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Estimation and filtering are important tasks in most modern
control systems. These methods rely on accurate discrete-
time approximations of the system dynamics. We present
filtering algorithms that are based on discrete mechanics
techniques (variational integrators), which are known to
preserve system structures (momentum, symplecticity, con-
straints, for instance) and have stable long-term energy be-
havior. These filtering methods show increased performance
in simulations and experiments on a real digital control sys-
tem. The particle filter as well as the extended Kalman filter
benefit from the statistics-preserving properties of a varia-
tional integrator discretization, especially in low bandwidth
applications. Moreover, it is shown how the optimality of
the Kalman filter can be preserved through discretization by
means of modified discrete-time Riccati equations for the co-
variance updates. This leads to further improvement in filter
accuracy, even in a simple test example.

1 Introduction
Estimation and filtering techniques for unknown sys-

tem states based on noisy sensor data are crucial in many
control systems. These methods are implemented in dis-
crete time on digital embedded systems. Thus, they rely on
accurate approximations of continuous-time system behav-
ior; in low-bandwidth applications, predictions over longer
time-horizons are required. Traditionally, explicit Euler dis-
cretizations of the system dynamics or high-order Runge-
Kutta methods are chosen. Due to computational restrictions
and real-time constraints the first-order explicit Euler method
is often the standard choice. However, low-order variational
integration methods provide an alternative that allows effi-

cient and accurate predictions. This paper studies the bene-
fits of structure-preserving integration in two commonly used
filtering approaches: (extended) Kalman filters and particle
filters.

Kalman filters The Kalman filter is likely the most well-
known and widely used estimator [1]. When the Kalman fil-
ter is applied to a linear system with additive Gaussian noise,
it provides the optimal, maximum-likelihood (minimum-
variance) state estimator [2]. The Kalman filter has been suc-
cessfully applied to a wide variety of problems in image pro-
cessing, wireless communication, aerospace, robotics, and
more. While the Kalman filter is simple to compute, the re-
quirement of linear dynamics limits its applicability to non-
trivial systems. The extended Kalman filter (EKF) relaxes
the linearity requirement by utilizing local linearizations to
approximate posterior distributions as Gaussian. It is only
slightly more complex than the Kalman filter, and it is appli-
cable to a larger class of systems. One drawback of the EKF
is that its performance is strongly influenced by the severity
of any nonlinearities in the system. Nevertheless, the EKF is
commonly employed and has demonstrated reasonable per-
formance in a wide range of applications.

Particle filters In recent years particle filters have become
a popular technique for estimation [3, 4], likely due to their
generality. In a particle filter, the uncertainty posterior dis-
tribution is represented by a finite collection of parameters
referred to as particles. These particles are drawn from a
distribution representing the current belief of the system’s
state, and then each particle is mapped forward in time us-
ing a model of the system. As the number of particles ap-



proaches infinity, the distribution of the particles approaches
the solution to the Fokker-Plank equation associated with
the system [5]. A primary feature of the particle filter is its
wide applicability. Particle filters work with arbitrary noise
model, and have no issues with nonlinear system dynamics.
A strong disadvantage of particle filter lies in their computa-
tional complexity. Its reliability is primarily governed by the
number of particles used, and in some problems, the number
of particles required to approximate the true posterior distri-
bution may be quite large (104–106).

Discrete mechanics Discrete mechanics derives models
for mechanical systems via discrete variational principles
[6]. These models define numerical integrators (variational
integrators (VIs), also called symplectic integrators) which
possess beneficial properties: They conserve symplecticity
and symmetries (momenta) of the continuous-time system,
and they have stable energy behavior even in long-term sim-
ulations, which is important in astrodynamics or molecu-
lar dynamics simulations [7]. furthermore, VIs exactly sat-
isfy holonomic constraints common in multibody systems.
VIs can be used to design an indirect or a direct optimal
control method (cf. e.g. [8]) that inherits the advantages of
forward integration. Additionally, the problem formulation
requires fewer optimization variables and leverages struc-
tured linearizations for efficient optimization algorithm de-
sign (cf. [9]). recently, the discrete mechanics concept has
been extended to stochastic integrators (see [10, 11]) which
almost surely preserve the symplectic structure. In [12],
stochastic variational integrators have been successfully ap-
plied for estimation problems on Lie groups using a method
based on uncertainty ellipsoids. This paper extends results of
the authors’ previous works [13, 14].

Embedded systems One of the primary motivations for
this work is to develop and explore filter implementations
that preserve geometric structure in order to improve per-
formance while also facilitating implementation on an ex-
perimental embedded system. In recent years, much work
has been done on leveraging a variety of numerical meth-
ods for improving the performance of estimation routines
[15–17], but, these methods typically achieve increased per-
formance through higher-order, computationally expensive
methods that may not be appropriate for embedded estima-
tion. For an arbitrary choice of integrator for use in an em-
bedded system one would hope that the computational cost
was low to deal with limited computational resources, and
that the formulation could be cast as a one-step map that is
easily linearized to fit the form of standard discrete control
and estimation routines. One may also hope that the integra-
tion method satisfy holonomic constraints as often encoun-
tered in mechanical systems. Moreover, the satisfaction of
holonomic constraints should not result in loss of the ability
to linearize the discrete map across a timestep. The varia-
tional integrator (VI) presented in [9] satisfies all of these
requirements while also a providing a symplectic integrator
with stable long-term energy behavior. The linearizations of
that VI are explicit and come with fixed computational cost

further aiding in implementation on an embedded system.
While the VI from [9] is not the only integrator used herein
it provides motivation for much of this work. This integrator
is a drop-in replacement for linearizable one-step maps, such
as the explicit Euler scheme, in standard forms of particle
filters and extended Kalman filters. While there are a mul-
titude of other integration schemes available, it is difficult
to find another technique that doesn’t compromise at least
one of these requirements. For example, many integrators
that satisfy holonomic constraints are not easily linearizable.
Higher-order integrators often result in multi-step methods,
and the increased order results in increased computational
cost. For several experimental examples presented in this pa-
per, we compare VI-based estimation routines to correspond-
ing routines based on explicit Euler integration. While other
choices could be made for this comparison, due to our in-
terest in estimation for embedded systems, we constrain our
choice to low-order, one-step maps, and in this context, the
explicit Euler integrator is a standard choice.1

