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Abstract— Sequential action control (SAC) is a recently
developed algorithm for optimal control of nonlinear systems.
Previous work by the authors demonstrates that SAC per-
forms well on several benchmark control problems. This work
demonstrates applicability of SAC to a variety of robotic
systems; we show that SAC can also be easily applied to
hybrid systems without any modification and that its scala-
bility facilitates application to high-dimensional systems. First,
SAC is applied to a popular hybrid dynamic running model
known as the spring-loaded inverted pendulum (SLIP). The
results show that SAC can achieve dynamic hopping without
using prescribed touchdown angles/leg stiffness. Moreover no
specialized hybrid methods are necessary to handle the contact
dynamics, despite the nonsmooth nature of the problem. The
same SAC-controlled SLIP model is also implemented in a game
for the Android operating system, demonstrating the minimal
computational requirements for implementing SAC. Our second
example involves successful stabilization and tracking control
of a nonlinear, constrained dynamic model of a humanoid
marionette with 56 states and 8 inputs. Finally, a discussion
that includes best practices on tuning parameters of the SAC
algorithm as well as the challenges of hardware implementation
is also provided, along with a video that shows the resulting
simulations for each example.

I. INTRODUCTION

Sequential action control (SAC) is a model-based con-
trol approach that provides closed-loop optimal actions for
nonlinear systems from a closed-form expression. Deriva-
tions and examples in [1]–[3] show that the method takes
advantage of dynamics and develops constrained optimal
actions on-line that outperform off-line nonlinear trajectory
optimization on benchmark control problems. While these
examples represent challenging and well-understood control
tasks, they are limited to smooth systems of state dimension
≤ 8.

This paper shows that SAC may be successfully applied to
both hybrid and high-dimensional systems. Current Nonlin-
ear Model Predictive Control (NMPC) approaches that have
been applied to these types of systems include differential
dynamic programming (DDP) and linear quadratic regula-
tor/gaussian synthesis (LQR/LQG) [4]–[7]. These methods
are based on linear approximations of the dynamic system
(second-order in the case of DDP) and usually assume
quadratic objective functions or second-order approximations
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of the cost. They derive optimal controls indirectly by
translating a numerically challenging, 2× n-dimensional (n
is the dimension of the state vector) two-point boundary
value problem (TPBVP), to a symmetric n × n system of
Riccati equations. In contrast to these alternatives, controls
in SAC have an analytic form, which significantly reduces
execution time. Instead of iteratively minimizing quadratized
objectives, SAC seeks to improve the nonlinear objective
at each iteration. The approach is well-posed and does not
need to address positive-definiteness of the quadratized cost,
unlike e.g. [8]. A more detailed comparison of SAC with the
NMPC literature is given in Section II-B.

Modeling contact dynamics and incorporating constraints
on the control values are two additional challenges in con-
trol of dynamic systems. While many (online) trajectory
optimization routines often require specialized and computa-
tionally expensive methods to handle these cases [9]–[13],
control actions in SAC can be directly saturated without
additional calculations [2]. Moreover, we show here that SAC
can handle contact dynamics without any modification to the
algorithm or additional computational cost.

The contribution of this paper is three-fold. First, we show
that SAC’s algorithmic approach can automate control for
a variety of robotic systems, including those that locomote
using impacts. In particular, we apply SAC in simulation
to a popular dynamic running model known as the spring-
loaded inverted pendulum (SLIP). The SLIP is a nonlinear
underactuated hybrid system with impacts that provides a
relatively low-dimensional representation of the center of
mass dynamics and energetics of running for a wide variety
of animal species [14]–[16]. A number of robots have been
designed according to this model [17]–[19], while others use
it as a template for control [17], [20]–[23].

