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Ergodic Exploration of Distributed Information
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Abstract—This paper presents an active search trajectory
synthesis technique for autonomous mobile robots with nonlinear
measurements and dynamics. The presented approach uses the
ergodicity of a planned trajectory with respect to an expected
information density map to close the loop during search. The
ergodic control algorithm does not rely on discretization of
the search or action spaces, and is well posed for coverage
with respect to the expected information density whether the
information is diffuse or localized, thus trading off between
exploration and exploitation in a single objective function. As
a demonstration, we use a robotic electrolocation platform to
estimate location and size parameters describing static targets in
an underwater environment. Qur results demonstrate that the
ergodic exploration of distributed information (EEDI) algorithm
outperforms commonly used information-oriented controllers,
particularly when distractions are present.

Index Terms—Information-Driven Sensor Planning, Search
Problems, Biologically-Inspired Robots, Motion Control

I. INTRODUCTION

N the context of exploration, ergodic trajectory optimiza-

tion computes control laws that drive a dynamic system
along trajectories such that the amount of time spent in
regions of the state space is proportional to the expected
information gain in those regions. Using ergodicity as a metric
encodes both exploration and exploitation—both the need for
nonmyopic search when variance is high and convexity is
lost, as well as myopic search when variance is low and the
problem is convex. By encoding these needs into a metric [1],
generalization to nonlinear dynamics is possible using tools
from optimal control. We show here that different dynamical
systems can achieve nearly identical estimation performance
using EEDI.

The SensorPod robot (Fig. 1a), which we use as a motivating
example and an experimental platform in Section V, measures
disturbances in a self-generated, weak electric field. This
sensing modality, referred to as electrolocation, is inspired by
a type of freshwater tropical fish (Fig. 1b, [2], [3], [4]), and
relies on the coupled emission and detection of a weak electric
field. Electrolocation is ideally suited for low velocity, mobile
vehicles operating in dark or cluttered environments [5], [6],
[4]. The sensing range for electrolocation is small, however,
so the fish or robot must be relatively close to an object to
localize it. Also, as the sensors are rigid with respect to the
body, the movement of those sensors involves the dynamics of
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the entire robot. As we will see in Section IV, the measurement
model for electrolocation is also highly nonlinear and the
dynamics of both biological fish and underwater robots are
generally nonlinear. Consideration of sensor physics and robot
dynamics when planning exploration strategies is therefore
particularly important. The same applies to many near-field
sensors such as tactile sensors, ultra-shortwave sonar, and
most underwater image sensors (e.g. [7]). Experiments carried
out using the SensorPod robot demonstrate that the ergodic
exploration of distributed information (EEDI) algorithm is
successful in several challenging search scenarios where other
algorithms fail.

The contributions of this paper can be summarized as follows:

1) application of ergodic exploration for general, nonlin-
ear, deterministic control systems to provide closed-
loop coverage with respect to the evolving expected

(a) The SensorPod robot (white cylinder at end of vertical Z stage) is used to
demonstrate EEDI for active search.

(b) Apteronotus albifrons (photograph courtesy of Per Erik Sviland.)

Fig. 1. The SensorPod (a) uses a sensing modality inspired by weakly electric
fish such as the black ghost knifefish (b). The SensorPod is mounted on a
4DOF gantry and submerged within a 1.8 m x 2.4 m x 0.9 m (I,w,h) tank
(see multimedia attachment).
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information density, and

2) validation of ergodic search in an experimental and
simulated underwater sensing setting. We demonstrate
both that ergodic search performs as well as alternative
algorithms in nominal scenarios, and that ergodic search
outperforms alternatives when distractors are present.

Section II begins with a discussion of related work. Ergodic-
ity as an objective for active sensing is presented in Section III,
including the benefits and distinguishing features of ergodic
trajectory optimization. Section III-B includes an overview of
ergodic trajectory optimization. In Section IV, we describe the
SensorPod experimental platform and nonlinear measurement
model, and introduce the stationary target localization task
used to demonstrate EEDI. We also discuss the components of
closed-loop EEDI for target localization using the SensorPod
in Section IV. In Section V, we present data from multiple
estimation scenarios, including comparison to several alterna-
tive algorithms, and closed-loop EEDI implementation using
different dynamic models for the SensorPod. We also include
a multimedia video attachment with an extended description
of the SensorPod platform and measurement model used in
Sections IV and V, and an animated overview of the steps of
the EEDI algorithm for this system.

II. MOTIVATION & RELATED WORK

The ability to actively explore and respond to uncertain sce-
narios is critical in enabling robots to function autonomously.
In this paper, we examine the problem of control design
for mobile sensors carrying out active sensing tasks. Ac-
tive sensing [8], [9] or sensor path planning [10], refers
to control of sensor parameters, such as position, to ac-
quire information or reduce uncertainty. Applications include
prioritized decision making during search and rescue [11],
[12], inspection for flaws [13], mine detection [10], object
recognition/classification [14], [15], [16], next-best-view prob-
lems for vision systems [17], [18], [19], and environmen-
tal modeling/field estimation [20], [21], [22]. Planning for
search/exploration is challenging as the planning step neces-
sarily depends not only on the sensor being used but on the
quantity being estimated, such as target location versus target
size. Methods for representing and updating the estimate and
associated uncertainty—the belief state—and a way of using
the belief state to determine expected information are therefore
required.

Figure 2 illustrates the high level components for a general
estimation or mapping algorithm that iteratively collects sensor
measurements, updates an expected information map, and
decides how to acquire further measurements based on the
information map. In this section, we touch on related work
for components A-C, although the differentiating feature of
the EEDI algorithm is the way in which control decisions are
made based on the expected information (step C in Fig. 2).
The advantages of EEDI are discussed in Section III.

A. Representing the belief state

The best choice for representing and updating the belief
state for a given application will depend on robot dynamics,

B) Calculate
expected
information

A) Update
belief

D) Execute
& collect
measurements

C) Plan
control action

Fig. 2. Illustration of the necessary components for a general closed-loop,
information-based sensing algorithm. Our primary contribution in this paper is
using ergodic trajectory optimization for estimation (step C). We demonstrate
implementation of closed-loop estimation for a particular sensing task using
the SensorPod robot (Fig. 1a), where the sensing task motivates choice of
steps A, B, D. Section II discusses alternative choices for steps A through C.

sensor physics, and the estimation task (modeling a field vs.
target localization). Designing appropriate representations for
active sensing is a well-studied area of research. For many
applications, such as active sensing for localization, parametric
filters (e.g. the extended Kalman filter (EKF)) [23], [24], [25],
[26] may be used. When the posterior is not expected to be
approximately Gaussian, nonparametric filters, e.g. Bayesian
filters [27], [28], histogram filters [29], or particle filters
[30], [31], [32] are often used. Mapping applications often
use occupancy grids [33], [34] or coverage maps [29], and
much of the most recent work utilizes Gaussian processes to
represent spatially varying phenomena or higher dimensional
belief spaces, and the associated uncertainty [20], [35], [36],
[21], [37], [38]. For the experimental work presented in this
paper using the SensorPod robot, we use a Bayesian filter as it
is appropriate for general (non-Gaussian) PDFs, sufficient for
representing stationary estimation objectives, and allows us to
take into account sensor physics and uncertainty in the esti-
mate (see Section IV). The differentiating feature of the EEDI
algorithm however—the ergodic trajectory optimization—does
not depend on the choice of belief representation, so long
as the choice enables calculation of an expected information
density map.