Contributions To begin, we illustrate the advantageous
statistical properties of first- and second-order variational
integrators for simulating a stochastic harmonic oscillator.
We then present particle filters and extended Kalman fil-
ters based on VI discretization and demonstrate their per-
formance in simulated and experimental examples. It is
demonstrated that both particle filters and extended Kalman
filters may be highly sensitive to the choice of integration
scheme and that VI-based methods outperform the discrete-
time filter obtained from zero-order-hold and explicit Euler
discretization – a combination that fits well within the em-
bedded systems requirements discussed in the previous sec-
tion. A second important contribution of this work is the
derivation of structure-preserving covariance updates for a
Kalman filter. We prove that the modified update equations
additionally capture the Hamiltonian/symplectic structure re-
sulting from the optimality property of the Kalman filter. We
then apply a traditional Kalman filter and a Kalman filter
with the structure-preserving covariance update equations to
a simple example. It is shown that a Kalman filter with the
structure-preserving update equations outperforms the filter
with standard covariance updates.

In Section 2, we give an introduction to varia-
tional/symplectic integrators for deterministic and stochastic
systems. Section 3 provides an introduction to particle filters
and illustrates how symplectic integration can be used in par-
ticle filtering in order to reduce the common issue of particle
deprivation. In Section 4, we recall the definition of discrete-
time Kalman filter and show how the one-step maps can be
derived from variational integrators. The increased perfor-
mance of these filters is experimentally demonstrated for a
planar crane system in Section 5. We extend our approach
by deriving structure-preserving covariance updates in Sec-
tion 6. Finally, we discuss the results and provide concluding

1In the conclusion of this document we mention some recent work [18]
that describes the generation arbitrary-order VIs that are still one-step maps.
These VIs may provide another choice of integrator that satisfies the afore-
mentioned requirements while also yielding a higher order method.



remarks in Section 7.

2 Variational Integrators
This section provides a short overview of variational

integrators for deterministic/stochastic simulation, optimal
control, and estimation. For more details, see [6, 7, 7–11].

2.1 Variational Mechanics
A mechanical system can be described by its La-

grangian L, a real-valued function that depends on the sys-
tem’s configuration q(t) and velocity q̇(t) at any time t. The
Lagrangian is typically the difference of kinetic and poten-
tial energy, whereas the system’s Hamiltonian H is typically
the sum of all energies. In addition, there may be forces
f (q, q̇,u) such as friction or a control input force that influ-
ence the system’s dynamics. The system dynamics are de-
scribed by the Lagrange-d’Alembert principle, such that they
satisfy the variational equation (cf. [6])

δ

∫ T

0
L(q, q̇)dt +

∫ T

0
f (q, q̇,u) ·δqdt = 0. (1)

Equivalently, (q, q̇) (for a given control input u on [0,T ]) sat-
isfy the forced Euler-Lagrange equations

∂L
∂q

(q, q̇)− d
dt

(
∂L
∂q̇

(q, q̇)
)
+ f (q, q̇,u) = 0. (2)

Under certain regularity assumption (cf. [6] for details), these
equations can be equivalently written as Hamilton equations
in configuration q and momentum variables p = ∂L

∂q̇ (q, q̇)
with Hamiltonian H(q, p) = p · q̇−L(q, q̇) and Hamiltonian
forcing fH :

q̇ =
∂H
∂p

, ṗ =−∂H
∂q

+ fH(q, p,u). (3)

In the absence of forces, the flow of a Hamiltonian system
(and thus, of an unforced Lagrangian system) is symplectic2.

2.2 Discrete Mechanics
In order to simulate the system dynamics, most numer-

ical integration schemes, e.g. Runge-Kutta methods, would
be applied to either the Euler-Lagrange equations (2) or the
Hamilton equations (3). This differs from variational in-
tegrators, which instead discretize the variational equation
(1). This process generates an iterative numerical integration
scheme, and the approach guarantees that structures of the

2In general, a map is symplectic if it preserves a symplectic form ( [6,7]).
To get an intuition for symplecticity, it is helpful to consider the fact that
symplectic transformations are area-preserving. A linear map A :R2n→R2n

is symplectic if AT JA = J with J =

(
0 1
−1 0

)
.

original continuous system are preserved, e.g. symplectic-
ity and symmetries in terms of system invariances (cf. [6]).
Furthermore, variational integrators have exponentially sta-
ble energy behavior over long time horizons (cf. [7]).

To derive a discrete variational integration scheme, the
action map, i.e. the first term in Eq. (1), is approximated over
each time step [kh,(k+1)h] by

Ld(qk,qk+1,h)≈
∫ (k+1)h

kh
L(q(t), q̇(t))dt (4)

and the forcing term is discretized in a similar manner with
discrete forces f−k , f+k . The term Ld(qk,qk+1,h) is referred
to as the discrete Lagrangian, and f−k , f+k are the left and
right discrete forces, respectively [6]. Taking variations of
the discrete configurations qk for k = 1, . . . ,N − 1 leads to
the discrete forced Euler-Lagrange equations (cf. [6, 8]) for
k = 1, . . . ,N−1,

D1Ld(qk,qk+1)+D2Ld(qk−1,qk)+ f−k + f+k−1 = 0

where DnLd is the slot derivative3 of Ld . Discrete momenta
are given by the relationships pk = −D1Ld(qk,qk+1)− f−k
and pk+1 = D2Ld(qk,qk+1) + f+k which implicitly define
a symplectic one-step integration map Ψk+1 : (qk, pk) 7→
(qk+1, pk+1). It is shown in [7] that (in the unforced case)
a large class of variational integrators can be written as sym-
plectic partitioned Runge-Kutta methods. In [8], the defi-
nition of symplecticity in VI/symplectic partitioned Runge-
Kutta methods is extended to external forces. Thus, we
will use both VI and symplectic partitioned Runge-Kutta
schemes throughout this paper. In particular, will use the VI
midpoint rule for the planar crane system (Section 5) and the
symplectic Euler method for Kalman filtering in Section 6.