Controllers for the SLIP hopper and related dynamic
locomotion models often utilize feed-forward gaits/body
trajectories, prescribed touchdown angles/leg stiffness (often
controlled by dead-beat approaches) or (numerical) approx-
imations, e.g. of the solution to the stance dynamics or
the return map, designed to account for some degree of
terrain variation [17], [20]–[22], [24], [25]. While these
methods are advantageous in that they do not require a terrain
model, for robots designed to directly emulate the SLIP
[17], [19], these processes ignore potential collisions (e.g.
ledges between stairs) by not accounting for the motion of
the swing-leg between take-off and landing. Online feedback
control over varied terrain is generally challenging, and
some successful methods rely on several decoupled feedback
control mechanisms working in tandem [16], [23], [26]. This



approach, although effective, is more complex since several
control loops have to be designed and tuned to work in
parallel. In contrast, we demonstrate that SAC can compute
constrained closed-loop controls in real time to steer the SLIP
hopper across varied terrain, without requiring a pre-designed
trajectory gait, explicit control of the touchdown angles/leg
stiffness or any approximations. Moreover, this is achieved
based on high-level trajectory goals specifying the desired
direction of motion for the SLIP center of mass, without
using decoupled control loops. Despite the nonsmooth nature
of the problem, the SAC algorithm does not deviate from
its normal execution to incorporate specialized solvers un-
like many traditional trajectory optimization/optimal control
methods [9]–[12], thus avoiding additional computational
overhead. Moreover, we show that SAC can handle rugged
terrain like stairs while accounting for swing-leg motion.

The second contribution is an Android application that
implements the SAC-controlled SLIP model in a 2-D game.
This example suggests that real-time, nonlinear optimal con-
trol is possible, even on devices with limited computational
resources. Lastly, we demonstrate that our approach can
compute trajectories for closed-loop pose control of high
dimensional systems. Specifically, we use an underactuated
56-state marionette in our simulation, that was modeled using
trep [27]—an open-source software simulation package. A
discussion that includes best practices on tuning parameters
of the SAC algorithm as well as the challenges of hardware
implementation is also provided to bridge the gap between
theory and application and to encourage the reader to utilize
our methods.

II. SEQUENTIAL ACTION CONTROL

In this paper we demonstrate the applicability of SAC, a
recently formulated algorithm for control of general nonlin-
ear systems, to hybrid and high-dimensional systems. For
convenience, we will now briefly summarize the algorithm
presented in [1]–[3].

SAC enables rapid, closed-loop constrained control syn-
thesis for broad range of systems and objectives. The systems
controlled by SAC are assumed to be in linear-affine form,
i.e. nonlinear with respect to the state vector, x ∈ Rn
and linear (or linearized) with respect to the control vector,
u ∈ Rm, such that

ẋ = f(x, u) = g(x) + h(x)u. (1)

As opposed to many methods, SAC is not restricted to a
linear quadratic cost. It applies to general tracking objectives
of the form

Jtrack =

∫ t0+T

t0

l(x(t)) dt+m(x(t0 + T )) , (2)

with differentiable incremental cost l(x(t)) and terminal cost
m(x(t0 + T )). Although (2) lacks a norm on control effort,
SAC includes this norm in the following step, in (4). It should
be noted that SAC specific to trajectory tracking; energy
tracking as in [28] or tracking a “point” as shown in the
SLIP simulation in Section III-A is also possible. As a result

Fig. 1. An overview of the SAC control process.

of its control synthesis process, SAC can calculate controls
that optimally improve (2) even in the situations where the
objective is non-convex or unbounded. The SAC algorithm
follows a cyclic, closed-loop process illustrated in Fig. 1.
As the cycle iterates, SAC sequences together a piecewise
continuous closed-loop response (see the SAC action signal
at the bottom of Fig. 1). Beginning with prediction, the
major steps of the algorithm are described in the following
subsections.

A. SAC Steps

1) Predict: The SAC process begins by predicting the
evolution of a system model from current state feedback.
In this step, the algorithm simulates the system (1) from
the current state x0 and time t0, for the finite horizon
[t0, t0 + T ], under a default (nominal) control u = udefault.
The horizon length T , is a design parameter. Without loss of
generality, the default control throughout this paper is null,
udefault , 0. The term is included in formulas for complete-
ness and indicates potential shared control implementation.
As an example, udefault may be an optimized feedforward
controller providing a nominal trajectory around which SAC
would provide feedback.

