanishing of mixed partials, ∂ 2

∂ pi∂q j
H, often simplifies integration methods.
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Figure 1. Energy behavior during event-driven simulations of a double pendulum system with and without
collisions. When simulating smooth dynamics in the absence of impacts, energy is not exactly conserved
but oscillates stably near its nominal value. During a simulation with impacts, resolution of a collision at
t = 1.34 with the collision Verlet algorithm (see Subsection 4.1) causes a jump in energy of greater than
5%. Essentially, even a seemingly reasonable choice of discrete impact map can nullify the stable energy

behavior associated with a given smooth integrator.

integration schemes. This family also contains as a subset discrete Hamiltonian integrators derived
with mixed variable generating functions‡,§. Both integrator types, VIs and discrete Hamiltonian
integrators, are supported by a rich discrete mechanics theory. Specifically, underpinning VIs
is discrete Lagrangian mechanics characterized by a discretized Hamilton’s principle [25, 26],
and underpinning the discrete Hamiltonian integrators is discrete time Hamilton-Jacobi theory
[26, 32]. Prior to this work, backwards error analysis for symplectic integrators has been conducted
exclusively in the discrete Hamiltonian setting. Our expression of the MH in terms of the discrete
Lagrangian for the first time links the tool of backwards error analysis and the discrete Lagrangian
mechanics approach.

To be explicit, the contributions of this paper are as follows.

• Using backwards error analysis we establish a definition of the MH, the energetic quantity
exactly preserved by a given integration method, for the VI family of methods.

• We explicitly define multiple versions of the Störmer-Verlet method, stemming from its
interpretation as a VI or as a composition method, and their distinction when applied to
nonseparable mechanical systems.

• We define an event-driven collision integration method, over the family of VIs, that conserves
the MH to a user-specified order.

• We compare the aforementioned method to existing event-driven schemes in terms of
discrete conservation laws, trajectory accuracy, computational effort, and admittance of
nonconservative forcing.

In presenting these contributions, the structure of this paper is as follows. In Section 2 we introduce
continuous-time representations of impact dynamics. In Section 3 we establish a backwards error
analysis for VIs in terms of the discrete Lagrangian. In Section 4 we examine existing event-driven
schemes for impact dynamics, namely the collision Verlet algorithm (CVA) [22], the variational

‡Generating functions offer a concise way to represent symplectic maps. That is, a given map is associated with a
real function, which in turn generates the map through its partial derivatives. This process is discussed in Subsection 3.2.
For further background, see [31].
§Actually, any symplectic scheme can be represented locally as either type, VI or discrete Hamiltonian integrator.

However, the ease of representation may vary significantly, an issue which is revisited in Subsection 3.3.
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collision integrator (VCI) [14], and the MCVA [24]. We describe each algorithm’s conservation
properties and error order analyses, and generalize the MCVA to nonseparable systems and general
choices of the discrete Lagrangian. In Section 5, we present simulation results comparing the various
methods’ computational performance in terms of conservation properties, trajectory errors as a
function of initial condition and required computation time. Finally, our conclusions are given in
Section 6 where we review our contributions in terms of generating new simulation methods, and
provide a final comparison of existing simulation methods relative to the generalized MCVA.

2. IMPACT DYNAMICS

As a precursor to future sections regarding simulation methods, this section is concerned with
continuous-time models of impact dynamics. With our focus on variational models [11, 12, 13, 14],
dynamics are first derived in the Lagrangian setting by way of a nonsmooth Hamilton’s variational
principle. We assume system velocities and momenta are globally isomorphic, a property known as
hyperregularity of the system Lagrangian. Under this assumption, the aforementioned variational
impact dynamics have an equivalent description as a Hamiltonian system. Regardless of the choice
of model, Lagrangian or Hamiltonian, these systems are symplectic and energy conserving. A
precise description of these conservation laws in continuous time will aid us in evaluating simulation
methods in discrete time.

2.1. Variational Lagrangian Impact Mechanics

Let us establish the following system model for the remainder of the paper. Consider a mechanical
system with configuration space Q (assumed to be an n-dimensional smooth manifold with local
coordinates q) and a Lagrangian L : T Q → R. This system is subject to a one-dimensional,
holonomic, unilateral constraint defined by a smooth function φ : Q→ R such that the feasible
space of the system is C = {q ∈ Q |φ(q)≥ 0}. We assume C is a submanifold with boundary in Q.
Furthermore, we assume that 0 is a regular point of φ such that the boundary of C, ∂C = φ−1(0), is
a submanifold of codimension 1 in Q. Physically, ∂C is the set of contact configurations.

The variational approaches of [13, 14] demonstrate that system trajectories satisfy a space-time
formulation of Hamilton’s principle of least action. For a trajectory q(t) that experiences a single
impact at time ti on the time interval [0,T ], this principle appears in its common form

δ

∫ T

0
L(q(t), q̇(t))dt = 0, (1)

but in addition to the typical variations δq(t) taken with respect to the trajectory, one takes variations
δ ti with respect to the impact time¶. The resulting stationarity conditions associated with these
variations require that for all t ∈ [0,T ]\{ti} the system evolves on C according to the standard
Euler-Lagrange equations

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= 0, (2)

and at t = ti the system must satisfy the following impact conditions[
∂L
∂ q̇

]t+i

t−i

= λ∇φ(qi), (3)

E|t
+
i

t−i
= 0, (4)

¶The formulation in [14] opts to vary the parameterization of time as a whole, though away from the impact time ti
this only serves to generate redundant stationarity conditions.
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where qi = q(t−i ) = q(t+i ) is the system’s configuration at impact and E : T Q→ R is the system’s
energy defined as

E(q, q̇) = q̇T ∂L
∂ q̇
−L.

Essentially, the impact equations (3) and (4) indicate a conservation of momentum tangent‖ to ∂C
and a conservation of energy E across the impact.

2.2. Hamiltonian impact dynamics

In the discussions that follow it will often be helpful to reference a Hamiltonian formulation of
impact dynamics. That is, we will occasionally discuss the prior subsection’s impact mechanics
with equivalent conditions in the Hamiltonian phase space T ∗Q. To do this, let us assume here and
henceforth that L is hyperregular [33, 25]. That is, the Legendre transform FL : T Q→ T ∗Q, defined
in coordinates as

FL : (q, q̇) 7→ (q, p) =
(

q,
∂L
∂ q̇

)
,

is a global isomorphism. In this case, our Lagrangian system can be extended to a Hamiltonian
system on T ∗Q with the Hamiltonian H : T ∗Q→ R defined as

H = E ◦FL−1. (5)

Using this H, we have Hamilton’s equations

q̇ =
∂H
∂ p

, (6)

ṗ =−∂H
∂q

, (7)

which are equivalent to (2), and with appropriate substitutions the impact equations (3), (4) are
stated equivalently as

p|t
+
i

t−i
= λ∇φ(qi), (8)

H|t
+
i

t−i
= 0. (9)

2.3. Conservation properties

The overall Lagrangian flow of the nonsmooth system is produced using the composition of two
maps, the flow of the contact-free Euler-Lagrange equations and, in the presence of contact,
the discrete impact equations. As each of these maps individually conserves E, the overall flow
conserves E as well. Furthermore, it is shown in [14] that the overall nonsmooth flow exhibits
conservation of an extended symplectic form ΩL =−dΘ̄L, where

Θ̄L =
∂L
∂ q̇

dq−Edt, (10)

is a one form on T Q×R. When discussing integration algorithms in Section 4, we will analyze
various methods’ ability to provide exact or approximate discrete time versions of these conservation
properties.