2.3 Stochastic Symplectic Integrators
In [11], the Hamilton-Pontryagin variational principle is

extended to stochastic dynamical systems. It is shown that
a stochastic mechanical system possesses an almost surely
variational structure and thus, is almost surely symplectic
and momentum map preserving. These properties carry over
to the stochastic variational integrator that [11] derives from
analogous discrete variations. While their first order integra-
tor is derived from Hamilton-Pontryagin principle in config-
uration, momentum, and velocity coordinates, the stochas-
tic symplectic Euler method used in this work is based on
Hamilton equations in (q, p) coordinates.

In [10] stochastic integrators for Hamiltonian systems
are developed with deterministic dynamics (as in Eq. (3))
and additive noise terms driven by independent Wiener pro-
cesses. Their methods are built on symplectic partitioned
Runge-Kutta schemes as introduced in [7] for deterministic

3The slot derivative DnL(A1,A2, . . .) represents the derivative of the
function L with respect to the n-th argument, An. At times, the arguments
to the function L may be dropped for compactness – in that case the slot
derivative still applies to the argument order from the function definition.



systems. In our numerical examples, we use one of the first-
order methods presented in [10, Eq. (3.6)],

qk+1 = qk +h
∂H
∂p

(pk,qk+1)+σ∆kω1

pk+1 = pk−h
∂H
∂q

(pk,qk+1)+ γ∆kω2,

(5)

for k = 0,1, . . . ,N−1, where ∆kω1,2 are discretized indepen-
dent Wiener processes and σ,γ ∈ R. In the following, we
refer to this method as the symplectic Euler scheme. Note
that this method simplifies to an explicit symplectic method
for separable Hamiltonian systems (H = T (p)+V (q)).

Additionally, we approximate the deterministic mechan-
ics by a second-order variational midpoint integrator, which,
applied to stochastic mechanical systems, leads to

qk+1 = qk +h
∂H
∂p

(
pk + pk+1

2
,

qk +qk+1

2

)
+σ∆kω1

pk+1 = pk−h
∂H
∂q

(
pk + pk+1

2
,

qk +qk+1

2

)
+ γ∆kω2.

(6)

Alternatively, the midpoint integrator can be derived varia-
tionally from Ld(qk,qk+1,h) = h ·L

(
qk+1+qk

2 ,
qk+1−qk

h

)
which

we will use in the examples presented in Section 5. The
stochastic processes are then included as shown in [11].

The following example of a stochastic harmonic oscilla-
tor is adapted from [10], and we use it to illustrate the crucial
role of the integration scheme in stochastic simulations.

Example 2.1 (Stochastic Harmonic Oscillator). The
stochastic differential equations for the harmonic oscillator
with configuration q ∈ R, momentum p ∈ R, Hamiltonian
H(q, p) = 1

2

(
q2 + p2

)
, and Wiener processes w1,2, are given

by (
dq
d p

)
=

(
0 1
−1 0

)(
q
p

)
dt +

(
σ dw1(t)
γ dw2(t)

)
. (7)

We use the analytic solution presented in [10] to investigate
the flow from a set of initial conditions (circle about (0,0)
in Fig. 1) and to compare the approximation quality of the
different integrators. The first integration method is the stan-
dard Euler-Maruyama integrator (see e.g. [5]). As can be
seen in Fig. 1, its flow artificially expands the radius of the
circle (blue dots), and the mean location of the circle drifts
significantly from the true solution. This is unlike the be-
havior of the two symplectic methods (2nd order midpoint
in red; points mostly hidden by 1st order symplectic Euler
results depicted in green), which both follow the exact flow
very closely and retain the circle area. In particular, we can-
not observe a clear superiority of the 2nd order method over
the symplectic Euler scheme in this example. Both symplec-
tic integrators have statistics-preserving4 properties that are

4By statistics-preserving, we mean that these symplectic integrators are
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Fig. 1. Approximations of the stochastic harmonic oscillator flow for
a set of initial conditions. All integrators use the same step-size h =
0.03125 and an identical sample path of the Wiener process with
σ = γ = 1.0. The results from the Euler-Maruyama integrator are
depicted in blue, the VI midpoint in red and the symplectic Euler in
green. The analytic solution (black) from [10] is given for comparison.

crucially important for estimator performance, as we illus-
trate in the remainder of this paper.

3 Particle Filters
This section will provide a brief introduction to particle

filters and it will provide a numerical example illustrating
how a symplectic integrator can be leveraged to alleviate a
common issue with particle filters.