The sensitivity of (2) to state variations along the predicted
trajectory is provided by an adjoint variable, ρ ∈ Rn, also
simulated during the prediction step. The adjoint satisfies

ρ̇ = −Dxl(x)T −Dxf(x, udefault)
T ρ

subject to ρ(t0 + T ) = Dxm(x(t0 + T ))T . (3)

The prediction phase completes upon simulation of the
state and the adjoint system under udefault control. The
resulting trajectories x(·), ρ(·) will be used in (4) in the
following section.

2) Compute optimal actions: Each iteration of the SAC
process loop depicted in Fig. 1 returns a set of values for the
control vector, the control application time (Section II-A.3)
and the control duration (Section II-A.4). A single vector of
control values along with its associated application time and



duration define a SAC control action as produced at each
iteration.

Before computing the control application time and dura-
tion, SAC computes a schedule, u∗ : {t | t ∈ [t0, t0 + T ]} 7→
Rm, corresponding to the values of the control action that
would optimally improve performance if applied for some
duration at an arbitrary time t ∈ [t0, t0 + T ]. The control
action values in u∗ optimize

Ju =
1

2

∫ t0+T

t0

[
dJtrack
dλ

− αd
]2

+ ‖u(t)‖2R dt ,

with
dJtrack
dλ

= ρ(t)T (f(x(t), u)− f(x(t), udefault)). (4)

The quantity dJtrack

dλ (see [29], [30]) denotes the rate of
change of the cost with respect to a switch of infinitesimal
duration λ in dynamics, produced by a SAC action applied
at some time τ . Thus, dJtrack

dλ intrinsically parameterizes an
action by its application time and duration, which is why
these two variables are calculated in the cyclic process in
Sections II-A.3 and II-A.4. Intuitively, SAC is improving
the open-loop cost (2) by driving dJtrack

dλ to a negative
value αd ∈ R− through minimization of (4). This parameter,
αd, is user specified and allows the designer to influence
how aggressively each control action improves the current
trajectory cost.

Based on the simulation of the dynamics (1), and (3)
completed in the prediction step (Section II-A.1), the control
schedule that minimizes (4) is provided as a closed-form
expression,

u∗ = (Λ +RT )−1
[
Λudefault + h(x)T ραd

]
, (5)

with Λ , h(x)T ρρTh(x).
3) Decide when to act (find τ ): As mentioned before, the

quantity dJtrack

dλ parameterizes an action by its application
time τ . As a result, the SAC algorithm optimizes a decision
variable not normally included in control calculations—the
choice of when to act. The curve u∗ provides the values
of possible actions that SAC could take at different times
to optimally improve system performance from that time.
The algorithm chooses one of these actions to apply at
each iteration of the SAC process and then re-computes the
curve u∗ from current state feedback at the next iteration. In
choosing when to act (choosing an action from curve u∗),
SAC searches u∗ for a time τ that optimizes the trade-off
between the cost of waiting and the efficacy of control at
that time according to,

Jt(τ) = ‖u∗(τ)‖+
dJtrack
dλ

∣∣∣∣
τ

+ (τ − t0)β . (6)

The parameter β ∈ R is usually chosen to be a fixed value,
β ∈ [1, 2], encoding the cost of waiting.

4) Decide how long to act (find λ): The quantity dJtrack

dλ
also parameterizes an action by its duration. After computing
the values of potential optimal actions from (5) and choosing
when to act based on (6), the final step in synthesizing a
SAC action is to choose how long to act (select the control
duration). It is typically assumed that actions will last for

short duration as the control synthesis cycle is fast and the
next action is prepared for implementation quickly. For these
reasons, SAC implementations apply a line search process.
Starting with a (short) initial duration, λ = λ0, the effect
of the control action is simulated from (1) and (2). If the
simulated action improves cost (2), the duration is selected.
If this is not the case, the duration is reduced and the process
is repeated.