B. Calculating expected measurement utility

For a given sensing task and belief state, not all measure-
ments are equally informative. The quality of a measurement
depends on the sensor and may be distance, orientation, or mo-
tion dependent. To ensure useful measurements are obtained
given realistic time or energy restrictions, sensing strategies
for mobile sensors should seek to optimize measurement
quality [39], [40]. In some cases, it is sufficient to consider
only sensor field-of-view (i.e. useful measurements can be
obtained anywhere within a given distance from a target),
often called “geometric sensing” [32], [41], [42], [43]. In many
scenarios—if the search domain is significantly larger than
the sensor range—a geometric sensing approach is sufficient.
Many sensors, however, have sensitivity characteristics within
the range threshold that affect sensing efficacy. Infrared range
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sensors, for example, have a maximum sensitivity region [44],
and cameras have an optimal orientation and focal length [45].

There are several different entropy-based measures from
information theory and optimal experiment design that can be
used to predict expected information gain prior to collecting
measurements. Shannon entropy has been used to measure
uncertainty in estimation problems [9], [15], [17], [19], as well
as entropy-related metrics including Renyi Divergence[24],
[8], mutual information, [11], [14], [42], [46], [47], [35], [31],
[48], entropy reduction or information gain maximization [49],
[13]. In our problem formulation we use Fisher information
[50], [51], [52], [53] to predict measurement utility. Often
used in maximum likelihood estimation, Fisher information
quantifies the ability of a random variable, in our case a
measurement, to estimate an unknown parameter [54], [51],
[50]. Fisher information predicts that the locations where the
ratio of the derivative of the expected signal to the variance of
the noise is high will give more salient data (see Appendix B
and the multimedia attachment), and thus will be more useful
for estimation.

In this paper, the Bayesian update mentioned in Section II-A
and the use of Fisher information to formulate an information
map are tools that allow us to close the loop on ergodic control
(update the map, step A in Fig. 2), in a way that is appropriate
for the experimental platform and search objective (see Ap-
pendix A). The Bayesian update and the Fisher information
matter only in that they allow us to create a map of expected
information for the type of parameter estimation problems
presented in the examples in Section V. Ergodic exploration
could, however, be performed over the expected information
calculated using different methods of representing the belief
and expected information, and for different applications such
as those mentioned in II-A.

C. Control for information acquisition

In general, the problem of exhaustively searching for an
optimally informative solution over sensor state space and
belief state is a computationally intensive process, as it is
necessary to calculate an expectation over both the belief and
the set of candidate control actions [24], [46], [35], [55].
Many algorithms therefore rely on decomposing/discretizing
the search space, the action space, or both, and locally
selecting the optimal sensing action myopically (selecting
only the optimal next configuration or control input) [8],
[25]. The expected information gain can, for example, be
locally optimized by selecting a control action based on the
gradient of the expected information [47], [30], [32], [33].
As opposed to local information maximization, a sensor can
be controlled to move to that state which maximizes the
expected information globally over a bounded workspace [17],
[56], [50], [28], [26]. Such global information maximizing
strategies are generally less sensitive to local minima than
local or gradient based strategies, but can result in longer,
less efficient trajectories when performed sequentially [31],
[29]. While myopic information maximizing strategies have
an advantage in terms of computational tractability, they are
typically applied to situations where the sensor dynamics

are not considered [17], [56], [50], [28], [26], and even the
global strategies are likely to suffer when uncertainty is high
and information diffuse (as argued in [57], [29], [37], when
discussing re-planning periods), as we will see in Section V.

To avoid sensitivity of single-step optimization methods to
local optima, methods of planning control actions over longer
time horizons—nonmyopic approaches—are often used. A
great deal of research in search strategies point out that
the most general approach to solving for nonmyopic con-
trol signals would involve solving a dynamic programming
problem [35], [20], [37], which is generally computationally
intensive. Instead, various heuristics are used to approximate
the dynamic programming solution [20], [37], [36], [29].
Variants of commonly used sampling-based motion planners
for maximizing the expected information over a path for a
mobile sensor have also been applied to sensor path planning
problems [10], [49], [58], [23], [24], [59].

Search-based approaches are often not suitable for systems
with dynamic constraints; although they can be coupled with
low-level (e.g. feedback control) planners [60], [48], or dy-
namics can be encoded into the cost of connecting nodes in
a search graph (“steering” functions) [58], solutions are not
guaranteed to be optimal even in a local sense—both in terms
of the dynamics and the information—without introducing
appropriate heuristics [20], [37], [36], [29]. As we will see in
Section V-G, one of the advantages of EEDI is that it naturally
applies to general, nonlinear systems. We take advantage
of trajectory optimization techniques, locally solving for a
solution to the dynamic programming problem—assuming that
the current state of the system is approximately known.

Use of an ergodic metric for determining optimal control
strategies was originally presented in [1] for a nonuniform
coverage problem. The strategy in [1] involves discretizing
the exploration time and solving for the optimal control input
at each time-step that maximizes the rate of decrease of the
ergodic metric. A similar method is employed in [61], using a
Mix Norm for coverage on Riemannian manifolds. While our
objective function includes the same metric as [1], the optimal
control problem and applications are different, notably in that
we compute the ergodic trajectory for the entire planning
period 7', and apply it to a changing belief state. Additionally,
the feedback controllers derived in [1] are specific to linear,
first- or second-order integrator systems, whereas our method
applies to general, nonlinear dynamic systems.

III. ERGODIC OPTIMAL CONTROL

Ergodic theory relates the time-averaged behavior of a
system to the space of all possible states of the system, and
is primarily used in the study of fluid mixing and commu-
nication. We use ergodicity to compare the statistics of a
search trajectory to a map of expected information density
(EID). The idea is that an efficient exploration strategy—the
path followed by a robot—should spend more time exploring
regions of space with higher expected information, where
useful measurements are most likely to be found. The robot
should not, however, only visit the highest information region
(see Fig. 3b), but distribute the amount of time spent searching



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

(a) Ergodic trajectory

X(t)

Xx(0)

(b) Information maximizing trajectory

Fig. 3. Two candidate trajectories z(t) for exploring the EID (depicted as
level sets) are plotted in (a) and (b), both from ¢ = 0 to ¢ = T'. Ergodic control
provides a way of designing trajectories that spend time in areas proportional
to how useful potential measurements are likely to be in those areas (a). This is
in contrast to many alternative algorithms, which directly maximize integrated
information gain over the trajectory based on the current best estimate, as in
3b. As illustrated in 3a, A trajectory z(t) is ergodic with respect to the PDF
(level sets) if the percentage of time spent in any subset N from ¢t = 0 to
t = T is equal to the measure of IV; this condition must hold for all possible
subsets.

proportional to the overall EID (Fig. 3a). This is the key
distinction between using ergodicity as an objective and pre-
vious work in active sensing (e.g. information maximization);
the ergodic metric encodes the idea that, unless the expected
information density is a delta function, measurements should
be distributed among regions of high expected information.
Information maximizing strategies (that are also nonmyopic)
otherwise require heuristics in order to force subsequent
measurements away from previously sampled regions so as
not to only sample the information maxima.