3.1 Basic Particle Filtering
The key concept behind a particle filter is that uncer-

tainty distributions of the system’s state will be represented
by a finite collections of particles. No analytical expression
for the probability density function associated with these dis-
tributions is required; rather, we assume that the particles are
drawn from this distribution. In this way, the collection of
particles itself represents an approximation of the distribu-
tion. This is opposed to other filters, e.g. the Kalman filter,
where the uncertainty distribution is parameterized and the
filter predicts the evolution of the parameters. We will now
sketch the steps required for a particle filter following the
terminology and syntax of [3].
Initialization: A particle filter is initialized by generating a
set of M particles X0 where each particle xm

0 with 1≤m≤M
represents a possible initial state of the system. This initial
particle collection may be drawn from a known distribution
or even assumed to all have the same value.
Proposal Distribution: In each step of the particle filter,
each particle from the previous timestep is mapped forward

capable of both accurately predicting statistical quantities such as temper-
ature [19] and of almost surely preserving symmetries of stochastic sys-
tems [11].



to the current time using a noisy system model and knowl-
edge of the controls used during the previous timestep. This
new collection of particles is referred to as a proposal dis-
tribution. This step is also the step where the integration
techniques of this work are implemented.
Importance Weights: In order to incorporate measurements
an importance weight for each particle is calculated. The im-
portance weight uses a noisy measurement model to evaluate
the probability of a measurement zt given a particle xm

t i.e. the
weight of particle m at time t is wm

t = p(zt | xm
t ).

Resampling: In most implementations of the particle filter,
the next step is to incorporate the measurement zt into the
system’s uncertainty distribution through a resampling pro-
cess. In this process the particles representing a sampling of
the posterior distribution for the current timestep is generated
by randomly drawing with replacement a new set of M par-
ticles from the proposal distribution. This random drawing
is biased by the importance weights calculated in the previ-
ous step. Particles from the proposal distribution with higher
measurement probability have a higher probability of being
drawn for inclusion in the posterior distribution. In this way
particles with low probability are culled from the collection,
and the total particle distribution is drawn to the measure-
ment. This process allows the statistic of the posterior dis-
tribution to include knowledge of the measurements and it
helps to ensure that the process of generating the proposal
distribution is not wasting time computational effort on inte-
grating particles that have very low posterior probability.
Iterate: To continue the particle filter the posterior particle
set from timestep t is used as the initial set for the Proposal
Distribution step of timestep t +1.

3.2 Particle Filters and Choice of Integrator
A particle filter inherits the statistical properties of the

integration scheme that is used for propagating the collection
of particles. We demonstrate this by revisiting the stochastic
harmonic oscillator example. In the applications presented
in Section 5 we show an example of how a common issue
with particle filters (particle deprivation) can be significantly
reduced by using variational integrators.

In particle filtering algorithms, a collection of particles
is mapped forward a single timestep using a noisy process
model in order to predict a proposal distribution. Then a
measurement of the system is taken, and a new set of par-
ticles is produced by resampling the proposal distribution to
produce an approximation of the posterior distribution. Par-
ticles with higher probability given the measurement value
(and its corresponding probability density function) have a
higher probability of being selected for the posterior distribu-
tion. This resampling process incorporates the measurement
in the filter state by removing particles with low probability.

Typically, if measurements are collected regularly from
a reliable sensor, the incorporation of the measurements will
help to regulate errors caused by inaccurate integration of
the particle states. However, there are many situations where
one may encounter unreliable measurements, for example,
in high-dimensional data association problems, systems with

..

0

.

10

.

20

.

30

.

40

.

50

.

60

. time [s].

0

.

100

.

200

.

300

.

400

.

C
ov

ar
ia

nc
e

Ei
ge

nv
al

ue
s

.

RK1 Particle Filter

.

VI Particle Filter

Fig. 2. Image of the particle filter covariance propagation for the
harmonic oscillator without resampling. Note that the system’s co-
variance matrix has two eigenvalues, thus there are two eigenvalues
plotted for each integrator.

unreliable communication networks, or tracking systems suf-
fering from occlusions. In these situations, the particle filter
must predict the state of the system over long time horizons
without measurements. As a result, symplectic integrators
may significantly increase the performance of the particle
filter. An illustration of this can be seen in the following
example.

Example 3.1 (Stochastic Harmonic Oscillator). In Fig. 2, the
statistical properties of the harmonic oscillator of Eq. (7) are
simulated by integrating a collection of 1,000 particles for 60
seconds with a timestep of 0.0625 s using a midpoint VI and
an explicit Euler integrator (RK1). The plot shows the eigen-
values of the covariance of the particle distribution as a func-
tion of time. It can be seen that the RK1 scheme adds signif-
icantly more noise to the system than the variational integra-
tor. This is true even though the two collections of particles
were driven by the same set of sample paths of the Wiener
process. Even in this simple system, with no measurements
to regulate the integration errors the non-symplectic RK1 in-
tegrator significantly over-predicts the uncertainty in the sys-
tem state.

3.3 Particle Deprivation
A common issue encountered in particle filters is that

of particle deprivation [3]. In a filter suffering from particle
deprivation, there are too few particles in the vicinity of the
true state of the system. When this occurs, the resampling
process may eventually drive the number of unique particles
down to a single particle. While there are known heuristics
for preventing this situation [3], we point out that an inte-
grator adding artificial diffusion to the collection of particles
will increase the filter’s probability of suffering from particle
deprivation when measurements are incorporated. Results
illustrating this point are in Section 5.



4 Kalman Filter
As a starting point, we consider the following formula-

tion of a Kalman filter; originally developed in [1]. For a
textbook reference, we refer to [20].

Proposition 4.1 (Discrete-time Kalman filter, [1]). Let a
model of the system and the measurement be given by

xk+1 = Akxk +Gkwk, x0 ∼N (x0,P0), wk ∼N (0,Qk),

zk =Ckxk + vk, vk ∼N (0,Rk),

with Rk > 0 and {wk}N
k=0, {vk}N

k=0 uncorrelated Gaussian
white noise processes with covariance Qk and Rk respec-
tively. The initial state x0 is assumed to be drawn from a
Gaussian centered around a nominal initial state x0 with co-
variance the same as the filter’s initial covariance P0. A mea-
surement at timestep k is denoted zk. Then, the optimal esti-
mation of the state, x̂k+1, given measurements up to step k, is
given by the following update equations:

Prediction:

P−k+1 = AkPkAT
k +GkQkGT

k ,

x̂−k+1 = Akx̂k,

Measurement update:

Kk+1 = P−k+1CT
k+1(Ck+1P−k+1CT

k+1 +Rk+1)
−1,

Pk+1 = (1−Kk+1Ck+1)P−k+1,

x̂k+1 = x̂−k+1 +Kk+1(zk+1−Ck+1x̂−k+1).