After computing the duration, λ, the SAC action is fully
specified (it has a value, an application time and a duration).
As an additional step, when udefault = 0, actions can be
directly saturated to satisfy any min/max control constraints
of the form umin,k < 0 < umax,k ∀k ∈ {1, . . . ,m}
(see [2] for a proof that saturated controls still result in a
reduction in cost). By iterating on this process (Section II-
A.1 until Section II-A.4), SAC rapidly synthesizes piecewise-
continuous, constrained control laws for nonlinear systems.
For more information about SAC, the reader is encouraged
to consult [1]–[3].

B. Comparison to NMPC Literature

The following points are worth noting when comparing
SAC to alternative NMPC methods (see e.g. [4]–[7], [31]–
[34] and references therein).

1) SAC uses the continuous-time dynamics, thus allowing
for variable-step integration, as opposed to many NMPC
alternatives that utilize the discrete-time dynamics [7], [31],
[32], [34], [35].

2) SAC is applied to the nonlinear cost function as
opposed to e.g. DDP and LQR/LQG approaches in [4]–[7]
which use quadratic approximations of the cost.

3) When solving the open-loop problem at each iteration
(see steps in Sections II-A.1 through II-A.4), SAC does not
minimize but rather improves the nonlinear cost function.
On the other hand, many NMPC methods compute an open-
loop optimal control signal over a finite horizon [t0, t0 + T ]
(usually over the entire interval), to minimize the objective on
that interval. As the horizon window changes, the calculated
control is applied for the interval [t0, t0 + ts] (where ts is the
sampling time) and the remaining control for the interval
[t0 + ts, t0 + T ] is discarded or used to seed the control
optimization on the next interval [t0 + ts, t0 + ts + T ]. How-
ever, the computed control on the interval [t0, t0 + T ] only
guarantees reduction in cost when the entire time horizon is
used, even though the control signal is only applied on the
interval [t0, t0 + ts]. Moreover, minimizing a quadratic ap-
proximation of the cost as in DDP and LQR/LQG methods,
does not guarantee that the solution is a (local) minimizer
of the original nonlinear cost. As opposed to these methods,
SAC computes control actions that optimally improve the
cost on the entire horizon, [t0, t0 + T ], assuming that the
control will be applied during the period [t0, t0 + ts]. Thus,
no portion of the calculated open-loop action is discarded.

4) The solution of the open-loop problem in SAC has
an analytic form given in (5) which requires only the n-
dimensional simulations of (1) and (3) (2n total). Alterna-
tively, NMPC methods either employ nonlinear programming
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Fig. 2. a) Parameters and configuration variables for the planar SLIP system. b) Illustration of the planar SLIP successfully hopping up
stairs and over sinusoidal terrain (also be seen in the accompanying video). The SAC algorithm computes constrained motions on-line to
place the toe of the SLIP model and develops constrained thrusts that allow it to hop without falling. The process is automated in that it
requires only a robot model and high-level trajectory goals specifying the desired direction of motion for the SLIP center of mass. c) A
snapshot of an Android game (available for download) that utilizes the SLIP model.

solvers (see [36] and [37] for a review) or solve a symmetric
n×n matrix of Riccati equations as, for example, in [4]–[7].

5) Control saturations can be incorporated without ad-
ditional computational overhead in the SAC process (see
[2] for a proof). Constraints on the state may be added by
introducing penalty terms in the cost function.

6) SAC can be applied to hybrid systems without any
modification. Despite the nonsmooth nature of these sys-
tems, the SAC algorithm does not deviate from its normal
execution to incorporate specialized solvers unlike many
traditional trajectory optimization/optimal control methods,
thus avoiding additional computational overhead (see [9]–
[12]).