As mentioned in Section II, many commonly used algo-
rithms for active sensing, e.g. [25], [33], [28], [62], involve a
version of the type of behavior illustrated in Fig. 3b, iteratively
updating the EID and maximizing information gain based
on the current best estimate, whether or not that estimate is
correct. While computationally efficient, globally information
maximizing approaches are likely to fail if the current estimate
of the EID is wrong. In Section V, for example, we show that
even when the information map is updated while calculating
the information maximizing control, the estimate may get
trapped in a local maxima, e.g. when there is a distractor
object that is similar but not exactly the same as the target
object.

Many sampling-based algorithms for information gathering
therefore rely on heuristics related to assuming submodularity
between measurements, e.g. assuming no additional informa-

tion will be obtained from a point once it has already been
observed [35], [23], [58]. This assumption forces subsequent
measurements away from previously sampled regions so as
not to only sample the information maxima. As another
way to distribute measurements, many nonmyopic strategies
select a set of waypoints based on the expected information,
and drive the system through those waypoints using search-
based algorithms [49], [42], [48], [41], [57], [38], [60]. Such
approaches result in a predefined sequence that may or may
not be compatible with the system dynamics. If the ordering of
the waypoints is not predefined, target-based search algorithms
may require heuristics to avoid the combinatoric complexity of
a traveling salesman problem [63], [64]. In some cases, search
algorithms are not well-posed unless both an initial and final
(goal) position are specified [42], [20], which is not generally
the case when the objective is exploration.

Ergodic control enables how a robot searches a space to de-
pend directly on the dynamics, and is well posed for arbitrary
dynamical systems. In the case of nonlinear dynamics and
nontrivial control synthesis, encoding the search ergodically
allows control synthesis to be solved directly in terms of the
metric, instead of in a hierarchy of problems (starting with
target selection and separately solving for the control that
acquires those targets, for example [49], [42], [41], [57], [38],
[60]). In ergodic trajectory optimization, the distribution of
samples results from introducing heuristics into the trajectory
optimization, but of encoding the statistics of the trajectory and
the information map directly in the objective. Using methods
from optimal control, we directly calculate trajectories that
are ergodic with respect to a given information density [65],
[66]. It is noteworthy, however, that even if one wants to add
waypoints to a search objective, ergodic search is an effective
means to drive the system to each waypoint in a dynamically
admissible manner (by replacing each waypoint with a low-
variance density function, thus avoiding the traveling salesman
problem). Further, ergodic control can be thought of as a way
to generate a continuum of dynamically compatible waypoints;
it is similar to [49], [42], [57], but allows the number of
waypoints to go to oo, making the control synthesis more
tractable for a broad array of systems.

Many active sensing algorithms are formulated to either
prioritize exploitation (choosing locations based on the current
belief state) or exploration (choosing locations that reduce
uncertainty in the belief state); they are best suited for
greedy, reactive sampling, requiring a prior estimate [23], or
for coverage [35], [67], [68]. Algorithms that balance both
exploration and exploitation typically involve encoding the
two objectives separately and switching between them based
on some condition on the estimate, [69], [37], or defining
a (potentially arbitrary) weighted cost function that balances
the tradeoff between the two objectives [36], [60], [38], [22].
Using ergodicity as an objective results in an algorithm that
is suitable for both exploration-prioritizing coverage sampling
or exploitation-prioritizing “hotspot” sampling, without modi-
fication (policy switching or user-defined weighted objectives
[69], [37], [36], [60], [22]). Moreover, the ergodic metric can
be used in combination with other metrics, like a tracking cost
or a terminal cost, but does not require either to be well-posed.
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A. Measuring Ergodicity

We use the distance from ergodicity between the time-
averaged trajectory and the expected information density
as a metric to be minimized. We assume a bounded, n-
dimensional workspace (the search domain) X C R" defined
as [0, L1] x [0, La]... X [0, L,,]. We define x(t) as the sensor
trajectory in workspace coordinates, and the density function
representing the expected information density as E1D(x).

The spatial statistics of a trajectory x(¢) are quantified by
the percentage of time spent in each region of the workspace,

Clx) = %/0 5 a — a(t))) dt, 0

where ¢ is the Dirac delta [1]. The goal is to drive the spatial
statistics of a trajectory x(t) to match those of the distribution
EID(x); this requires choice of a norm on the difference
between the distributions EID(x) and C(x). We quantify
the difference between the distributions, i.e. the distance from
ergodicity, using the sum of the weighted squared distance
between the Fourier coefficients ¢ of the EID, and the
coefficients ¢ of distribution representing the time-averaged
trajectory.' The ergodic metric will be defined as &, as follows:

KeZ"

E@t) = > Axler(@(t) — or)? 2)

k=0€Z"

where K is the number of coefficients calculated along each
of the n dimensions, and k is a multi-index (k1, ko, ..., kp).
Following [1], Ax = W is a weight where s = %,
which places larger weight on lower frequency information.
Note that the notion of ergodicity used here does not strictly
require the use of Fourier coefficients in constructing an
objective function. The primary motivation in using the norm
on the Fourier coefficients to formulate the ergodic objective is
that it provides a metric that is differentiable with respect to the
trajectory «(t). This particular formulation is not essential—
any differentiable method of comparing the statistics of a
desired expected information density to the spatial distribution
generated by a trajectory will suffice, however finding such a
method is nontrivial. The Kullback-Leibler (KL) divergence or
Jensen-Shannon (JS) divergence [21], for example, commonly
used metrics on the distance between two distributions, are
not differentiable with respect to the trajectory (¢).> On the
other hand, by first decomposing both distributions into their
Fourier coefficients, the inner product between the transform
and the expression for the time-averaged distribution results in
an objective that is differentiable with respect to the trajectory.

'The Fourier coefficients ¢y, of the distribution ®(a) are computed using
an inner product, ¢p = fX ¢(x) Fi()da, and the Fourier coefficients of
the basis functions along a trajectory x(t), averaged over time, are calculated
as ci(x(t)) = % fOT Fy(x(t))dt, where T is the final time and F, is a
Fourier basis function.

’Due to the Dirac delta in Eq. (1), the JS divergence ends up involving
evaluating the EID along the trajectory x(t). In general we do not expect to
have a closed form expression for the EID, so this metric is not differentiable
in a way that permits trajectory optimization. Alternatively, replacing the
Dirac delta in Eq. (1) with a differentiable approximation (e.g. a Gaussian)
would expand the range of metrics on ergodicity, but would introduce
additional computational expense of evaluating an N dimensional integral
when calculating the metric and its derivative.

B. Trajectory Optimization

For a general, deterministic, dynamic model for a mobile
sensor (t) = f(x(t),u(t)), where z € RY is the state
and v € R" the control, we can solve for a continuous
trajectory that minimizes an objective function based on both
the measure of the ergodicity of the trajectory with respect to
the EID and the control effort, defined as

J(x(t)) = ~E|x(t)) +/0 %u(T)TR’U,<T)dT. 3)

ergodic cost
control effort
In this equation, v € R and R(7) € R™*™ are arbitrary design
parameters that affect the relative importance of minimizing
the distance from ergodicity and the integrated control effort.
The choice of ratio of v to R plays the exact same role in
ergodic control as it does in linear quadratic control and other
methods of optimal control; the ratio determines the balance
between the objective—in this case ergodicity—and the con-
trol cost of that objective. Just as in these other methods,
changing the ratio will lead to trajectories that perform better
or worse with either more or less control cost.