‖In fact, (3) can be expressed equivalently with a lower-dimensional projected momentum balance on T ∗∂C. We’ve
written (3) on the overlying T ∗C for ease of physical interpretation. The Lagrange multiplier term signifies an impulse
delivered to the system.
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3. VARIATIONAL INTEGRATORS AND BACKWARDS ERROR ANALYSIS

Prior methods for simulating impacts, namely the CVA [22] and MCVA [24], rely exclusively on
the Störmer-Verlet (SV) scheme [34] for integrating smooth dynamics away from impacts. It is well
known that SV belongs to the family of VIs [26, 25]. In this section, we lay the foundation necessary
for the simulation of impacts with any general VI method. Initially, we review multiple derivations
of VIs, establishing a useful link between the discrete Lagrangian and an implicit mixed variable
generating function definition of VIs. This leads to a central contribution of this paper, an expression
for the modified Hamiltonian of a given VI directly in terms of its discrete Lagrangian.

3.1. Variational integrators generated with the discrete Lagrangian

VIs are generated with a discretization of Hamilton’s principle (1). Central to the discretization, and
the overall theory for VIs, is the introduction of a discrete Lagrangian, Ld : Q×Q×R→ R, which
approximates the action on short time intervals using some user-prescribed quadrature. That is,

Ld(qk,qk+1,h)≈
∫ (k+1)h

kh
L(q(t), q̇(t))dt.

A summation of discrete Lagrangians provides a discrete version of Hamilton’s principle,

δ

N−1

∑
k=0

Ld(qk,qk+1,h) = 0, (11)

for all variations {δqk}N
k=0 with δq0 = δqN = 0. Stationarity in this discrete principle implies the

discrete Euler-Lagrange equations

D2Ld(qk−1,qk,h)+D1Ld(qk,qk+1,h) = 0, (12)

for all k ∈ {1, . . . ,N − 1}, where the notation Di indicates differentiation with respect to the ith

argument. For numerical integration purposes, we can view (12) as implicitly defining a discrete
Lagrangian map FLd : Q×Q→ Q×Q such that FLd (qk−1,qk) = (qk,qk+1).

VIs can also be viewed in the Hamiltonian setting. Following the definitions of [25], consider left
and right discrete Legendre transforms F+Ld ,F−Ld : Q×Q×R→ T ∗Q defined in coordinates as

F+Ld : (q0,q1,h) 7→ (q1, p1) = (q1,D2Ld(q0,q1,h)) , (13)

F−Ld : (q0,q1,h) 7→ (q0, p0) = (q0,−D1Ld(q0,q1,h)) . (14)

Using these definitions, the discrete equations of motion (12) can be rewritten as a one-step method
Φh : T ∗Q→ T ∗Q. Specifically, using the definition

Φh := F+Ld ◦
(
F−Ld

)−1
, (15)

we have Φh : (qk, pk) 7→ (qk+1, pk+1). Observe that, in notational agreement with [26], we have
placed the argument h from F±Ld as subscript on the mapping Φ. This does not exclude the
possibility of varying the timestep, a practice that we will make use of in future sections, and that
will be recorded with changes in this subscript.

It is also worth mentioning that under a discretized Lagrange-d’Alembert principle [25], VIs
admit the structured inclusion of nonconservative external forces. Recall the statement of the
continuous Lagrange-d’Alembert principle,

δ

∫ T

0
L(q(t), q̇(t))dt +

∫ T

0
f (t) ·δq(t)dt = 0,

where f : R→ T ∗Q is some time-dependent generalized forcing. To discretize this principle, one
must define left and right discrete forces, f−k , f+k ∈ T ∗Q to provide an approximation of the virtual
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work. That is, using some specified quadrature f−k and f+k must be defined to yield

f−k ·δqk + f+k ·δqk+1 ≈
∫ (k+1)h

kh
f (t) ·δq(t)dt.

With this definition, the discrete Lagrange-d’Alembert principle is stated,

δ

N−1

∑
k=0

Ld(qk,qk+1,h)+
N−1

∑
k=0

f−k ·δqk + f+k ·δqk+1 = 0, (16)

and produces as stationarity conditions the forced DEL equations,

D2Ld(qk−1,qk,h)+D1Ld(qk,qk+1,h)+ f+k−1 + f−k = 0.

This structure indicates that VIs admit external forcing at the level of generating the integration
scheme. For methods derived in the Hamiltonian setting [26], there is no parallel to 16. That is,
there is no canonical method of incorporating external forces during generation of the integration
scheme. Rather, for these methods forces must be inserted at the level of the discrete dynamics,
through some modification of the one-step map Φh. Further, we mention that in the special case
of VIs with explicit discrete Lagrangians, the statement of the discretized principle (16) above
is explicit as well. This is a simplifying property that we will note in our coming discussion of
integration methods.

3.2. Variational integrators derived with a mixed variable generating function

It is well known [26, 35, 32] that one can interpret the discrete Lagrangian Ld as a type one∗∗

generating function [31] for the map Φh. This provides as an immediate consequence that Φh is
symplectic, since the general theory states that any sufficiently smooth and nondegenerate function
S : Q×Q→ R can be used to generate a symplectic map (q0, p0) 7→ (q1, p1) by using the relations

p0 =−D1S(q0,q1), (17)
p1 = D2S(q0,q1). (18)

This is not the only means by which to generate symplectic maps. In some cases it is advantageous
to use so-called mixed variable generating functions, functions of type two or three (with respective
arguments (q0, p1) or (q1, p0)). We will focus on the former. Given a sufficiently smooth type two
function Ŝ(q0, p1), the equations

p0 = D1Ŝ(q0, p1), (19)

q1 = D2Ŝ(q0, p1). (20)

define a symplectic map if D1D2Ŝ is invertible. In [32], we see that with Ld and F+Ld we can
implicitly construct the generating function Ŝ that produces Φh. It is referred to as the right discrete
Hamiltonian, H+

d : T ∗Q×R→ R, defined as

H+
d (q0, p1,h) = p1 ·q1−Ld(q0,q1,h), (21)

in which q1 appears as an implicit function of (q0, p1) through the relation

p1 = D2Ld(q0,q1,h), (22)

from F+Ld . One can easily check that the mapping generated by substituting H+
d for Ŝ in equations

(19) and (20) is precisely the implicit Φh defined in (15).

∗∗When generating a symplectic map, Φ : (q0, p0) 7→ (q1, p1), a generating function is classified as type one if its
arguments are (q0,q1).
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Structured integrators are typically generated as mappings near the identity, where Ŝ takes the
form

Ŝ(q0, p1) = p1 ·q0 + S̄(q0, p1). (23)

With some manipulation we see H+
d fits this form (i.e. H+

d = Ŝ ) if one uses S̄(q0, p1) = hη(q0, p1),
where

η(q0, p1) = p1 ·
q1−q0

h
− 1

h
Ld(q0,q1,h), (24)

and once again q1 is defined implicitly by equation (22). The form of η roughly appears as a discrete
time calculation of the Hamiltonian using its definition in terms of the Lagrangian (5). This is
not entirely surprising, as typically the O(h) term for integration methods generated with a mixed
variable generating function is H(q0, p1), a property used to prove the following lemma.

Lemma 1
Given a hyperregular Lagrangian L and a discrete Lagrangian Ld that has order s ≥ 1, the function
η : T ∗Q→ R in (24) and the Hamiltonian (5) corresponding to L satisfy

|η(q, p,h)−H(q, p)|= O(h),

for (q, p) ∈ T ∗Q and sufficiently small h. That is, η and H are accurate to first order.