In Kalman’s original work [1], the state transition matrix
of the continuous-time system is used for Ak in Prop. 4.1. In
general, this transition matrix cannot be computed analyti-
cally, but it can be approximated by an integration scheme
applied to the continuous differential equation.

To give an example: When applying the explicit Euler
scheme to the dynamical system ẋ = Ax one obtains the dis-
crete update matrix Ak = (1+hA), whereas the symplectic
Euler scheme leads to the one-step map

Ak =

(
(1−hA11)−1 h(1−hA11)−1A12

hA21(1−hA11)−1 h2A21(1−hA11)−1A12 +1+hA22

)
.

4.1 Linearizations for Extended Kalman Filters
The midpoint variational integrator has a unique char-

acteristic referred to as a structured linearization [21, 22].
Many estimation algorithms, such as the EKF, rely on local
linearizations to adapt linear system tools to nonlinear sys-
tems. Typically, in the continuous time setting, to obtain a
local linearization at a point one would use a Taylor expan-
sion of ẋ = f (x,u) about that point. This linearization is an
infinitesimal linearization, but the discrete-time linearization
is what is required. In other words, one needs to linearize the
discrete map xk+1 = fk(xk,uk). In a standard implementation
of an EKF [3], the discrete-time Kalman filter from Proposi-
tion 4.1 is adapted to a nonlinear system using the following

x

y
(x,y)

(xr,h)

h

Winch
System

Magnetic
Wheel

String of
length r

Mass, m

Gravity, g

Fig. 3. Schematic of planar crane system including relevant geo-
metric parameters.

linearizations

Ak =
∂ fk

∂x

∣∣∣∣
x̂k,uk

and Ck =
∂hk

∂x

∣∣∣∣
x̂−k+1

(8)

where the measurement model is assumed to be of the form
zk = h(xk)+ vk.

As the presented VI is a one step method, it admits a
simple linearization and even though the method is an im-
plicit method, one can calculate an explicit linearization of
the DEL equations [22]. Furthermore, since the VI is exactly
sampling a nearby mechanical system, the VI linearization is
an exact linearization of the nearby mechanical system. It is
thus called a structured linearization [21, 22]. This restric-
tion on the behavior of the linearization greatly improves its
local accuracy. In Section 5 we show an example of how the
improved accuracy of this linearization leads to better EKF
estimator performance.

In principle, a one-step map can be derived and lin-
earized for implicitly defined RK schemes in the same man-
ner, but higher order RK methods lead to complex Taylor
series expansions due to the intermediate evaluation points.
For that reason, implementations are often restricted to first
order methods. While this paper does not explicitly consider
results related to estimation for constrained systems, we note
that an additional interesting feature of the midpoint VI in-
tegrator is that it exactly satisfies holonomic constraints at
each timestep while still admitting the explicit, structured
linearization.

5 Application to Planar Crane System
This section presents experimental and simulated exam-

ples demonstrating how the choice of discretization scheme
may dramatically affect the performance of standard parti-
cle filters and extended Kalman filters. Further, we demon-
strate improved performance of both filters when leveraging
the structure-preserving properties of variational integrators.

In the following two sub-sections we apply particle fil-
ters and EKFs to the planar crane system shown in Fig. 3.
This system and corresponding modeling strategy have been
discussed by the authors in [21] and [23]. In those works, a



modeling strategy was presented where the position of the
winch system xr, and length of the string r were treated
as kinematic inputs; i.e., inputs where the system has suf-
ficient control authority to perfectly track any desired trajec-
tory [24]. With this modeling strategy, the Lagrangian for
the system is only a function of the dynamic configuration
variables (x,y) and is given by

L(q, q̇) =
1
2

m
(
ẋ2 + ẏ2)−mgy . (9)

The corresponding midpoint discrete Lagrangian (Eq. (4))
for the planar crane system is then

Ld(qk,qk+1) =
m

2∆t

(
(xk+1− xk)

2 +(yk+1− yk)
2
)

− mg
2∆t (yk+1 + yk) . (10)

As a result of the kinematic input assumption, all damping in
the crane portion of the system is assumed to be negligible.
Moreover, through experimentation, we found that the damp-
ing in the swing dynamics of the payload was low enough to
also be considered negligible. Thus, the deterministic mod-
els of the dynamics of this system have no damping.

For all results in this section, the noise models are as-
sumed to be additive Gaussian noise with zero mean. The co-
variances parameterizing these distributions are all assumed
to be diagonal, and the experimental system only measures
relevant configuration variables i.e. there are no measure-
ments of velocity or discrete generalized momentum.

5.1 Numerical Results
Figure 4 shows simulated effects of the choice of inte-

gration scheme on performance of the EKF algorithm at a
range of timesteps. Each point on the plot was generated by
running 1000 trials of the filter on a nominal feasible trajec-
tory for the system described in Fig. 3. In the “prediction”
step of the EKF, actual samples from the nominal trajectory
were used i.e. the predictions without additive noise corre-
sponded exactly with the nominal trajectory. Measurements
were simulated by adding Gaussian noise to the nominal tra-
jectory. For each trial, the L2 error between the filtered sig-
nal and the reference signal was determined at each timestep.
These errors were then averaged to produce an “error norm”
for each trial. The error norms were then averaged, and their
standard deviations calculated to produce the points and error
bars on Fig. 4. For the upper, solid curve the local lineariza-
tion was performed by evaluating the infinitesimal deriva-
tives of the continuous dynamics about the current best esti-
mate, and then using an explicit Euler approximation to con-
vert this into a discrete linearization. For the bottom curve,
the structured linearization of the midpoint variational inte-
grator discussed in Section 4.1 was used. It is easily seen
that as the filter frequency decreases, the performance of the
discrete- mechanics-based variational integrator representa-
tion significantly outperforms the explicit Euler approxima-
tion.