In [65] we show that minimization of Eq. (3) can be
accomplished using an extension of trajectory optimization
[70], and derive the necessary conditions for optimality.
The extension of the projection-based trajectory optimization
method from [70] is not trivial as the ergodic metric is not
a Bolza problem; however, [65] proves that the first-order
approximation of minimizing Eq. (3) subject to the dynamics
&(t) = f(x(t),u(t)) is a Bolza problem and that trajectory
optimization can be applied to the ergodic objective. The
optimization does not require discretization of search space or
control actions in space or time. While the long time horizon
optimization we use is more computationally expensive than
the myopic, gradient-based approach in [1], each iteration of
the optimization involves a calculation with known complexity.
The EID map and ergodic objective function could, however,
also be utilized within an alternative trajectory optimization
framework (e.g. using sequential quadratic programming).
Additionally, for the special case of £ = w, sample-based
algorithms [58] may be able to produce locally optimal ergodic
trajectories that are equivalent (in ergodicity) to the solution
obtained using trajectory optimization methods; this would
not however, be the case for general, nonlinear dynamics
w(t) = f(x(t), u(t)).

Ergodic optimal control allows for the time of exploration to
be considered as an explicit design variable. It can, of course,
be of short duration or long duration, but our motivation is
largely long duration. The idea is that one may want to execute
a long exploration trajectory prior to re-planning. The most
straightforward motivation is that integrating measurements
and updating the belief may be the more computationally
expensive part of the search algorithm [31], [29], [23], [37].
Overly reactive/adaptive strategies—strategies that incorporate
measurements as they are received—are also likely to perform
poorly when the estimate uncertainty is high [57], [29], [37] or
in the presence of (inevitable) modeling error. If, for example,
the measurement uncertainty is not perfectly captured by the
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measurement model, the idealized Bayesian update can lead
to overly reactive control responses. Instead, one may wish to
take enough data such that the central limit theorem can be
applied to the measurement model, so that the measurement
model is only anticipated to be applicable on average over the
length of the exploratory motion [71]. Future work will involve
exploring the effects of reducing the re-planning horizon on
the success of the estimation algorithm.

C. Assumptions: Ergodic Trajectory Optimization

Ergodic trajectory optimization requires a controllable mo-
tion model for the robot, and an expected information density
function defined over the sensor state space. The motion
model can be nonlinear and/or dynamic, one of the primary
benefits of a trajectory optimization approach. For this paper
we consider calculating search trajectories in one and two
dimensions (although the sensor dynamics can be higher
dimensional). The trajectory optimization method can be ex-
tended to search in higher dimensional search spaces such as
R? and SE(2), so long as a Fourier transform [72] exists
for the manifold [66]. We consider only uncertainty of static
environmental parameters (e.g. fixed location and radius of
an external target) assuming noisy measurements. We assume
deterministic dynamics.

IV. EXPERIMENTAL METHODS: SEARCH FOR STATIONARY
TARGETS USING THE SENSORPOD ROBOT

Although ergodic trajectory optimization is general to
sensing objectives with spatially distributed information, we
describe an application where the belief representation and
expected information density (EID) calculation (steps A, B,
and D in Fig. 2) are chosen for active localization of stationary
targets using the SensorPod robot. This allows us to experi-
mentally test and validate a closed-loop version of the ergodic
optimal control algorithm, described in Section III, against
several established alternatives for planning control algorithms
based on an information map.

Inspired by the electric fish, the SensorPod (Fig. 1a) has two
excitation electrodes that create an oscillating electric field. We
use a single pair of voltage sensors—hence, a one-dimensional
signal —on the body of the SensorPod to detect perturbations
in the field due to the presence of underwater, stationary,
nonconducting spherical targets. The expected measurement
depends on the location, size, shape, and conductivity of an
object as well as the strength of the electric field generated
by the robot; for details, see [73]. The perturbed electric
fields and resulting differential measurements for targets in
two locations relative to the SensorPod are shown in Fig. 4,
and the differential voltage measurement is plotted in Fig. Sa.
Figure 5b shows the expected differential measurement for
two candidate sensor trajectories. The multimedia attachment
provides additional intuition regarding the SensorPod and
and the observation model. The solid line trajectory is more
informative, as measured using Fisher Information, than the
dashed line; our goal is to automatically synthesize trajectories
that are similarly more informative.
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(a) +0.2 mV expected voltage difference between the sensors on the SensorPod
for a target located as shown.
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(b) -0.2 mV expected voltage difference between the sensors (A-B) on the
SensorPod for a target located as shown.

Fig. 4. The SensorPod (grey) measures the difference between the field
voltage at the two sensors (A-B). The field is generated by two excitation
electrodes on the SensorPod body. The field (simulated isopotential lines
plotted in black) changes in the presence of a target with different conductivity
than the surrounding water. The OV line is bolded. The perturbation cause by
the same object results in a different differential measurement between sensors
A and B based on the position of the object relative to the SensorPod. For
more information and an animation of this plot, please see the multimedia
video attachment. Note that the SensorPod is not measuring the field itself
(which is emitted by, and moves with, the robot), but the voltage differential
between two sensors induced by disturbances in the field.

Search Domain

0.15

(=]

-0.15

differential voltage measurement (mV)

x (m)
(a) The expected differential voltage measurement (A-B from Fig. 4) is plotted
as a function of robot centroid for a target (pink) located at X,Y=(0,0). Two
possible SensorPod trajectories are plotted in black (solid and dashed). The
target is placed below the robot’s plane of motion to prevent collisions.
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(b) Simulated differential voltage measurements for the trajectories in (a) are
plotted as a function of time.

Fig. 5. Measurements collected by the SensorPod have a nonlinear and non-
unique mapping to target location. The dashed trajectory in Fig. 5a yields
uninformative measurements (possible to observe for many potential target
locations); the solid trajectory in Fig. 5a, produces a series of measurements
that are unique for that target position, and therefore useful for estimation.

The objective in the experimental results presented in Sec-
tion V is to estimate a set of unknown, static, parameters
describing individual spherical underwater targets. Details and
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assumptions for implementation of both the Bayesian filter
and the calculation of the expected information density for
the SensorPod robot, including for the multiple target case,
can be found in Appendix Aj; an overview of the algorithm is
provided here, corresponding to the diagram in Fig. 2). For a
graphical, animated overview of the algorithm, please also see
the attached multimedia video.