Proof
This follows from two existing results. First, in Theorem 2.3.1 of [25], we have that Ld is order
s ≥ 1 implies that the associated one-step map Φh is of order s ≥ 1 as well. Second, in Section
VI.5.4 of [26] we see that an O(hs) perturbation in given method’s generating function Ŝ leads to an
O(hs+1) perturbation in the method’s solution of the Hamilton-Jacobi partial differential equation.
As tH(q, p) is the leading term in the exact solution of this PDE we have that for any first order
method Φh (i.e. with s ≥ 1) generated with some Ŝ, the quantity 1

h Ŝ agrees with H to first order.
Hence, |η(q, p,h)−H(q, p)|= O(h).

The purpose of this lemma is twofold. First, it establishes some intuition regarding the accuracy
of η as an approximation to H. Second, it provides that first order accuracy, as a property associated
with generating functions, is preserved when moving between the discrete Lagrangian and discrete
Hamiltonian settings. An extension of this relationship to higher orders is anticipated, but not
undertaken in this work.

3.3. Störmer-Verlet as a variational integrator

The SV method [34] serves as an attractive option for separable systems, as it provides a second
order accurate, explicit integrator in that setting. In the aforementioned work, several interpretations
of the method are given, including its structure as a composition method and as a variational
integrator. When applied to nonseparable systems, these interpretations of SV are no longer
coincident, and thus we make the following comments about the generally different versions of
the method.

While the structure of the SV method can be interpreted in several ways, we begin with its
definition as a composition method. To do so we must first define the pair of symplectic Euler
methods, denoted SE1 and SE2, that are VIs in their own right and generated respectively with the
type one equations (17), (18) applied to the discrete Lagrangians

LSE1
d (qk,qk+1,h) = hL

(
qk,

qk+1−qk

h

)
,

LSE2
d (qk,qk+1,h) = hL

(
qk+1,

qk+1−qk

h

)
.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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The one-s tep maps, ΦSE1
h and ΦSE2

h , produced by the above discrete Lagrangians through (15) have
the relation

Φ
SE1
h ◦Φ

SE2
−h = I,

where I symbolizes the identity mapping. Being so, these methods are referred to as adjoint. Using
these definitions, the pair of SV methods, denoted SVA and SVB, can be defined as

Φ
SVA
h = Φ

SE2
h/2 ◦Φ

SE1
h/2 ,

Φ
SVB
h = Φ

SE1
h/2 ◦Φ

SE2
h/2 .

Note that if the methods are appropriately initialized a half timestep apart, SVA and SVB can be
said to produce equivalent results. That is, we have the identity

Φ
SVA
Nh = Φ

SE2
h/2 ◦Φ

SVB
(N−1)h ◦Φ

SE1
h/2 ,

for any positive integer N. One can also derive SV from a mixed variable generating function. In
[34], it is mentioned that (23) produces SVA through the use of

S̄SVA(q0, p1) =
h
2
(
H(q0, p1/2)+H(q1, p1/2)

)
− h2

4
D1H(q1, p1/2) ·

(
D2H(q0, p1/2)+D2H(q1, p1/2)

)
, (25)

where p1/2 and q1 above are viewed as implicit functions of q0 and p1 by the SVA equations.
Lastly, though it’s not particularly compact, SVA and SVB can also be defined as resulting from the
respective discrete Lagrangians

LSVA
d (qk,qk+1,h) = min

qk+1/2

[
h
2

L
(

qk,
qk+1/2−qk

h

)
+

h
2

L
(

qk+1,
qk+1−qk+1/2

h

)]
,

LSVB
d (qk,qk+1,h) = min

qk+1/2

[
h
2

L
(

qk+1/2,
qk+1/2−qk

h

)
+

h
2

L
(

qk+1/2,
qk+1−qk+1/2

h

)]
.

The discrete Lagrangians above come in contrast to several existing sources [36, 34, 25, 26]
characterizing SV as a VI. In these works, which only discuss the method when applied to separable
systems, the discrete Lagrangian for SV is given as

LSVC
d (qk,qk+1,h) =

h
2

[
L
(

qk,
qk+1−qk

h

)
+L

(
qk+1,

qk+1−qk

h

)]
. (26)

The corresponding integrator, in the separable case, is equivalent to SVA. That is, the commutative
relation shown in figure 2 holds. For general, nonseparable systems such a diagram still exists, but
the mixed variable generating function Ŝ and one-step method Φh on the right hand side are distinct
from the SVA method. Thus, in this in this work we denote the VI produced by (26) as SVC.

The SVC integrator serves as a motivating example for our focus on conducting backwards error
analysis in terms of the discrete Lagrangian. Many VIs†† are represented with comparable ease in the
Hamiltonian setting. That is, they admit some mixed variable generating function‡‡ representation of
the same complexity (i.e. explicit, implicit) as the discrete Lagrangian. SVC has an explicit discrete
Lagrangian, which we’ve mentioned yields an explicit statement of the discrete Lagrange principle
in applications with external forcing. However, the method does not have a corresponding simple
generating function, seeming to indicate SVC is best suited for representation as a VI. Certainly
we cannot claim that all symplectic methods are best represented as VIs, but SVC serves as an
indication that some methods are. In turn, the following development of a backwards error analysis
for VIs in terms of the discrete Lagrangian is particularly useful for such methods.

††For instance, the symplectic Euler pair, SVA, SVB, the implicit midpoint rule, and the general family of symplectic
partitioned Runge-Kutta methods.
‡‡This function may not necessarily be type two.
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LSVC
d (qk,qk+1,h)

(26)

generating function
transformation

(21)
- Ŝ SVA(qk, pk+1)

(23),(25)

FLd (qk−1,qk) = (qk,qk+1)
(12)

discrete Hamilton’s
principle (11)

?

discrete Legendre
transformations

(13),(14)

- ΦSVA
h (qk, pk) = (qk+1, pk+1)

(15)

generate symplectic
map (19),(20)

?

Figure 2. When integrating separable mechanical systems the following commutativity diagram connects
the discrete Lagrangian for SVC, LSVC

d , and the one-step method associated with SVA, ΦSVA
h . One can

arrive at the one-step method by converting LSVC
d into a mixed variable generating function (top right) or by

performing a discrete Legendre transformation on the DEL equations associated with LSVC
d (lower left).

3.4. Backwards error analysis

VIs do not exactly conserve energy but do, as stated prior, exhibit stable energy behavior. The
guarantee of this stability can be demonstrated via backwards error analysis, which shows that the
discrete flow Φh for any symplectic one-step method provides the exact solution to a modified
differential equation which is also Hamiltonian [30, 26]. This implies that every VI has associated
with it a modified Hamiltonian (MH) as a conserved quantity. Furthermore, it is true in general that
the MH differs from that of the system being simulated by O(hr) where r is the order of the VI in
use [34]. We provide the following result relating the MH for a given VI to its discrete Lagrangian
Ld .

Theorem 2
Assume we are given a consistent discrete Lagrangian Ld with the corresponding one-step map Φh
and right discrete Hamiltonian H+

d . The application of Φh to a hyperregular Lagrangian system L
provides the exact solution to a modified equation that is a Hamiltonian system with

H̃(q, p) = η(q, p)+hH2(q, p)+h2H3(q, p)+ . . . , (27)

where η(q, p) is as defined in (24) and the terms Hi are composed using higher derivatives of η .
The Hi are smooth on any open set B⊂ T ∗Q in which H+

d is smooth and generates Φh.