7) SAC optimizes application time τ and control duration
λ. These two decision variables, which are not normally in-
cluded in alternative NMPC methods, allow more flexibility
in the control calculation. For example, as explained in [2], τ
can be used to avoid acting on singular configurations where
control could be less effective or not effective at all (e.g. the
horizontal configuration in a cart-pendulum system).

8) SAC may be computed quickly and efficiently. This
follows immediately from the previous points.

Stability Remarks: It is shown in [2] that, under certain
assumptions, SAC solutions simplify to linear time-varying
state feedback laws near equilibrium points. Additionally, if
(2) is quadratic, SAC actions (5) simplify to finite horizon
LQR controls [38]. In this case one can prove the existence
of a Lyapunov function and guarantee local stability for SAC
using methods from linear systems theory. In its current
state of development, SAC lacks global guarantees for sta-
bility. However, we believe that, similar to NMPC methods,
stability for SAC can be achieved by applying a terminal
cost/region approach as in [31]–[34] and we have left these
developments for future work.

III. EXAMPLE SIMULATIONS

In this section we present two simulation examples that
demonstrate the applicability of SAC to a) hybrid and b)
high-dimensional systems. In the hybrid system example
SAC is used to automate dynamic locomotion of a hopping
mechanism over uneven terrain. We show that, unlike many
trajectory optimization routines, SAC can control this model
without interrupting its normal execution to include hybrid

or other specialized methods. The high-dimensional example
involves control of a highly nonlinear and constrained hu-
manoid marionette model with 56 states and 8 inputs. These
examples indicate potential application of SAC to a wide
variety of systems.

A. Hybrid System Example: The SLIP Model

In this section we apply SAC to an underactuated non-
linear hybrid system with impacts. In particular, we utilize
a spring-loaded inverted pendulum (SLIP) model; a model
that is common in analysis and control synthesis of dynamic
hopping and running. Figure 2a shows the configuration of
the model, which consists of a point mass attached to a
spring. The choice of configuration variables is similar to
that in [39]. The state, x = [xm, ẋm, zm, żm, xt], consists of
the 2-D position and velocities of the center of mass followed
by the “toe” x coordinate, xt, corresponding to the spring
endpoint.

The dynamics of the SLIP are hybrid and include two
modes / phases: 1) a flight phase where the toe endpoint is
in the air and 2) a stance phase where the toe is in rolling
contact with the ground. The length, l, of the SLIP model
matches the resting length of the spring, l = l0, in flight and

l =
√

(xm − xt)2 + (zm − zG)2 (7)

in the stance phase. The zG term in (7) tracks the height of
the terrain at the location of the toe. Note that (7) assumes
the model is in the stance phase where zG is the height of the
toe. The transition between flight and stance is state-based
and determined by zero crossings of an indicator function,

φ(x) = zm −
l0(zm − zG)

l
− zG , (8)

which applies l from (7). Hence, we assume the spring is in
compression when in stance and the model lifts-off once it
expands back to full (rest) length.

Control authority for the SLIP also switches with phase.
On the ground SAC can apply force along the spring axis,
us, and in flight SAC can directly control the velocity of
the toe uf along the x axis. The complete control vector is



u = [us, uf ]T . The flight phase dynamics,

ff (x, u) =


ẋm
0
żm
−g

ẋm + uf

 , (9)

and stance phase dynamics,

fs(x, u) =


ẋm

(k(l0−l)+us)(xm−xt)
ml
żm

(k(l0−l)+us)(zm−zG)
ml − g

0

 , (10)

depend on gravity, g = 9.81m/s2, mass, m = 1 kg, a spring
resting length, l0 = 1 m, and spring constant, k = 100 N

m . The
simulation was based on the following parameter values:
we used a quadratic trajectory cost based on (2) with
l(x(t)) = 1