The algorithm is initialized with the sensor state at the initial
time «(0) and an initial probability distribution p(@) for the
parameters 6. We represent and update the parameter estimate
using a Bayesian filter, which updates the estimated belief
based on collected measurements (Fig. 2, step A). The initial
distribution can be chosen based on prior information or, in
the case of no prior knowledge, assumed to be uniform on
bounded domains. At every iteration of the EEDI algorithm,
the EID is calculated by taking the expected value of the Fisher
information with respect to the belief p(0) (Fig. 2, step B).
For estimation of multiple parameters, we use the D-optimality
metric on the expected Fisher information matrix, equivalent
to maximizing the determinant of the expected information
[51]. In Fig. 6, the corresponding EIDs for two different
belief maps for 2D target location (Figs. 6b and 6e), as well
as the EID for estimating both 2D target location and target
radius (6¢), are shown. The EID is always defined over the
sensor configuration space (2D), although the belief map may
be in a different or higher dimensional space (e.g. over the
2D workspace and the space of potential target radii). The
normalized EID is used to calculate an optimally ergodic
search trajectory for a finite time horizon (Fig. 2, step C). The
trajectory is then executed, collecting a series of measurements
(Fig. 2, step D, for time T'). Measurements collected in step
D are then used to update the belief p(8), which is then used
to calculate the EID in the next EEDI iteration. The algorithm
terminates when the norm on the of the estimate falls below
a specified value.

For localizing and estimating parameters for multiple tar-
gets, we initialize the estimation algorithm by assuming that
there is a single target present, and only when the norm on the
variance of the parameters describing that target fall below the
tolerance ¢ do we introduce a second target into the estimation.
The algorithm stops searching for new targets when one of two
things happen: 1) parameters for the last target added converge
to values that match those describing a target previously
estimated (this would only happen if all targets have been
found, as the EID takes into account expected measurements
from previous targets), or 2) parameters converge to an invalid
value (e.g. a location outside of the search domain), indicating
failure. The algorithm terminates when the entropy of the
belief map for all targets falls below a chosen value; for the
0 target case, this means that the SensorPod has determined
that there are no objects within the search space. Note that the
EID for new targets takes into account the previously located
targets

3Note that alternative choices of optimality criteria may result in different
performance for different problems based on, for example, the conditioning
of the information matrix. D-optimality is commonly used for similar appli-
cations and we found it to work well experimentally; however the rest of the
EEDI algorithm is not dependent on this choice of optimality criterion.

target location (y)
target location (y)
target location (y)

target location (x)

(a) A low-variance PDF
of 2D target location

target location (x)

target location (x)

(b) EID for target loca- (c) EID for target loca-
tion for the PDF in (a) tion and radius.

target location (y)
target location (y)

target location (x)

(e) EID map for the PDF
in (¢)

target location (x)
(d) A higher-variance
PDF of 2D target location.

Fig. 6. The EID is dependent on the measurement model and the current
probabilistic estimate. Figures 6b, 6¢, 6e show examples of the EID for
different PDFs and estimation tasks for the SensorPod measurement model.
For 6c, the projection of the corresponding PDF (defined in three-dimensions)
onto the 2D location space would be similar to (a). The EID is calculated
according to Eq. (12). In all cases, calculation of the EID produces a map
over the search domain, regardless of the estimation task.

A. Assumptions: stationary target localization using the Sen-
sorPod (EEDI example)

We make a number of assumptions in choosing steps A,
B, and D in Fig. 2, detailed in Appendix A. We assume a
measurement is made according to a known, differentiable
measurement model (a function of sensor location and pa-
rameters), and assume the measurements have zero-mean,
Gaussian, additive noise.* We assume independence between
individual measurements, given that the SensorPod state is
known and the measurement model is not time-varying. Mea-
surement independence is commonly assumed, for example
in occupancy grid problems [29], however more sophisticated
likelihood functions that do not rely on this assumption of in-
dependence [74] could be used without significantly changing
the structure of the algorithm.

For the single target case, we maintain a joint probability
distribution for parameters describing the same target as they
are likely to be highly correlated. In order to make the problem
of finding an arbitrary number of objects tractable, we assume
that the parameters describing different targets are independent
and that a general additive measurement model may be used,
similar to [24], [75], [28]. Although the voltage perturbations
from multiple objects in an electric field do not generally add
linearly, we make the assumption that the expected measure-
ment for multiple objects can be approximated by summing the
expected measurement for individual objects, which simplifies
calculations in Appendix A.> While the computation of Fisher
Information and the likelihood function used for the Bayesian
update depend on the assumptions mentioned above, the

4Related work in active electrosense has shown that zero mean Gaussian
is a reasonable assumption for sensor noise [5].

5 Additional experimental work (not shown), demonstrated that at a min-
imum of 6 cm separation between objects, there is no measurable error
using this approximation; in the experimental and simulated trials, we use
a minimum separation of 12 cm.
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(a) For estimation of target location in 1D (Sec-
tions V-A and V-E), the target object (green) was
placed at a fixed distance of y = 0.2 m from
the SensorPod line of motion, and the distractor
(pink) at y4 = 0.25 m.

(b) Expected voltage measurement over 1D sensor state
for the target (pink) and distractor (green) objects alone,
and when both target and distractor are present (black).

(c) Example of tank configuration for 2D local-
ization of two targets. For all trials, SensorPod
and object locations are measured from the
center of the tank.

Fig. 7. Targets were placed below the robot’s plane of motion to prevent collisions. The orientation of the robot is held constant. The voltage sensors sample
at 100 Hz, with an assumed standard deviation of 100 pV for the measurement noise, the experimentally observed noise level of the SensorPod sensors.

ergodic optimal control calculations do not, and only depend
on the existence of an EID map.

The SensorPod is attached to a 4-DOF gantry system, which
allows use of a kinematic model of the SensorPod in Eq.
(3), i.e. the equations of motion for the experimental system
are (t) = wu(t), where x is the SensorPod position in
1D (Sections V-A and V-E) or 2D (Sections V-B, V-C, and
V-D). The kinematic model and 2D search space also enable
comparison with other search methods; however, it should be
noted that EEDI is applicable to dynamic, nonlinear systems
as well, as will be demonstrated in simulation in Section V-G.

Ergodic trajectory optimization, presented in Section III,
calculates a trajectory for a fixed-length time horizon 7T,
assuming that the belief, and therefore the EID map, remains
stationary over the course of that time horizon. In the following
experiments, this means that each iteration of the closed loop
algorithm illustrated in Fig. 2 involves calculating a trajectory
for a fixed time horizon, executing that trajectory in its entirety,
and using the series of collected measurements to update
the EID map before calculating the subsequent trajectory.
The complete search trajectory, from initialization until ter-
mination, is therefore comprised of a series of individual
trajectories of length 7', where the belief and EID are updated
in between (this is also true for the alternative strategies used
for comparison in Section V). The EID map could alternatively
be updated and the ergodic trajectory re-planned after each
measurement or subset of measurements, in a more traditional
receding horizon fashion, or the time horizon (for planning
and updating) could be optimized.

B. Performance assessment

In the experiments in Section V, we assess performance
using time to completion and success rate. Time to completion
refers to the time elapsed before the termination criterion
is reached, and a successful estimate obtained. We present
results for time until completion as the slowdown factor.
The slowdown factor is a normalization based on minimum
time until completion for a particular set of experiments or

simulation. For a trial to be considered successful, the mean of
the estimate must be within a specified range of the true target
location, and in Section V-C, the number of targets found must
be correct. The tolerance used on the distance of the estimated
parameter mean to the true parameter values was 1 cm for
the 1D estimation experiments and 2 cm for 2D experiments.
In both cases this distance was more than twice the standard
deviation used for our termination criterion.