Proof
We practice the same proof by construction as given in [26] (Thm IX.3.2). That is, the terms Hi are
defined by equating the VI’s generating function S̄(q, p) = hη(q, p) with a continuous-time solution
S̃(q, p, t) of the Hamilton-Jacobi PDE

∂ S̃
∂ t

(q, p, t) = H̃

(
q+

∂ S̃
∂ p

(q, p, t), p

)
, (28)

S̃(q, p,0) = 0. (29)

Though it is not shown explicitly in the following derivation, it is important to remember η is a
function of Ld and as such S̃ and H̃ will be as well.

We specifically seek a continuous-time solution S̃(q, p, t) with the property S̃(q, p,h) = hη(q, p).
Prior to enforcing this property we will doubly expand S̃, first in powers of t and then in powers of
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h. The first expansion appears as

S̃(q, p, t) = tS̃1(q, p,h)+ t2S̃2(q, p,h)+ t3S̃3(q, p,h)+ . . . ,

and each S̃ j(q, p,h) can be defined by comparing like powers of h when t = h in (28). The first few
terms are

S̃1(q, p,h) = H̃(q, p),

2S̃2(q, p,h) =

(
∂ H̃
∂q
· ∂ S̃1

∂ p

)
(q, p,h), (30)

3S̃3(q, p,h) =

(
∂ H̃
∂q
· ∂ S̃2

∂ p

)
(q, p,h)+

1
2

(
∂ 2H̃
∂q2 ·

(
∂ S̃1

∂ p
,

∂ S̃1

∂ p

))
(q, p,h).

Now for the second expansion, each S̃ j(q, p,h) is expanded as

S̃ j(q, p, t) = S̃ j1(q, p)+hS̃ j2(q, p)+h2S̃ j3(q, p)+ . . . ,

such that in total we have

S̃(q, p,h) = ∑
j,k

h jhk−1S̃ jk(q, p).

Returning to the desired equivalence S̃(q, p,h) = hη(q, p), we now have S̃11(q, p) = η(q, p)
(indicating η is the O(1) term in H̃, as shown in the statement of the theorem) and

i

∑
k=1

S̃k,i+1−k(q, p) = 0,

for i > 1. The current set of equations is underdetermined, but can be completed with relations
provided by inserting the individual S̃ j expansions and equation (27) for H̃ into (30). Comparing
like powers of h in this case, reveals S̃1i = Hi for i > 2 and the general S̃ jk exist as functions of
derivatives of H` with ` < k. To isolate the desired S̃1i = Hi, one must employ recursive calculations
of first a term Hi from η and its derivatives, followed by quantities S̃ jk ( j 6= 1) as a function of terms
H` (` < k) and their derivatives.

As we stressed when beginning the proof of Theorem 2, the quality that differentiates it from the
results in [26] is that all of the significant quantities η , S̃ jk, and Hi are computable with the discrete
Lagrangian Ld . We expand upon this computational accessibility in Appendix A by providing
explicit expressions for the terms H2, H3, and H4 necessary for a third order truncation of the MH.

3.5. Multiple interpretations of symplecticity

We have already made mention of the symplecticity of VIs as a result of their construction using
generating functions. This establishes that the one-step map Φh associated with any VI conserves
a canonical Hamiltonian symplectic form [33]. Using the backwards error analysis we have
established, the symplectic form conserved must precisely be the continuous-time form associated
with a given method’s Hamiltonian modified equations. We have yet to mention an alternative
view [25] that the symplecticity of VI methods may be viewed as the conservation of the discrete
symplectic form ΩLd = dΘ

+
Ld

= dΘ
−
Ld

, where

Θ
+
Ld
(qk,qk+1) = D2Ld(qk,qk+1)dqk+1,

Θ
−
Ld
(qk,qk+1) =−D1Ld(qk,qk+1)dqk,

are one-forms on Q×Q. Both of these notions of symplecticity, continuous and discrete, will arise
in our analysis of impact integration methods.
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4. STRUCTURED INTEGRATION METHODS FOR IMPACTS

We now consider the task of numerically integrating the nonsmooth mechanics presented in Section
2. We will review three of the simulation methods discussed in [24]: CVA, VCI, and MCVA.
Each of these methods falls into the class of event-driven collision integrators, which use adaptive
timestepping to resolve impact dynamics at configurations on the contact set ∂C. Beyond the review
of existing collision integrators, we will utilize our development of backwards error analysis for
VIs to generalize the MCVA to nonseparable systems and any choice of discrete Lagrangian. For
each integration method, we discuss the existence or lack of discrete time symplecticity and energy
conservation.

4.1. Collision Verlet algorithm

As defined in [22], the collision Verlet algorithm (CVA) uses fixed timestep SV§§ for smooth
integration between collisions and a combination of partial timestepping and impulsive momentum
updates to resolve collisions. To determine if a given time step contains one or more collisions, one
must compute the partial timestep to encounter the next collision defined as

CollisionTime [Φ,q, p] :=
{

τ > 0 | (q̃, p̃) = Φτ(q, p), φ(q̃) = 0
}
.

For the systems of interest in [22], collision times could be computed as the solution to a quartic
equation. Thus, in the original CVA a check for a collision time τ < h was performed in every
timestep. As we consider nonseparable mechanical systems, for which searching for collision times
is often more costly, our implementation of CVA makes use of an additional precondition¶¶ that
must be satisfied before instantiating a root-finding search for a collision. The precondition is simply

φ(q̃)< 0, (31)

where (q̃, p̃) = ΦSVC
h (q, p), and qualitatively this is the requirement that fixed timestepping must

yield an inadmissible configuration to signify that a collision has occurred.
As a quick aside, let us briefly comment on the affects of the aforementioned partial timestepping

and root finding on the accuracy of event-driven simulations. In [23] it is proven, for the specific
case of an oscillator subject to a linear unilateral constraint, that the root finding to determine a
collision time τ must be at least O(h4) to preserve the fourth order accuracy of a given discrete
flow map when handling the nonsmooth case. Analysis of our more general nonsmooth systems, in
which the unilateral constraint is a nonlinear function φ(q), is significantly more complex. Though
we do not pursue an explicit analysis here, we are inclined to mention that it is our practice and
recommendation to enforce that partial timestep computations are several orders more accurate than
the order of the integrator in use. This is not unlike the practices recommended for the structured
integration of smooth mechanical systems [26], in which implicit flow maps and root finding are
also commonly at play.

Now, if the precondition (31) identifies a timestep in which a collision occurs, one must compute
the time to collision τ ≤ h and evolve the system to the impact configuration using ΦSVC

τ . At this
stage, CVA specifies that one computes the post impact phase by solving the continuous-time impact
equations (8), (9). We denote the solution of these equations as a reset map RCVA : T ∗Q→ T ∗Q,
where the mapping

(q(t+i ), p(t+i )) = RCVA(q(t−i ), p(t−)), (32)

§§As [22] deals with separable systems, the original implementation of CVA is ambiguous in distinguishing between
the use of SVA and SVC. In the remainder of this work we adopt SVC when applying CVA to non separable systems.
¶¶This precondition is borrowed from the Variational Collision Integrator covered in Subsection 4.2.
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provides

q(t+i ) = q(t−i ),

p(t+i ) = p(t−i )+λ∇φ(q(t−i )),

H(q(t+i ), p(t+i )) = H(q(t−i ), p(t−i )),

p(t+i ) 6= p(t−i ).