10−3 10−2 10−1 100
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0.00
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Fig. 4. Plot illustrating variations in EKF filter performance using two
different discrete representations of the continuous dynamics. Both
curves are simulated from 1000 trials, with Gaussian noise added to
produce “measurements”.

5.2 Experimental Results
In this section we use experimental data from the robotic

planar crane system described in [21] and [23]. This system
utilizes digital encoders to close control loops around xr and
r. Thus, the kinematic-input modeling strategy mentioned in
the previous section is used again. Since these inputs are as-
sumed to be perfectly controlled, the dynamic configuration
variables (x,y) are the only state variables estimated.

Fig. 5 shows the parametric evolution of estimates of
the dynamic configuration variables using particle filters and
EKFs at two different frequencies using both a midpoint VI
and an RK1 integrator to represent the system. The strength
of the VI integrator can be seen by noting that the particle
filter and the EKF estimates of the system’s uncertainty are
nearly identical even at frequencies as low as 6 Hz. The two
filter estimates are not only in agreement with each other, but
they are also in agreement between the frequencies. We em-
phasize that at 6 Hz the timestep used for integration, mea-
suring, linearization, and estimation is ≈0.167 s. With this
large timestep the RK1 particle filter is useless.

Fig. 6 shows the time evolution of the eigenvalues of the
covariances from each of the estimators in Fig. 5. This figure
further demonstrates that the VI covariance predictions are
stable even at large timesteps. Additionally, it demonstrates
that in this particular system the structured linearization al-
lows the EKF to perform nearly identically to the particle
filter. In this case the increased accuracy of the structured
linearization avoids the increased computational expense of
the particle filter while achieving similar performance.

In Section 3.3 the issue of particle deprivation in par-
ticle filters was discussed. It was explained that the VI re-
duces the likelihood of this issue by removing artificial noise
injected by a traditional integrator; this is especially true at
low frequencies. Fig. 7 shows the number of unique parti-
cles as a function of time for the 6 Hz particle filters using
the VI and RK1 integrator. In several cases, the particle dis-
tribution from the RK1 integrator is artificially spread to the
point that resampling produces only 2 unique particles (out
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Fig. 5. This set of figures illustrates the results of utilizing a particle filter (PF) and an EKF to estimate the dynamic configuration variables of
the system shown in Fig. 3. For each filter, both VI and RK1 integrators are used. In the left plots, measurements, controls and integrations
happen at 30 Hz, while in the right plots they all occur at 6 Hz. To generate the data for a given frequency, an experimental system was
sent a set of commands at the desired frequency; the same commands were used to step the integrators for predictions. A Microsoft
Kinect R©configured to provide data at the target frequency was used to measure both of the dynamic configuration variables (x,y). For
the 30 Hz data, only some of the measurements/ estimator updates are shown to avoid overcrowding the figure. The particle filters used
1000 particles, and the “low variance sampler” algorithm from page 110 of [3] is used to resample. The ellipses shown represent the local
covariance estimates for each filter. The eigenvalues and eigenvectors of the covariance are used to define the size and orientation of the
ellipses. Note that the VI-based filters outperform the RK1-based filters at both frequencies, and that the VI filter performance is similar for
both frequencies. Additionally note that the VI covariance estimates are in excellent agreement between the filters at both frequencies; this is
not true for the RK1 filters.

of 1000) which implies uncertainty estimates from the filter
are essentially useless.

6 Kalman Filter with Structure-Preserving Covariance
Updates
In Section 4, we discussed the difference between sym-

plectic and non-symplectic discrete system matrices Ak in
the Kalman filter and showed benefits of using symplectic
discretization schemes for filtering applications in Section 5.
However, the Kalman filter provides further structure due to
its optimality property. In this section, we derive a modi-
fication to the previously-used Kalman filter that preserves
this optimality structure through discretization and thereby
further improves the filter performance.

To this aim, we start with the continuous-time Kalman
filter, as introduced in [25] (see Prop. 6.1 below). The
continuous-time Kalman filtering problem is dual to a lin-

ear quadratic regulator problem: While an LQR controller
minimizes a quadratic cost functional, the Kalman filter de-
termines state estimates that minimize the expected squared
error to the process’ true state (cf. [25]). In particular, both
problems exhibit an additional Hamiltonian structure (inde-
pendent of the mechanical Hamiltonian structure). This can
be seen by examining the state-adjoint system that belongs
to the respective problem’s optimal solutions.

Our approach aims at additionally preserving this prop-
erty through numerical discretization. Therefore, we set up
a symplectic discretization of the state-adjoint system for the
Kalman filtering problem. It is not necessary to explicitly
solve for the adjoint equations, though. Instead, we directly
derive modified discrete-time Riccati equations which are in-
dependent of the states and adjoints (as previously presented
in [14]). Thus, our Kalman filter algorithm only consists of
a single covariance update step and an all-in-one state up-
date afterwards (see Algorithm 6.1). The performance of
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this algorithm is studied in Example 6.1 and compared to
the discrete-time Kalman filter methods with standard co-
variance updates.

Proposition 6.1 (From [25]). Let the model of the system

and the measurement be given by

ẋ = Ax+Gw, z =Cx+ v

where x(t0) ∼ N (x0,P0), w ∼ N (0,Q), v ∼ N (0,R) with
white noise processes {w(t)}, {v(t)} being uncorrelated,
also with x0. Then, the optimal filter is given by

˙̂x = Ax̂+K(z−Cx̂), x̂(0) = x0, with K = PCT R−1,

Ṗ = AP+PAT −PCT R−1CP+GQGT , P(t0) = P0.