A maximum run-time was enforced in all cases (100 sec-
onds for 1D and 1000 seconds for 2D experiments). For simple
experimental scenarios, e.g. estimation of the location of a
single target in 2D (Section V-B), these time limits were
longer than the time to completion all algorithms in simu-
lation. Additional motivation for limiting the run time were
constraints on the physical experiment, and the observation
that when algorithms failed they tended to fail in such a
way that the estimate variance never fell below a certain
threshold (excluding the random walk controller), and the
success criteria listed above could not be applied.

V. TRIAL SCENARIOS & RESULTS

Experiments were designed to determine whether the EEDI
algorithm performs at least as well as several alternative
choices of controllers in estimating of the location of station-
ary target(s), and whether there were scenarios where EEDI
outperforms these alternative controllers, e.g. in the presence
of distractor objects or as the number of targets increases.
Experiments in Sections V-A through V-D are performed using
the kinematically controlled SensorPod robot and simulation,
and these results are summarized in Section V-F. In Section
V-G, we transition to simulation-only trials to demonstrate suc-
cessful closed-loop estimation of target location, but compare
trajectories and performance using three models of the robot;
the kinematic model of the experimental system, a kinematic
unicycle model, and a dynamic unicycle model.

In Sections V-A through V-D we compare the performance
of EEDI to the following three implementations of information
maximizing controllers and a random walk controller: I.
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1) Information Gradient Ascent Controller (IGA) The
IGA controller drives the robot in the direction of the
gradient of the EID at a fixed velocity of 4 cm/s, inspired
by controllers used in [47], [30], [32], [33].

2) Information Maximization Controller (IM) The Sen-
sorPod is controlled to the location of the EID maxi-
mum, at a constant velocity for time 7, similar to [56],
[50], [28], [26].

3) Greedy Expected Entropy Reduction (gEER) At each
iteration, fifty locations are randomly selected, within a
fixed distance of the current position. The SensorPod is
controlled to the location that maximizes the expected
change in entropy, integrated over the time horizon T.
This approach is similar to the method of choosing
control actions in [9], [8], [25], [38]

4) Random Walk (RW) The SensorPod executes a ran-
domly chosen, constant velocity trajectory from the
current sensor position for time 7', similar to [5].

The planning horizon T' was the same for all controllers, so
that the same number of measurements is collected.

Alternative algorithms, for example a greedy gradient-based
controller (IGA) or a random walk (RW), produce control sig-
nals with less computational overhead than the EEDI algorithm
because the EEDI involves solving a continuous trajectory
optimization problem and evaluating an additional measure on
ergodicity. In the next section we demonstrate several scenar-
ios in which the tradeoff in computational cost is justified if
the estimation is likely to fail or suffer significantly in terms
of performance using less expensive control algorithms. Ad-
ditionally, the alternative algorithms, while appropriate for the
kinematically-controlled SensorPod robot, do not generalize
in an obvious way to nonlinear dynamic models. This is one
of our reasons for desiring a measure of nonmyopic search
that can be expressed as an objective function (i.e. ergodicity).
Given an objective, optimal control is a convenient means
by which one makes dynamically dissimilar systems behave
similarly to each other according to a metric of behavior. In
the case of exploration, the measure is of coverage relative to
the EID—however it is constructed.

A. Performance comparison for 1D target estimation in the
presence of an unmodeled distractor

In this section, the robot motion is constrained to a single
dimension, and the estimation objective is the 1D location 6
of a single, stationary target with known radius. A distractor
object is placed in the tank, as an unmodeled disturbance,
in addition to the (modeled) farget object. Both the target
and the distractor were identical non-conductive, 2.5 cm
diameter spheres, placed at different fixed distances from
the SensorPod’s line of motion (see Fig. 7a). The voltage
signal from the distractor object is similar but not identical
to that of the target (see Fig. 7b). Placing the distractor object
further from the SensorPod line of motion results in decreased

©The expected entropy reduction is H (6)—E[H (0)|V 1 (t)] where H(0) =
— [ p(0) log p(0)d0 is the entropy of the unknown parameter 6 [75], [46] and
VT (t) is the expected measurement, calculated for each candidate trajectory
27T (t), the current estimate p(6), and the measurement model.
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Fig. 8. Examples of closed-loop optimally ergodic search in simulation and
experiment. The EID is shown as a density plot in blue, and the search
trajectory in red. The belief and trajectory are recalculated every second in
simulation and every 8 seconds in experiment.

TABLE I
PERFORMANCE MEASURES FOR ESTIMATION OF SINGLE TARGET
LOCATION IN 1D FOR 100 SIMULATED AND 10 EXPERIMENTAL TRIALS.
RESULTS FOR TIME UNTIL COMPLETION (SLOWDOWN FACTOR) ARE ONLY
SHOWN FOR SUCCESSFUL TRIALS. SLOWDOWN FACTOR OF 1
CORRESPONDS TO 15.2 S IN EXPERIMENT, 7.6 S IN SIMULATION.

[ Description [ EEDI | gEER [ IM [ IGA | RW |
Exp. Success % 100 50 60 50 80
Sim. Success % 100 60 71 66 99

Exp. Slowdown Factor 1 14 2.1 2.7 2.7
Sim. Slowdown Factor 1 2.1 2.1 2.3 6.3

magnitude and rate of change of the voltage trace. Introducing
an unmodeled distractor even in a one-dimensional sensing
task was enough to illustrate differences in the performance
of the EEDI Algorithm and Algorithms I-IV.

We performed 100 trials in simulation and 10 in experiment,
with the target position held constant and the distractor’s
position along the SensorPod’s line of motion randomized.’
The results for success rate and average slowdown factor
(for successful trials), averaged over all trials in simulation
and experiment, are summarized in Table I. The slowdown
factor is the average time until completion, normalized by
the minimum average time until completion in experiment or
simulation. Results presented in Table I demonstrate that the
EEDI algorithm localizes the target successfully 100% of the
time, and does so more quickly than Algorithms I-IV.

Differences in time to completion between experimental and
simulated trials are due to experimental velocity constraints. In
simulation, the time horizon used for trajectory optimization,
and therefore between PDF updates, was one T' = 1 second. A
longer (1" = 8 seconds) time horizon was used for experimen-
tal trajectory optimization, avoiding the need to incorporate
fluid dynamics in the measurement model; at higher velocities

"The only additional consideration in the experimental scenario was that the
tank walls and the water surface have a non-negligible effect on measurements.
‘We compensate for this by collecting measurements on a fine grid in an empty
tank, and subtracting these measurements at each measurement point during
estimation.
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TABLE 11
PERFORMANCE MEASURES FOR ESTIMATION OF SINGLE TARGET
LOCATION IN 2D FOR 10 SIMULATED AND 10 EXPERIMENTAL TRIALS.
RESULTS FOR TIME UNTIL COMPLETION (SLOWDOWN FACTOR) ARE ONLY
SHOWN FOR SUCCESSFUL TRIALS. SLOWDOWN FACTOR OF 1
CORRESPONDS TO 64 S IN EXPERIMENT, 65.2 S IN SIMULATION.

[ Description [ EEDI | gEER [ RW |
Exp. Success % 100 90 90
Sim. Success % 100 100 100

Exp. Slowdown Factor 1 1.2 29
Sim. Slowdown Factor 1 1.1 2.6

the water surface is sufficiently disturbed to cause variations
in the volume of fluid the field is propagating through, causing
unmodeled variability in sensor measurements.