With the above definitions, our implementation of CVA fits the general form∗∗∗ of the Event-
driven Collision Integration provided in Algorithm 1. Specifically, CVA is obtained by substituting
Φfull = Φpartial = ΦSVC and Rreset = RCVA into the algorithm.

Algorithm 1 Event-driven Collision Integration (given maps Φfull, Φpartial, and Rreset)

1: (q̃i+1, p̃i+1) = Φfull
h (qi, pi)

2: if φ(q̃i+1)> 0 then
3: (qi+1, pi+1) = (q̃i+1, p̃i+1)
4: else
5: (q̂0, p̂0) = (qi, pi)
6: τmax = h and k = 0
7: while τmax > 0 do
8: ∆τk = CollisionTime

[
Φpartial, q̂k, p̂k

]
9:

(
˜̃qk+1, ˜̃pk+1

)
= Φ

partial
∆τk

(q̂k, p̂k)

10: if “Collision” then
11: (q̂k+1, p̂k+1) = Rreset

(
˜̃qk+1, ˜̃pk+1

)
12: else
13: (q̂k+1, p̂k+1) =

(
˜̃qk+1, ˜̃pk+1

)
14: end if
15: τmax = τmax−∆τk and k = k+1
16: end while
17: (qi+1, pi+1) = (q̂k, p̂k)
18: end if

It may seem that a reset map derived from the continuous-time impact equations (8), (9) seems
reasonable, but from a conserved quantities viewpoint this choice breaks the structure of the impact-
free integration. The Hamiltonian, H, is not conserved exactly by the map ΦSVC

h , and thus its
conservation at a point in time with (9) yields no overlying discrete time energy conservation law.
Furthermore, the extended symplectic form ΩL that is conserved by the continuous-time impact map
is not conserved exactly by ΦSVC

h , so CVA provides no overall notion of symplecticity either. Of the
integration methods we will discuss, CVA is the only one involving explicit impact equations†††,
but at the apparent cost of ignoring SV’s discrete time conservation laws.

4.2. Variational collision integrator

Rather than simply inserting impact equations into the integration process, the variational collision
integrator (VCI) of [14] is developed through a discretization of the nonsmooth Hamilton’s principle
(1). As it happens, when using the discrete Lagrangian associated with SVC the stationarity
conditions derived for the VCI integrator largely overlap with conditions imposed by CVA. The
two schemes are in agreement in all aspects except the definition of the reset map Rreset. Rather than

∗∗∗Given a large overlap in structure the numerical schemes we will discuss, one general algorithm is presented that
permits variations by changes in the choice of three maps Φfull, Φpartial, and Rreset.
†††In our coming example, the Lagrangian is quadratic in q̇. As such, it admits an explicit definition of the mapping

(32).
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the map (32), VCI applies its own reset map RVCI : T ∗Q→ T ∗Q with

(q(t+i ), p(t+i )) = RVCI(q(t−i ), p(t−i )), (33)

providing the following

q(t+i ) = q(t−i ),

p(t+i ) = p(t−i )+λ∇φ(q(t−i )),

−D3LSVC
d

(
q(ti−1),q(t−i ),∆τk

)
=−D3LSVC

d
(
q(t+i ),q(ti+1),τmax

)
,

(q(t+i ), p(t+i )) = F−LSVC
d

(
q(t+i ),q(ti+1),τmax

)
,

(q(t−i ), p(t−i )) = F+LSVC
d

(
q(ti−1),q(t−i ),∆τk

)
,

p(t+i ) 6= p(t−i ).

That is, the reset map for VCI replaces the use of the continuous-time Hamiltonian, H, with the
discrete energy function, −D3Ld : Q×Q×R. The use of this function as a discretization of E has
been established prior in works concerned with space-time discrete Lagrangian structures [37, 25].

In the context of the general scheme of Algorithm 1, VCI is obtained by substituting Φfull =
Φpartial = ΦSVC and Rreset = RVCI. VCI shares with CVA the property that the energetic quantity
conserved through collisions does not match a conserved quantity of ΦSVC

h , and thus no overall
discrete time energy conservation law persists. However, it is shown in [14] that the impact equations
for VCI do conserve ΩLd and thus VCI is an exact symplectic method.

4.3. Modified collision Verlet algorithm

Based on the discrete time preservation of truncated MHs as a higher order invariant, the modified
collision Verlet algorithm (MCVA) was developed in [24]. It is noted there, the CVA and VCI
algorithms conflict with the existing backwards error analysis for SV both in terms of their partial
timestepping to and from impact and in terms of their respective impact equations. Ideally, a
method would exist to perform these steps while exactly solving the modified equations and exactly
conserving the MH. To date no such method exists, due to the infinite dimensional nature of the
series expansion of the MH, and thus MCVA focuses on preserving the MH to a specified order.

In the task of partial timestepping to and from impact configurations, MCVA specifies the use of a
higher order integrator applied to the Hamiltonian dynamics associated with a truncated MH. In the
specific examples of [24], a fourth-order Gauss integration scheme is used to solve the Hamilton’s
equations associated with a fourth-order truncation of H̃. We will denote this MH truncation as

H̃O(h4)(q, p) = η(q, p)+hH2(q, p)+h2H3(q, p)+h3H4(q, p).

Additionally, we will denote higher order flow maps by their order of accuracy and apply a tilde to
indicate the map is integrating the dynamics of a truncated MH. So fourth-order Gauss integration
of the dynamics associated with H̃O(h4) is denoted Φ̃O(h4). If it’s not apparent, the application of a
fourth order method in this manner conserves both H̃O(h4) and H̃ to fourth order.

MCVA also makes use of the truncation H̃O(h4) to define its reset map. To be explicit, RMCVA :
T ∗Q→ T ∗Q is the mapping

(q(t+i ), p(t+i )) = RMCVA(q(t−i ), p(t−)), (34)

that provides

q(t+i ) = q(t−i ),

p(t+i ) = p(t−i )+λ∇φ(q(t−i )),

H̃O(h4)(q(t+i ), p(t+i ),h) = H̃O(h4)(q(t−i ), p(t−i ),h),

p(t+i ) 6= p(t−i ).

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



15

With all of the definitions above, we have that MCVA is equivalent to Algorithm 1 under the
substitutions Φfull = ΦSVA, Φpartial = Φ̃O(h4), and Rreset = RMCVA. MCVA does not provide any
exact discrete energy conservation or discrete time symplecticity. However, the above application
of MCVA does solve the modified equations to fourth order, and thus can be said to preserve the
associated MH and associated extended symplectic form ΩL to fourth order.

4.4. Generalized MCVA

Using the developments in the prior Section 3, when given a discrete Lagrangian, Ld , one can
calculate any truncation of the associated MH and its Hamilton’s equations in terms of Ld . As
a direct result, we have generalized the MCVA integration scheme to any VI, any order of MH
truncation, and any choice of higher order integrator. Further, this generalization can solve the
modified equations, conserve the MH, and conserve an extended symplectic form ΩL to a user
specified order of accuracy. Specifically, to attain solutions of order s to the modified equations
associated with a VI with discrete Lagrangian Ld , one simply needs to derive the Hamilton’s
equations associated with a MH truncation H̃O(hs) (equations that will be defined in terms of Ld)
and perform partial timestepping using an s-order integrator Φ̃O(hs). In the context of Algorithm 1,
a general MCVA scheme for a given Ld and order s is produced with Φfull = Φ (the one-step map
associated with a chosen Ld), Φpartial = Φ̃O(hs) (defined with the user’s choice of s-order integrator),
and Rreset taking the same structure as RMCVA but now requiring conservation of H̃O(hs).