2 (x(t)− xd)TQ (x(t)− xd) and m(x(tf )) = 0,
with Q = Diag[ 0 , 70 , 50 , 0 , 0 ], and time horizon
T = 0.6s. Parameters of the control cost in (4) were selected
as R = 0.1, αd = γJtrack with proportional feedback
constant γ = −10. Finally, control inputs were constrained
on-line so that |uf | ≤ 5 m

s and |us| ≤ 30 N.
For a 90s closed-loop trajectory on varying terrain (30 Hz

feedback), the SLIP requires < 2s to simulate on a lap-
top. As the trajectory results in Fig. 3 (corresponding to
the stair climbing example in Fig. 2b) show, SAC uses
the flight dynamics (9) to include and automate swing-
leg planning—no prescribed leg stiffness/touchdown angles
or other approximations are used. SAC provides closed-
loop, velocity constrained swing-leg motions on-line that
avoid ledges and uses thrust to hop up stairs (or uneven
terrain as in Fig. 2c). These tasks are achieved based on
high-level trajectory goals specifying the desired direction
and height of motion for the SLIP center of mass. The
latter can be typically determined by sensors such as vision,
radar, and laser, perhaps combined with pre-defined maps,
generating a model of the terrain ahead. In the stair-climbing
simulation we used xd = [ 0 , 0.7 m

s , zG + 1.4 m , 0 , 0 ]T as
our trajectory goal and the terrain model, zG, was prescribed
by a piecewise function with a rise of 0.2 m every 2

3 m. This
choice of xd specifies the same constant velocity translation
at fixed desired height.

Even with the hybrid dynamical model, the SAC algo-
rithm does not deviate from its normal execution to handle
contact dynamics, thus avoiding additional computational
overhead. This is in contrast with many existing trajectory
optimization/optimal control methods (e.g. [9]–[12]), that do
not normally accommodate nonsmooth events and require
the use of specialized algorithms to do so.

Note that we have also implemented the planar ver-
sion of the SLIP as an Android game (see a snapshot
of the app in Fig. 2c) that is available for free down-
load at nxr.northwestern.edu/sites/default/
files/files/SACGames.apk. In the Android game,
the user provides a reference velocity for the hopper along
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Fig. 3. Trajectory corresponding to the planar SLIP hopping up
stairs (Fig. 2b).

the horizontal axis using the phone’s accelerometer. The
SAC algorithm uses the same parameters as in the stairs
example and the sinusoidal floor corresponds to ground



height zG(x) = 0.2 cos(4x)+0.2 m for the first two “bumps”
and zG(x) = 0.3 cos(4x) + 0.3 m for the last.

B. High Dimensional Example: Humanoid Marionette Pose
Control

To illustrate the scalability of SAC control synthesis,
we utilized SAC to control a simulation of an underactu-
ated, constrained, and highly nonlinear humanoid marionette
model with 56 states, 4 string length constraints. and 8
control inputs. The controls are two in-plane forces for each
of the four string endpoints (see green points in Fig. 4a,
right). Two different control tasks are presented – stabiliza-
tion of the marionette to an equilibrium point and tracking of
predefined trajectories for the arms of the marionette. Note
that our model utilizes generalized coordinates for the system
and the trep software package is used for calculating
the forward dynamics as well as first order linearizations
[27]. Trep (see nxr.northwestern.edu/trep) al-
lows for dynamic simulation of arbitrary mechanical systems
in generalized coordinates described using a tree structure.
The generalized coordinates used in this model result in a
conservative number of states; other choices can lead to as
many as 124 states (9 rigid bodies ∈ SO(3) and four string
endpoints with two degrees-of-freedom each).

The simulation was based on the following parameter
values: we used a quadratic trajectory cost based on (2) with
l(x(t)) = 1

2 (x(t)− xd)TQ (x(t)− xd) and m(x(tf )) = 0,
with the entries of Q and R based on standard values (scaling
of the identity matrix) for both stabilization and tracking.
The time horizon was set to T = 1.0s and similar to the
SLIP simulation, R = 0.1, αd = γJtrack with proportional
feedback constant γ = −10. Finally control saturation
constraints were arbitrarily specified as ±1 N, along with the
SAC loop frequency of 20 Hz.