Figure 8 shows experimental and simulated examples of
closed-loop one-dimensional trajectories generated using the
EEDI algorithm. Given no prior information (a uniform belief),
the ergodic trajectory optimization initially produces uniform-
sweep-like behavior. In the experimental trial shown in Fig.
8b, the termination criteria on the variation of the PDF
is reached in only two iterations of the EID algorithm, a
result of the longer time horizon and resulting higher density
measurements. The distributed sampling nature of the EEDI
algorithm can be better observed in the simulated example
shown in Fig. 8a, where shorter time horizons and therefore
more sparse sampling over the initial sweep require more
iterations of shorter trajectories. As the EID evolves in Fig.
8a, the shape of the sensor trajectory changes to reflect the
distribution of information. For example, the sensor visits the
local information maximum resulting from voltage perturba-
tions due to the target and the local information maximum
due to the distractor between 1 and 4 seconds. Experimental
results for this trial were presented in [76].

B. Performance comparison for estimating the 2D location of
a single target

In this section, the robot is allowed to move through a 2D
workspace and the objective was to compare the performance
of EEDI to gEER and RW for 2D, stationary target local-
ization, i.e. @ = (0,0,). No distractor object was present as
the difference in performance between algorithms was notable

even without introducing a distractor object. Fig. 7c shows an
example tank configuration for multiple target estimation in
2D. We omit comparison to IGA and IM for 2D experiments;
RW is the simplest controller to calculate and resulted in high
success percentage for 1D trials, and gEER, with performance
similar to IGA and IM on average in 1D trials, is qualitatively
similar to our approach and more commonly used.

Ten trials were run for each of the EEDI, gEER, and RW
algorithms, both in experiment and simulation, with the target
location randomly chosen. Figure 9 shows the convergence of
the belief at 10 second intervals (I' = 10), as well as the
corresponding EID and ergodic trajectory. The performance
measures for experimental and simulated trials using the
EEDI, gEER, and RW algorithms are shown in Table II. In
simulation, all three algorithms have 100% success rate, while
the gEER and RW controllers have a 10% lower success rate
in the experimental scenario. The gEER controller requires
roughly 10-20% more time to meet the estimation criteria,
whereas the RW controller requires about 2-3 times more time.
As mentioned in the previous section, although gEER performs
well in this scenario, it did not perform as well with distractors.

C. Performance comparison for estimating the 2D location of
multiple targets

Having demonstrated that the EEDI algorithm modestly
outperforms gEER and drastically outperforms RW (in terms
of time) for localizing a single, stationary target in 2D, we
next sought to compare EEDI performance localizing multiple
targets (see Fig. 7c). We compare the EEDI algorithm to
the gEER and RW controllers, again leaving out IM and
IGA because of their poor performance in Section V-A. We
performed localization estimation for scenarios where there
were either 0, 1, 2, or 3 targets in the tank, all 2.5 cm diameter.
We conducted 5 trials in simulation and experiment, for each
number of targets (with all locations selected randomly).
Figure 10 shows the percentage of successful trials and average
slowdown factor as a function of the number of targets in
the tank. The slowdown factor is calculated by normalizing
average time until completion by the minimum average time
until completion for all algorithms and all target numbers.



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

100 100
< 80 « 80
2 60 2 60
] 3
= 40{[EEDI — 5 40{[EEDI —
) wn
20| |2EER — 20| |2EER —
RW RW
0 0
0 1 2 3 0 1 2 3
Number of targets Number of targets
7 7
g6 56
&5 &5
§ 4 § 4
g 3 g 3
g 2 g 2
»nl @ 1
0 0
0 1 2 3 0 1 2 3

Number of targets Number of targets

(a) Experiment (b) Simulation

Fig. 10. Performance measures for estimation of multiple target locations
in 2D for five experimental and five simulated trials. Slowdown factor of 1
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target radius, for simulated trials only.

In the experimental scenario, Fig. 10a, the EEDI algorithm
had a higher success rate than both the gEER and RW
controllers for higher numbers of objects. The slowdown
factor using the EEDI algorithm was very similar to the
gEER algorithm for 0-2 objects (the gEER controller never
successfully localized 3 objects), and much shorter than the
RW controller. In simulation, Fig. 10b, the success rate of the
EEDI algorithm matched that of the RW, however the RW
slowdown factor was much greater.

D. Performance degradation with signal to noise ratio

The next trial is used to demonstrate an extension of the
EEDI Algorithm to non-location parameters, and to examine
performance degradation as a function of the signal to noise
ratio. As mentioned, the EEDI algorithm can also be used to
determine additional parameters characterizing target shape,
material properties, etc. The only requirement is that there be
a measurement model dependent on—and differentiable with
respect to—that parameter. Parameters are incorporated into
the algorithm in the same way as the parameters for the spatial
location of a target (see Appendix B). We therefore demon-
strate effectiveness of the EEDI algorithm for estimation of
target radius as well as 2D target location. We estimated target
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Fig. 12. Performance measures for estimation of single target location in
1D are shown for the EEDI algorithm and Algorithms I-IV. Results of
110 simulated trials are shown for each algorithm; for each of 11 target
locations, 10 simulated trials were performed with the 1D distractor object
location randomized (a fixed distance from the SensorPod line of motion was
maintained). A slowdown factor of 1 corresponds to 5.61 seconds; slowdown
factor is not shown for target distances with less than 10% success rate.

location and radius for ten different radii varying between 0.5
cm to 1.5 cm. Five trials were performed for each target radius,
with randomly chosen target locations. By varying the radius
of the target, which for our sensor results in scaling the signal
to noise ratio,® we are able to observe relative performance
of several comparison algorithms as the signal to noise ratio
drops off. Trials were performed in simulation only. Figure 11
shows the mean success rate of the five simulated trials as a
function of target radius. For EEDI, gEER, and RW the success
rate decreased as the radius decreased. This is expected, as the
magnitude of the voltage perturbation, and therefore the signal
to noise ratio, scales with 3. For objects with » < 0.9 cm,
the peak of the expected voltage perturbation is less than the
standard deviation of the sensor noise. Nevertheless, the EEDI
Algorithm had a higher success rate than gEER and RW for
radii between 0.5 cm and 1 cm.

E. Comparison of sensitivity to initial conditions

Finally, we use the one-dimensional estimation scenario (the
same as that in Section V-A) to illustrate the relative sensitivity
of the EEDI algorithm and Algorithms I-IV to the initial
conditions of the sensor with respect to locations of the target
and an unmodeled disturbance. This captures the likelihood of
different controllers to become stuck in local minima resulting
from the presence of a distractor object which produces a
measurement similar but not identical to the target.

8the signal drops approximately with the fourth power of the distance from
a spherical target, and increases with the third power of target radius [77]
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We executed a total of 110 simulated trials for each algo-
rithm. 10 trials were simulated for 11 equally spaced target
locations. For each target location, the distractor location
was randomized, with a minimum distance of 25 centimeters
distance from the target (along the SensorPod line of motion,
to prevent electrosensory occlusion). 110 trials allowed signif-
icant separation of the results from different controllers. For
all trials, the SensorPod position was initialized to (z,y) = 0.