5. SIMULATION RESULTS AND COMPARISONS

In the following we compare the methods of Section 4 during simulation of a vertical cart-pendulum
with impacts. We model the nonsmooth mechanics of this system according to the elastic impact
theory of Section 2. Simulation results are presented for each of the methods in Section 3, including
the generalized MCVA as defined with the SVC variational integrator. Simulations are evaluated in
terms of their respective error in resulting trajectories and, in the case of the MH-based methods,
their average computation time. Further, we discuss an important distinction between the MCVA and
generalized MCVA in terms of the order of accuracy attainable with a fixed number of derivatives
of the generating function S̄ (or equivalently η).

5.1. The vertical cart-pendulum with impacts

Consider a cart of mass m1 affixed to a vertical track. Attached to the center of the cart with
an inertialess rod of length L is a pendular point mass m2. The configuration space for this cart-
pendulum is Q = R× S1 with coordinates q = (y,θ), where y is the height of the cart and θ is the
angle of the pendulum with respect to vertical. Under the influence of gravity, g, the cart-pendulum’s
Lagrangian is

L(q, q̇) =
1
2

q̇T M(q)q̇−V (q), (35)

where

M(q) =
[

m1 +m2 m2Lsinθ

m2Lsinθ m2L2

]
,

V (q) = (m1 +m2)gy−m2gLcosθ .

We note that
det(M(q)) = m2L2(m1 +m2 cos2

θ)),

which never vanishes on Q for positive m1 and m2. Thus the cart-pendulum’s Lagrangian is
hyperregular. We will subject the system to the unilateral constraint

φ(q) = y,
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Table I. Summary of properties of impact integration methods. MCVAC is the only method under
consideration with all of the listed features.

Conserves Symplectic Explicit Discrete Lagrangian
Method Associated MH (to specified accuracy) (simplifying disc. Lagrange-d’Alembert princ.)

CVA X
VCI X (exact ) X

MCVAA X X
MCVAC X X X

requiring that the vertical position of the cart remains positive. It is assumed that the pendulum does
not physically interact with the presence of the constraint surface.

5.2. Cart-pendulum nonsmooth simulation results

With regards to the unilaterally constrained vertical cart-pendulum system, we provide simulation
results for the following methods:

1. CVA (of Subsection 4.1),
2. VCI (of Subsection 4.2),
3. MCVAA, which we use to denote MCVA (of Subsection 4.3) with SVA for its smooth

integration and impact equations defined with a fourth order MH trunction, H̃O(h4), and fourth
order Gaussian quadrature for Φ̃O(h4),

4. MCVAC, which we use to denote the generalized MCVA (of Subsection 4.4) with SVC for
its smooth integration and impact equations defined with a third order MH trunction, H̃O(h3),
and fourth order Gaussian quadrature for Φ̃O(h4).

For a summary of the different properties of these methods, as described in the previous Section
4, refer to Table I. The choice to specify the MCVAC simulations with third-order modified
Hamiltonian conservation, rather than fourth order conservation as in the MCVAA simulations,
was not arbitrary. Rather, the methods were specified such that they require an equivalent number of
derivatives of the generating function S̄. For MCVAC, to calculate H̃O(h3) required all first and
second derivatives of η = 1

h S̄SVC. In the case of MCVAA, we also used only first and second
derivatives of S̄SVA. However, MCVAA benefits from a well-known theorem [26] which provides
that for symmetric Φh the terms in the MH associated with odd powers of h must vanish. This
means that for SVA, on which MCVAA is based, we have H4 = 0 and H̃O(h3) = H̃O(h4). It happens
that SVC, on which our version of MCVAC is based, also has a symmetric one-step map, ΦSVC

h .
However, the aforementioned theorem cannot apply because the leading term in our MH expansion
for SVC is η and not H. That methods derived in the Hamiltonian setting achieve ‘bonus’ orders of
MH accuracy indicates one drawback to the VI-centered approach to impact integration.

In all simulations, system parameters were fixed as m1 = 1, m2 = 0.2, L = 2, and g = 10. For
each of the four methods, the “full” timestep h was varied between 3.2E− 2 and 1E− 2‡‡‡ With
the above parameters, we explored a one-parameter family of initial conditions. Specifically, using
linear samples of a parameter β ∈ [3.2,5.2], we derived associated initial conditions with a mapping
Ξ : R→ T ∗Q defined as

Ξ(β ) = FL([β ,0], [0,3.5−0.18β ]) .

‡‡‡A timestep of 3.2E− 2 might seem arbitrary, but was actually specifically chosen for its relative closeness to√
10E− 2. This choice displays the second-order accuracy of the SV method very clearly in our given figures. That is,

when comparing simulations using timesteps h = 3.2E−2 and h = 1E−2 a second-order method provides trajectories
that differ in accuracy by one order of magnitude. This difference of a single power of ten is easily identifiable with the
logarithmic scale we use.
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Figure 3. For sample MCVAA (left) and MCVAC (right) cart-pendulum simulations, the resulting time
evolution of three different representations of system energy: the Hamiltonian H, the discrete energy−D3Ld ,
and the truncated modified Hamiltonian. Impact times are denoted with the vertical dashed lines. Though
the system’s continuous-time dynamics are derived from H, both simulations best conserve the truncated

MH.

This targeted sampling of initial conditions covers a spectrum of total system energies between
41 and 65 J, and was chosen specifically to offer that results have a smooth dependence on initial
conditions. In general simulations of the cart-pendulum, impact events sometimes act as saddle
points that greatly amplify small differences between trajectories. This sensitivity to local errors is
natural for nonsmooth systems, but is a corrupting force when attempting to compare simulation
methods. By focusing on trajectories associated with initial conditions (q0, p0) = Ξ(β ), we have
avoided saddle points and offer a fair comparison of methods.

As a precursor to our comparisons of model accuracy, let us first examine Figure 3 which shows
the time evolution of energy functions for each an MCVAA simulation and an MCVAC simulation.
Specifically, the depicted results are from simulations using the initial conditions (q0, p0) = Ξ(3.2)
and a timestep h = 1E− 2, which for both methods resulted in solution trajectories with three
impacts. In each respective figure we see the stable behavior of the truncated MH for each
respective method. We also see significant dynamics in each of H and −D3Ld , the energy functions
underlying the respective reset maps for CVA and VCI. As mentioned prior, given that H and−D3Ld
vary during portions of smooth integration, it seems a poor choice for CVA and VCI to enforce
conservation of these quantities at impact.

Having observed the energy stability provided by MCVAA and MCVAC, now let us examine the
accuracy of these methods with regards to trajectory errors. A plot of the L2 error associated with
the simulations for 51 distinct samples of the initial condition parameter β is presented in Figure
4. Errors are computed relative to a benchmark simulation which used a timestep h = 10E−4 and
the CVA scheme.§§§ Immediately we see that the MCVAA method, the only one out of the four
methods that is based in SVA, provides the smallest errors. For the majority of initial conditions,
CVA, VCI, and MCVAC offer comparable accuracy. That MCVAC is clustered with CVA and VCI,
and not MCVAA, indicates that a simulation’s energy stability does not formally guarantee greater
simulation accuracy. Also of note is the jagged behavior in the results for VCI (especially at larger
time steps). Further investigation revealed that this behavior correlates with unevenness in partial
timestepping as β is varied. That is, jaggedness is associated with instances in which two successive
samples of β yield simulations with significantly different (short vs. long) partial timesteps prior to
impact events.