Stabilization: Stabilization involved moving the mari-
onette model from an initial pose with the left arm raised,
to a desired equilibrium pose xd, specified as the origin
(see top right panel in Fig. 4a). We compared trajectories
generated by SAC with the uncontrolled system trajectories
(free dynamics). The simulation results are shown in Fig. 4b.
It is clear that SAC stabilized the system to the origin quickly
compared to the free motion of the marionette. The SAC-
controlled simulation for the stabilization took 155 seconds
to compute the 3s trajectory—about 50× slower than real-
time.

Tracking: The tracking task used SAC to track predefined
trajectories for the arms and shoulders. In particular, we used
a time-parameterized sine wave as the reference configu-
ration for one of the degrees of freedom for both the left
and right shoulder joints. This reference has the marionette
cyclically spreading and closing its arms. All other reference
configurations were set to their equilibrium values, and the
reference velocities were all zero. Note that this reference is
dynamically infeasible – perfect tracking cannot be expected.
The simulation took 200 seconds for a 10 second trajectory
(about 20× slower than real-time). The resulting configura-
tion trajectories are shown in Fig. 4c. Even for this large-
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Fig. 4. a) SAC controls the pose of a constrained and underac-
tuated nonlinear marionette model with 56 states, 4 string length
constraints, and 8 control inputs based on a real robot-controlled
marionette system [40]. Modeling is done using the trep software
[27]. b) The SAC controller uses a quadratic objective to compute
constrained controls in closed-loop that drive four strings endpoints
(green), such that the marionette transitions to a desired configura-
tion (stabilization at the origin). Note that the free dynamics (red)
are very lightly damped as seen in the accompanying video. c)
Configuration trajectories for the marionette tracking control task
generated by SAC. The shoulder joints track the predefined sine
wave while the rest of the body remains stationary. The tracking
motion can also be viewed in the accompanying video.

dimensional, highly underactuated system, SAC managed
reasonable tracking performance of the two moving shoulder
joints with little excitation of the other configurations. For



a better illustration of this example see the accompanying
video.

While the marionette example is not yet running in real
time, we note that the current implementation relies on
interpreted run-time code that would be straightforward
to precompile. Combined with parameter optimization, we
expect real-time control for systems of similar size is possible
on standard computing hardware.

IV. DISCUSSION

A. Tuning SAC Parameters

Besides a model of system dynamics the only required
modifications for applying SAC to varying systems are the
encoding of the objective in (2), and tuning the parameters of
the algorithm. SAC parameters that must be tuned include the
time horizon T and the “controller aggressiveness” αd (see
(4)). Other parameters that may appear and require tuning
include the control saturation limits, cost weighting matrices
(e.g. Q and R) and loop/feedback frequency.

Trajectory cost: Both presented cases (SLIP and mari-
onette) use a quadratic trajectory cost requiring a Q matrix
and desired trajectory, xd. In practice, the SAC algorithm
does not appear to be very sensitive to changes in the
weighting matrices – generally much less sensitive than
traditional linear-quadratic regulator design. Consequently,
once good values for these parameters are found, it is rare
to have to adjust the values. As evidence, for the marionette
system, the entries of Q and R are based on standard values
(scaling of the identity matrix) for stabilization and tracking,
while for the SLIP, both examples apply the same Q and R.

Control saturation: These values are generally selected
off-line and do not require further tuning.