In [25], the duality relation to the LQR problem is used
to state a Hamiltonian for the filtering problem,

H (x,w) =−1
2
‖GT x‖2

Q−wT AT x+
1
2
‖Cw‖2

R−1 ,

such that the state-adjoint equations are given by

ẋ =
∂H
∂w

=−AT x+CT R−1Cw,

ẇ =−∂H
∂x

= GQGT x+Aw
(11)



where w is the adjoint vector. The covariance matrix P(t)
with P(t0) = P0 ≥ 0 (P0 symmetric) is determined by

P(t)=
(
Θ

21(t, t0)+Θ
22(t, t0)P0

)(
Θ

11(t, t0)+Θ
12(t, t0)P0

)−1

(12)
with

Θ(t, t0) =
(

Θ11(t, t0) Θ12(t, t0)
Θ21(t, t0) Θ22(t, t0)

)
(13)

being the transition matrix of the continuous-time state-
adjoint equations. As shown in [25, Sect. 10], the contin-
uous state-adjoint system in (11) has a unique matrix solu-
tion pair (X(t),W (t)) that satisfies initial conditions X(t0) =
1,W (t0) = P0. The solution pair satisfies the identity

W (t) = P(t)X(t), ∀t ≥ t0, (14)

from which the covariance equation (12) can be derived.

Lemma 6.1. The state-adjoint system (11) is Hamiltonian
and the transition matrix Θ(t, t0) is symplectic.

Proof. The system matrix of the combined state adjoint

equations is S :=
(
−AT CT R−1C

GQGT A

)
and since CT R−1C

and GQGT are symmetric, it satisfies (JS)T = JS with J =(
0 1
−1 0

)
. So we have a (linear) Hamiltonian system, for

which is the flow is defined by the transition matrix. Thus, it
follows that Θ(t, t0) is a symplectic matrix for all t ≥ t0.

In our discrete-time approximation of the Riccati equa-
tion for the covariance matrix, we derive discrete-time co-
variance updates that exactly preserve the following two
properties: the symplectic structure of the state-adjoint dif-
ferential equations and their linear relationship defined by
P(t). As in the continuous-time Kalman filter, the update
equation for the covariance matrix Pk does not depend on the
state or on the adjoint. For known system and error covari-
ance matrices at all time nodes, {Pk}N

k=1 can be computed
beforehand.

Theorem 6.1. Let a system and measurement model be
given as in Proposition 6.1 for a 2n-dimensional mechani-
cal system with state (q, p)T . Let td = {tk}N

k=0 denote a set of
discrete time points, with tk = kh for step size h, and assume
P0 symmetric is given. We denote by Ψk the one-step map
of the symplectic Euler5 discretization of the 4-dimensional

5Note that the states of the Hamiltonian system do not coincide with the
filter state. Since the Hamiltonian structure of the mechanical system matrix
A suggests a splitting of the state and adjoint variables, though, we choose a
symplectic Euler that treats half of the states and adjoints as implicit and the
other half as explicit. However, we point out that other splittings between
the set of coordinates define a first order symplectic integration scheme, as
well.

state-adjoint system (11),


vk+1
yk+1
λk+1
µk+1

=


vk
yk
λk
µk

+h
(
−AT CT R−1C

GQGT A

)
vk+1
yk
λk

µk+1

 , (15)

with coordinates xk = (vk,yk)
T and wk = (λk,µk)

T . Note
that vk, yk, λk, µk ∈ Rn. Then, Ψk is symplectic by con-
struction. Further, if the discrete covariance updates for
k = 0,1, . . . ,N−1 are computed by

Pk+1 = (Ψ21
k +Ψ

22
k Pk) · (Ψ11

k +Ψ
12
k Pk)

−1, (16)

with the linear one-step map Ψk being identified with its rep-

resenting matrix and Ψk =

(
Ψ11

k Ψ12
k

Ψ21
k Ψ22

k

)
, then we have that

wk = Pkxk for all k = 0,1, . . . ,N.

Proof. Since Θ(t,0) is a transition matrix, it satisfies the
property

Θ((k+1)h,0) = Θ((k+1)h,kh) ·Θ(kh,0).

The symplectic Euler discretization of (11) approximates the
solution on the time grid td = {tk}N

k=0, xk ≈ x(hk), wk ≈
w(hk). Thus, we have Ψk as an approximation of Θ((k +
1)h,kh) = Θ(tk+1, tk),

(
xk+1
wk+1

)
= Ψk

(
xk
wk

)
≈Θ((k+1)h,kh)

(
xk
wk

)
,

and by construction, Ψk is symplectic (the symplectic Euler
scheme indeed leads to a symplectic one-step map, see [7]
for a proof).

The discrete state-adjoint relations, (xk+1,wk+1)
T =

Ψk(xk,wk)
T , and the discrete covariance updates as defined

in equation (16) are consistent in the way that a linear rela-
tionship between state and adjoints via the covariance matri-
ces is ensured, i.e. wk = Pkxk for all k = 0,1, . . . ,N (compare
to equation (14) in the continuous-time setting):

Pk+1xk+1 = wk+1

⇔ Pk+1
(
Ψ

11
k xk +Ψ

12
k wk

)
= Ψ

21
k xk +Ψ

22
k wk

⇔ Pk+1
(
Ψ

11
k +Ψ

12
k Pk

)
xk = (Ψ21

k +Ψ
22
k Pk)xk

⇔ Pk+1 =
(
Ψ

21
k +Ψ

22
k Pk

)(
Ψ

11
k +Ψ

12
k Pk

)−1
.