We also examined the computational effort of the MH-based methods, MCVAA and MCVAC.
Results regarding average computation time, over 51 simulations in the aforementioned initial

§§§Additional simulations were performed to verify that the benchmark timestep was small enough such that the choice
of integrator and impact map did not significantly impact results.
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Figure 4. The L2 trajectory error of simulations of the vertical cart-pendulum with impacts as a function
of the initial condition parameter β . Across the spectrum of initial conditions MCVAA provides greater
accuracy than the three competing methods, CVA, VCI, and MCVAC. Simulations use a final time of 5

seconds and a constant timestep of either h = 3.2E−2 or h = 1E−2.

Table II. Computation times, provided as 95% confidence intervals, of the MCVAA and MCVAC methods
for simulations of 5 seconds of the cart-pendulum with impacts. Statistics were collected from 51 simulations
of each method, using either h = 3.2E−2 or h = 1E−2. For the presented range of timesteps h, MCVAA,
which uses a more costly method for smooth integration, outperforms MCVAC, which uses a more costly
impact map. Naturally, this relationship between methods is dependent on the sparsity of collisions in the

system dynamics.

Method Computation Time [sec.]
h = 3.2E−1 h = 1E−2

MCVAA 2.71±0.61 2.40±0.39
MCVAC 1.55±0.33 1.85±0.22

condition space, are presented in Table II. We found that, in our selected range of timesteps, cart-
pendulum simulations using MCVAA required less time than MCVAC. In terms of computational
effort, the impact map associated with MCVAC requires more implicit solves than that of MCVAA.
However, in using the SVA integrator on a nonseparable system, the MCVAA method requires twice
as many implicit solves¶¶¶ as MCVAC during portions of smooth integration. Hence MCVAC is the
method better suited to systems exhibiting, over time, sparse collisions. In our sample simulations
of the cart-pendulum, the collisions were dense enough to provide MCVAA the advantage.

It is also worth mentioning, in our selected range of timesteps the computation time of MCVAC
decreases as timestep decreases. Though the effort used for smooth integration increases with
decreasing timestep, the effort expended executing the impact map decreases due to improved
initialization and conditioning. For these relatively large timesteps, the total effort of MCVAC is
dominated by computing the impact map and thus the simultaneous decrease of effort and timestep
is possible. For some smaller range of timesteps, the effort required for smooth integration will
outweigh that for the impact map and this result will not persist. This lack of monotonicity in
accuracy versus computational effort is one reason we chose to compare methods at fixed timesteps,
rather than fixed accuracy or fixed effort.

¶¶¶Each half step, one of SE1 and one of SE2, requires an implicit solve in this case.
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6. CONCLUSIONS

We have established an expression of the modified Hamiltonian, and thus its modified equations,
in terms of the discrete Lagrangian for a given VI. This theoretical development enabled the
generalization of the MCVA algorithm to nonseparable systems and any choice of variational
integrator. The resulting family of impact integration methods provides solutions to nonsmooth
Hamiltonian modified equations to a user-specified level of accuracy. In doing so, the methods also
preserve an associated symplectic form to a user-specified level of accuracy. In the instance that an
explicit discrete Lagrangian is chosen, the inclusion of external nonconservative forces is explicit
according to the discrete Larange-d’Alembert principle. The prescribed impact integration methods
are the first to admit all three of these aforementioned properties–Hamiltonian modified equations,
symplecticity, and explicit generating functions–when simulating general nonseparable nonsmooth
mechanical systems.

We have evaluated and compared the performance of collision integrators on nonseparable
systems, performing a variety of simulations of a vertical cart-pendulum with impacts. Using
samples from a one-parameter family of initial conditions, we found that according to their design
both MCVAA and MCVAC provided stable evolution of their respective truncated MH. However,
this energy stability translated into simulation accuracy only in the case of MCVAA. It appears
that, for the example cart-pendulum system, the choice of smooth integration scheme has a greater
influence than the choice of impact map on the accuracy of resulting trajectories.

When comparing the computation times of the MH-based methods MCVAA and MCVAC, we
found that MCVAA required less time due to the density of the cart-pendulum’s collisions and
MCVAC’s more costly reset map. For other systems (or in different operating regimes of the
cart-pendulum) in which collisions are very sparse, MCVAC offers computational savings due
to the relative inexpense during portions of smooth integration. Lastly, given our aforementioned
discussion of the discrete Lagrange-d’Alembert principle, MCVAC is more readily adapted, than
MCVAA, to applications involving external nonconservative forces.

A. PRACTICAL COMPUTATION OF MODIFIED HAMILTONIAN TRUNCATIONS USING
THE DISCRETE LAGRANGIAN

For completeness, in the following we detail the computations necessary to produce the higher
order terms Hi in the series expression of the modified Hamiltonian H̃ in Theorem 2. As stated prior,
these terms can be expressed as functions of the discrete Lagrangian and its derivatives. Assume
we begin with knowledge of consecutive phases (qk−1, pk−1) and (qk, pk) during a VI simulation
using Φh corresponding to some prescribed Ld . The steps to compute terms Hi(qk, pk) in H̃ are then:

1. Calculate q̄k+1 satisfying

pk = D2Ld(qk, q̄k+1,h).

This relationship first appeared as equation (22) which served to implicitly define the
mixed variable generating function Ŝ(q0, p1). Calculations regarding H̃ involve applying the
definition of Ŝ at a single time node, and thus the implicit definition of q̄k+1 above results.
Note that q̄k+1 is not the same as the qk+1 produced by Φh(qk, pk).
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2. Regarding q̄k+1 as a function q̄k+1(qk, pk), calculate partial derivatives of q̄k+1. For an O(h4)

truncation of H̃, this requires computing

D1q̄k+1 · v1 =−(D2D2Ld)
−1D1D2Ld · v1,

D2q̄k+1 · v1 = (D2D2Ld)
−1 · v1,

D1D2q̄k+1 · (v1,v2) = (D2D2Ld)
−1D1D2D2Ld ·

(
(D2D2Ld)

−1 · v1,v2
)

+(D2D2Ld)
−1D2D2D2Ld ·

(
(D2D2Ld)

−1 · v1,D1q̄k+1 · v2
)
,

D1D1q̄k+1 · (v1,v2) =−D1D2q̄k+1 · (D1D2Ld · v1,v2)

− (D2D2Ld)
−1D1D1D2Ld · (v1,v2)

− (D2D2Ld)
−1D2D1D2Ld · (v1,D1q̄k+1 · v2) ,

D2D2q̄k+1 · (v1,v2) = (D2D2Ld)
−1D2D2D2Ld ·

(
(D2D2Ld)

−1 · v1,D2q̄k+1 · v2
)
,

where all instances of Ld are evaluated at (qk, q̄k+1,h).

3. Calculate η(qk, pk) according to equation (24), in which q̄k+1 appears as

η(qk, pk) = pk ·
q̄k+1−qk

h
− 1

h
Ld(qk, q̄k+1,h).

Also calculate higher order derivatives of η(qk, pk). The first several of these take the form

D1η · v1 =−
pk +D1Ld

h
· v1,

D2η · v1 =
q̄k+1−qk

h
· v1,

D1D1η · (v1,v2) =−
1
h

D1D1Ld · (v1,v2)−
1
h

D2D1Ld · (v1,D1q̄k+1 · v2),

D1D2η · (v1,v2) =
1
h
(D1q̄k+1− I) · (v1,v2),

D2D2η · (v1,v2) =
1
h

D2q̄k+1 · (v1,v2),

where I signifies the n-dimensional identity matrix acting as a bilinear operator, and all
instances of Ld are evaluated at (qk, q̄k+1,h).