Time horizon T and aggressiveness αd: Parameters T
and αd may require tuning to accommodate different system
models. Similar to the weight matrices in (2) however, once
specified, they often result in reasonable performance for a
variety of conditions and tracking objectives. As evidence,
both SLIP examples use the same values with T = 0.6s and
αd = γJtrack with proportional feedback constant γ = −10.
As mentioned before, for a 90s closed-loop trajectory on
varying terrain (30 Hz feedback), the SLIP requires < 2s
to simulate on a laptop. Thus, similar to existing methods
designed around empirically stable SLIP hopping (see the
background section in [41]), we leveraged the speed of
SAC to search for parameters that yield successful long-
term hopping over varying terrain and initial conditions. As
in the SLIP case, both presented problems in the marionette
simulation (stabilization and tracking) used the same values
for T and ad. Intuitively, systems with slower dynamics (e.g.
a long pendulum) will typically need higher T values to
follow a trajectory based on state error.

Loop frequency: The importance of this parameter is
explained in the following section. In general, high loop
frequency is preferable since it allows the algorithm to
incorporate feedback faster, which is crucial when dealing
with uncertainty.

B. Challenges of Hardware Implementation

Hardware implementation is often challenging, regardless
of the control algorithm. For SAC, there is a limited number
of experimental applications to date [42] since the algorithm
was only recently formulated (this is the focus of our current
work). Nevertheless, there are a few points that should be
highlighted when implementing SAC on a real system.

Looking at Fig. 3 and previous examples in [1]–[3], it
is clear that SAC generates discontinuous control signals.
However, many actuators cannot generate signals of this
form—the result of forcing the actuator to track the discon-
tinuous SAC output would be a smoothed version of that
control signal, which would most likely fail to meet the
performance requirements of the system. It must be noted
that situations like this, where the actuators cannot reliably
generate the calculated control input, are not SAC-specific
and can be found in other algorithms as well, perhaps for
different reasons (e.g. control saturation). In our case, a
solution to this problem would be to calculate SAC actions
in an appropriate control space. For example, to control the
cart velocity in the cart pendulum system, one could set
SAC to control the cart acceleration (note that this approach
increases the dimensionality of the state space by m in the
worst case scenario). When the SAC-calculated acceleration
is integrated, the corresponding velocity would be continuous
and thus feasible for the actuators.

Uncertainty is also an issue in an experimental setup.
Common sources of uncertainty include noise in measure-
ments and model discrepancies. Nevertheless, one of the
benefits of MPC is the use of feedback to partially compen-
sate for these types of uncertainty. Naturally, better results
can be achieved by using high frequency feedback. SAC in
particular is well-suited for this scenario, since as described
in Section II-B, control calculations are generally fast. In
the event that high frequency feedback/communication is not
supported by the hardware, then noise and model inaccura-
cies could be critical for all (MPC) algorithms. In that case,
time-critical, SAC-specific processes like the calculation of
the application time and duration of an action can be adjusted
so as to provide solutions in agreement with the attainable
bandwidth.

V. CONCLUSIONS AND FUTURE WORK

This paper utilizes the computational advantages of se-
quential action control (SAC) for control policy generation.
Simulations demonstrate the approach on a high-dimensional
system (a 56-state marionette model) and in hybrid dynam-
ical locomotion (using a spring-loaded inverted pendulum –
SLIP). In the particular case of the SLIP, the fact that SAC
controls the system with little domain/system specific knowl-
edge is noteworthy. The algorithm is also applied with little
modification to accommodate the hybrid nature of the SLIP
model. These examples, as well as the benchmark examples
presented in [1]–[3], demonstrate potential applications of
SAC to a wide variety of systems.

Several promising research directions have been identified
to help improve the applicability and utility of SAC. As



mentioned in Sections II-B and IV-B developing global
guarantees for stability and validating SAC experimentally
are some of our immediate goals. Another likely direction
for future work related to the previous ones is automated
SAC parameter selection. Currently, one can find SAC pa-
rameters to provide local stability around equilibrium based
on the analytical expression for optimal actions [1], [2].
However, away from equilibrium tuning may be necessary to
develop long-term, empirically stable trajectories. Leveraging
the computational efficiency of SAC synthesis, numerical
methods (e.g. Sum-of-Squares [43]) can select parameters
that provide conservative approximations of stable regions
of attraction for general (nonlinear) systems.
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