Note that as long as we have a time-invariant estimation
problem, Ψk is a constant matrix that can be obtained from
solving the set of equations (15) for (vk+1,yk+1,λk+1,µk+1)
and generating the matrix entries just once. If the system and
measurement model matrices are time-varying though, this
step would have to be performed in every iteration.



For estimation problems of mechanical systems, it is de-
sirable to also preserve the mechanical structure (i.e. Hamil-
tonian matrix A, or Hamiltonian plus forcing), as demon-
strated in Section 4. Therefore, we combine the structure-
preserving covariance update of Theorem 6.1 with dis-
crete symplectic state updates. This leads to the follow-
ing algorithm, that resembles the continuous-time filter (see
Prop. 6.1) in that it does not split into prediction and mea-
surement update steps as the discrete Kalman filter does (cf.
Prop. 4.1).

Algorithm 6.1. For the implementation of the structure-
preserving Kalman filter with symplectic state and covari-
ance updates using symplectic Euler integration, we modify
the continuous-time Kalman filter algorithm of [20] to

1. take measurement6 zk+1,
2. update covariance matrix by

Pk+1 =
(
Ψ21

k +Ψ22
k Pk

)(
Ψ11

k +Ψ12
k Pk

)−1
,

3. compute Kalman gain as Kk+1 = Pk+1CT R−1,
4. update state by(

qk+1
pk+1

)
=

(
qk
pk

)
+h
[
(A−Kk+1C)

(
qk+1

pk

)
+Kk+1zk+1

]
.

Step 4 is again an implicit, but linear update, so it can be
analytically inverted beforehand and then directly evaluated
during filtering. While Algorithm 6.1 may not initially ap-
pear to follow the same procedure of the standard discrete
Kalman filter (Proposition 4.1) in that there is no predic-
tion or update step, we point out that one could rewrite the
standard discrete Kalman filter to give a single covariance
update equation analogous to the update rule in Step 2 of
Algorithm 6.1. In general the covariance update from Algo-
rithm 6.1 and from Proposition 4.1 will not result in the same
covariance evolution.

The previous results specifically use a first-order sym-
plectic scheme for two reasons: We want to give practition-
ers a good idea how to implement the filter and we want to
have a fair comparison to the standard approach that is based
on non-symplectic, first-order, explicit Euler discretizations
(see Example 6.1). However, if higher order symplectic dis-
cretization schemes, e.g. a second order midpoint rule, are
used, only the calculation of the one-step map Ψk based on a
modified equation (15) and the state update in Step 4 of the
algorithm need to be adjusted.

Example 6.1 (Stochastic Harmonic Oscillator). We revisit
the example of a stochastic harmonic oscillator as intro-
duced in Example 2.1. The structure-preserving Kalman fil-
ter method as presented in Algorithm 6.1 is compared to the
discrete-time variants introduced in Section 4: the standard
covariance updates with either an explicit Euler discretiza-
tion for the discrete filter state update or a symplectic dis-
cretization by midpoint rule. Figure 8 shows the resulting fil-
ter behavior in state space (top row), as well as the covariance

6In simulated examples we generate measurements by zk+1 = Cx((k+
1)h)+wk+1 where x(t) is some ground truth trajectory, e.g. obtained from a
high-order integration with small step sizes and wk is a noise vector drawn
from the assumed Gaussian distribution.

matrix eigenvalues (bottom left) and the mechanical energy
of the oscillator (bottom right). All integrators use a step-size
of h = 0.03125 and identical measurements generated from
one sample path. Unlike the examples presented in Section 4,
the symplectic state updates alone do not improve the filter;
likely due to the simplistic nature of the harmonic oscillator.
However, the novel variant of a structure-preserving filter has
smaller covariances, as can be seen from the ellipses in the
top plot and the covariance eigenvalues. In particular, the
mechanical energy of the filtered state, which would ideally
— in the absence of noise and without numerical errors —
be a constant, is much more accurately preserved than in the
other two cases.

7 Conclusion
This paper presents three structure-preserving filtering

methods for mechanical control systems: 1) Particle filter
with symplectic state predictions, 2) Extended Kalman filter
with symplectic state predictions and structured lineariza-
tions of variational integrators, and 3) Kalman filter with
symplectic state update and additional symplectic covariance
update. The filtering techniques have been tested in simu-
lated examples and in a real-time experiment with a planar
crane system. Symplectic discrete-time predictions of the
states increased the performance of both the particle and the
extended Kalman filter compared to the standard choice of
explicit Euler updates. Replacing the covariance updates in
the linear Kalman filter can improve its performance even
further. We derive a modified discrete-time Riccati equa-
tion for the covariance matrices that preserves the Hamilto-
nian/symplectic structure of the system of optimality con-
ditions that belongs to the continuous-time Kalman filter.
This novel filter variant can be extended to nonlinear sys-
tems by linearizing the discretized state-adjoint system of
the optimality conditions. The one-step map of the sym-
plectic state-adjoint scheme, which is used for the covariance
Riccati equations, will then become time-dependent. Thus,
one would expect an increased computational effort. How-
ever, this will be balanced by the observed higher accuracy
of the method which allows a coarser time-grid than the non-
symplectic first order methods. Further theoretical studies of
the symplectic filtering approach can be performed by back-
wards error analysis [7] applied to the state-adjoint system.
We also note that recent work [18] has shown it may be pos-
sible to construct arbitrarily high-order variational integra-
tors that are still linearizable one-step maps. These integra-
tors are developed through backward error analysis [7] by
constructing surrogate Lagrangians. High-order VI-based
filtering techniques is another area for future investigation.
In many real-world applications, the filtering methods pre-
sented herein would be combined with optimal control tech-
niques. First results of a combination with the presented fil-
ters are given in [13]; a detailed study is left for future work.
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