4. Expand the solution S̃(q, p, t) to the Hamilton-Jacobi PDE associated with the modified
equations (recall the proof of Theorem 2) to the desired number of terms. For an O(h4)

truncation of H̃ we will need

S̃(q, p, t) = tS̃1(q, p,h)+ t2S̃2(q, p,h)+ t3S̃3(q, p,h)+ t4S̃4(q, p,h)+ . . . ,

where the terms S̃i(q, p,h) are as determined in equation (30). We restate them here, but using
compact slot derivative notation, as

S̃1 = H̃,

2S̃2 = D1H̃ ·D2S̃1,

3S̃3 = D1H̃ ·D2S̃2 +
1
2

D1D1H̃ ·
(

D2S̃1,D2S̃1

)
,

4S̃4 = D1H̃ ·D2S̃3 +D1D1H̃ ·
(

D2S̃1,D2S̃2

)
+

1
6

D1D1D1H̃ ·
(

D2S̃1,D2S̃1,D2S̃1

)
.

In an attempt to maintain clarity in the application of higher order slot derivatives, we have included the vector
arguments that contract with higher order derivatives of q̄k+1 when they are treated as tensors.
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Recalling the expansions

H̃ = η +hH2 +h2H3 +h3H4 + . . . ,

S̃ j = S̃ j1 +hS̃ j2 +h2S̃ j3 +h3S̃ j4 + . . . ,

and inserting them into the system of equations for S̃i above, we have

S̃11 +hS̃12 +h2S̃13 +h3S̃14 + . . .

= η +hH2 +h2H3 +h3H4 + . . . ,

S̃21 +hS̃22 +h2S̃23 + . . .

=
1
2
(
D1η +hD1H2 +h2D1H3 + . . .

)
·
(

D2S̃11 +hD2S̃12 +h2D2S̃13 + . . .
)
,

S̃31 +hS̃32 + . . .

=
1
3
(D1η +hD1H2 + . . .) ·

(
D2S̃21 +hD2S̃22 + . . .

)
+

1
6
(D1D1η +hD1D1H2 + . . .) ·

(
D2S̃11 +hD2S̃12 + . . . ,D2S̃11 +hD2S̃12 + . . .

)
,

S̃41

=
1
4
(D1η + . . .) ·

(
D2S̃31 + . . .

)
+

1
4
(D1D1η + . . .) ·

(
D2S̃11 + . . . ,D2S̃21 + . . .

)
+

1
24

(D1D1D1η + . . .) ·
(

D2S̃11 + . . . ,D2S̃11 + . . . ,D2S̃11 + . . .
)
.

5. Use the relation S̃(q, p,h) = hη(q, p) to solve for all S̃ jk and Hi in terms of η and its
derivatives. For the expansion above we obtain the expressions

S̃11 = η ,

S̃21 =
1
2

D1η ·D2η ,

H2 = S̃12 =−S̃21,

=−1
2

D1η ·D2η ,

S̃22 =
1
2

D1H2 ·D2S̃11 +
1
2

D1η ·D2S̃12,

=−1
4

D1D1η · (D2η ,D2η)− 1
2

D1D2η · (D1η ,D2η)− 1
4

D2D2η · (D1η ,D1η) ,

S̃31 =
1
3

D1η ·D2S̃21 +
1
6

D1D1η ·
(

D2S̃11,D2S̃11

)
,

=
1
6

D1D2η · (D1η ,D2η)+
1
6

D2D2η · (D1η ,D1η)+
1
6

D1D1η · (D2η ,D2η) ,
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H3 = S̃13 =−S̃22− S̃31,

=
1
12

(
D1D1η · (D2η ,D2η)+4D1D2η · (D1η ,D2η)+D2D2η · (D1η ,D1η)

)
,

S̃23 =
1
2

D1H3 ·D2S̃11 +
1
2

D1H2 ·D2S̃12 +
1
2

D1η ·D2S̃13,

=
1
24

D1D1D1η · (D2η ,D2η ,D2η)+
5

24
D1D1D2η · (D1η ,D2η ,D2η)

+
5
24

D1D2D2η · (D1η ,D1η ,D2η)+
1
24

D2D2D2η · (D1η ,D1η ,D1η)

+
3
8

D1D1η · (D2D1η · (D2η , ·),D2η)+
7
24

D1D1η · (D2D2η · (D1η , ·),D2η)

+
11
24

D1D2η · (D1D2η · (D1η , ·),D2η)+
3
8

D2D2η · (D1D2η · (D1η , ·),D1η) ,

S̃32 =
1
3

D1H2 ·D2S̃21 +
1
3

D1η ·D2S̃22

+
1
6

D1D1H2 ·
(

D2S̃11,D2S̃11

)
+

1
3

D1D1η ·
(

D2S̃11,D2S̃12

)
,

=− 1
12

D1D1D1η · (D2η ,D2η ,D2η)− 1
6

D1D1D2η · (D1η ,D2η ,D2η)

− 1
6

D1D2D2η · (D1η ,D1η ,D2η)− 1
12

D2D2D2η · (D1η ,D1η ,D1η)

− 5
12

D1D1η · (D2D1η · (D2η , ·),D2η)− 5
12

D1D1η · (D2D2η · (D1η , ·),D2η)

− 1
4

D1D2η · (D1D2η · (D1η , ·),D2η)− 5
12

D2D2η · (D1D2η · (D1η , ·),D1η) ,

S̃41 =
1
4

D1η ·D2S̃31 +
1
4

D1D1η ·
(

D2S̃11,D2S̃21

)
+

1
24

D1D1D1η ·
(

D2S̃11,D2S̃11,D2S̃11

)
,

=
1
24

D1D1D1η · (D2η ,D2η ,D2η)+
1

24
D1D1D2η · (D1η ,D2η ,D2η)

+
1
24

D1D2D2η · (D1η ,D1η ,D2η)+
1
24

D2D2D2η · (D1η ,D1η ,D1η)

+
1
8

D1D1η · (D2D1η · (D2η , ·),D2η)+
5
24

D1D1η · (D2D2η · (D1η , ·),D2η)

+
1
24

D1D2η · (D1D2η · (D1η , ·),D2η)+
1
8

D2D2η · (D1D2η · (D1η , ·),D1η) ,

H4 = S̃14 =−S̃23− S̃32− S̃41,

=− 1
12

(
D1D1D2η · (D1η ,D2η ,D2η)+D1D2D2η · (D1η ,D1η ,D2η)

+D1D1η · (D2D1η · (D2η , ·),D2η)+D1D1η · (D2D2η · (D1η , ·),D2η)

+3D1D2η · (D1D2η · (D1η , ·),D2η)+D2D2η · (D1D2η · (D1η , ·),D1η)

)
.

Computing the above expressions for Hi using the previously determined derivatives of η

provides the terms needed for the O(h4) truncation of H̃(qk, pk):

H̃O(h4)(q, p) = η(q, p)+hH2(q, p)+h2H3(q, p)+h3H4(q, p).

For one familiar with backwards error analysis, the expressions for Hi above may appear familiar.
They are precisely the terms in the series expansion of H̃ for symplectic Euler 1, but with η

appearing in place of H. This follows from the fact that the definition of η(q0, p1) in equation
(24), when using the SE1 discrete Lagrangian LSE1

d , simplifies to H(q0, p1). In other words, the
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mixed variable generating function for SE1 is

ŜSE1(q0, p1) = p1 ·q0 +hH(q0, p1),

which has the form of the generating function for general VIs, but with H in place of η .
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