Figure 12 shows the performance measures for Algorithms
I-IV. The slowdown factor is calculated by normalizing aver-
age time until completion by the minimum average time over
all algorithms and all target locations. When the target was
located near the SensorPod initial position, EEDI, gEER, IGA,
and RW perform comparably in terms of success percentage
and time, with the exception being the RW controller, which
is predictably slower. Success rate drops off using gEER
and IGA for target positions further from the SensorPod
initial position. Note that IM performs poorly if the target is
located exactly at the robot start position, due to the nonlinear
characteristics of electrolocation. A 0 V measurement would
be observed for a target located at the sensor position or
anywhere sufficiently far from the sensor; this means that
the initial step of the IM algorithm has a high probability
of driving the sensor to a position far from the target. EEDI,
on the other hand, localized the target in essentially constant
time and with 0% failure rate regardless of location. The RW
algorithm performs as well as the EEDI algorithm in terms of
success rate, but is approximately eight times slower.

FE. Summary of experimental results

In Sections V-A and V-B, we provide examples of successful
estimation trajectories for the EEDI algorithm. In the two-
dimensional estimation problem in Section V-B, we observe
that both success rate and time until completion are com-
parable using both EEDI and gEER algorithms (with time
being much longer for the random walk controller). While this
scenario illustrates that our algorithm performs at least as well
as a greedy algorithm in a simple setting, and more efficiently
than a random controller, where we really see the benefit in
using the EEDI algorithm is when the robot is faced with
more difficult estimation scenarios. Experiments in Section
V-E showed that the EEDI algorithm was robust with respect
to initial conditions (i.e. whether or not the sensor happens
to start out closer to the distractor or target object) where
Algorithms I-IV are sensitive. For Algorithms I-1V, the further
the target was from the initial SensorPod position, the more
likely the estimation was to fail or converge slowly due to local
information maxima caused by the distractor. Similarly, when
the estimation objective was target localization for varying
numbers of targets in Section V-C (a scenario where many
local information maxima are expected), the success rate of
the EEDI algorithm is higher than expected entropy reduction
and completion time is shorter than the random walk as the
number of targets increased. Lastly, the success rate of the
EEDI algorithm degraded the least quickly as the signal to
noise ratio declined. In addition to outperforming alternative
algorithms in the scenarios described, the ergodic trajectory

optimization framework enables calculation of search trajec-
tories for nonlinear, dynamically-constrained systems.

G. Comparison of different dynamic models

One of the benefits of ergodic optimal control is that the
control design does not change when we switch from a
kinematic robot model to a dynamic robot model. While the
physical SensorPod robot is controlled kinematically due to
the gantry system, we can simulate nonlinear and dynamic
models to see how dynamics might influence information
gathering during untethered movement for future SensorPod
iterations. We simulate automated target localization using the
EEDI algorithm for the SensorPod robot using three different
models for the robot dynamics. All parameters in the ergodic
optimal control algorithm are exactly the same in all three
cases: the weights on minimizing control effort vs. maximizing
ergodicity, in Eq. (3), were set to v = 20, R = 0.01L, (where I
is a 2 x 2 identity matrix), and the planning time horizon was
T = 10. In all three cases below, the measurement model was
identical and defined relative to the X-Y position of the robot,
although the system state differs. The only changes in the
implementation are the robot’s state and equations of motion
for the three systems, defined below.

1) Linear kinematic system: The state is x(t) =
(x(t),y(t)) where z(t) and y(t) are Cartesian coordinates,
and the equations of motion are @&(t) = w(t). The initial
conditions were x(0) = (0.1,0.1).

2) Nonlinear kinematic system: We use the standard kine-
matic unicycle model. The state is x(t) = (z(t),y(t),0(¢))
where x(t) and y(t) are Cartesian coordinates and 6(t) is a
heading angle, measured from the z axis in the global frame.
The control u(t) = (v(t),w(t)) consists of a forward velocity
v(t) and angular velocity w(t). The equations of motion are

i(t) v(t) cos O(t)
a(t) = [yt)| = |v(t)sinb(t)| . 4)
0(t) w(t)

The initial conditions were x(0) = (0.1,0.1,0).

3) Nonlinear Dynamic System: We use a dynamic variation
on the unicycle model. In this case the state is x(t) =
(x(t),y(t),0(t),v(t),w(t)) where z,y,0,v,w are the same
as in the kinematic unicycle model. The control inputs are
u(t) = (a(t), a(t)), with the equations of motion

x(t) v(t) cos O(t)
y(t) v(t) sin 0(t)
zt)=|0@t)| = w(t) ) (3)
o(t) za(t)
w(t) a(t)

The initial conditions were x(0) = (0.1,0.1,0,0,0). Figure
13 illustrates the progression of the EEDI algorithm for
static, single target localization for all three systems. In all
cases, we use a finite time horizon of 7' = 10 seconds
for trajectory optimization, and the PDF is initialized to a
uniform distribution. While the types of trajectories produced
are qualitatively different because of the different dynamic
constraints, we observe similar convergence behavior for all
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(c) Dynamic unicycle model (nonlinear, dynamic system)

Fig. 13. A progression of the estimate of the two-dimensional target location
using the EEDI algorithm, in simulation, for three different systems perform-
ing the same task. As the algorithm progresses, collected measurements evolve
the estimate (heatmap) from a uniform distribution over the workspace (top-
leftmost figure in each (a),(b),(c)), to a concentrated distribution at the correct
location. At each interval, the EID (grayscale) is calculated from the updated
estimate, which is then used to calculate an ergodic search trajectory (green).
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Fig. 14. The trace of the covariance of the two-dimensional target location
estimate is plotted as a function of time. We observe similar overall conver-
gence behavior for all three systems for this particular set of initial conditions
and weighted objective function. The covariance is updated after executing
each 10-second long trajectory.

three systems for this particular set of initial conditions and
weights in the objective function. In Fig. 14, the trace of the
estimate covariance is plotted as a function of EEDI iterations.

VI. CONCLUSION

We present a receding horizon control algorithm for active
estimation using mobile sensors. The measurement model

and belief on the estimates are used to create a spatial map
of expected information gain. We implement our algorithm
on a robot that uses a bio-inspired sensing approach called
electrolocation [4]. Ergodic trajectory optimization with re-
spect to the expected information distribution, as opposed to
information maximization, is shown to outperform alternative
information maximization, entropy minimization, and random
walk controllers in scenarios when the signal to noise ratio is
low or in the presence of disturbances.

One major advantage of ergodic trajectory optimization is
that the formulation is suitable for systems with linear or
nonlinear, kinematic or dynamic motion constraints, as shown
in Section V-G. Additionally, the method does not formally
rely on discretization of the search space, the action space,
or the belief space. Although numerical integration schemes
are used in solving differential equations or updating the
belief, discretization is an implementation decision as opposed
to a part of the problem statement or its solution. Another
benefit is that neither assuming information submodularity
[23], [35], [58]) nor selecting waypoints [49], [42] are required
to distribute measurements among different regions of high
expected information when planning over a long time horizon.
Using ergodicity as an objective also means that the algorithm
is suitable for both coverage [67], [68] or “hotspot” sampling,
without modification. If the information density is very con-
centrated, the optimally ergodic trajectory will be similar to an
information maximizing solution.? On the other hand, if the
information density is diffuse (or the planning time horizon
very long), the optimally ergodic solution will approximate a
coverage solution. In Figs. 9 and 13, coverage-like solutions
are observed for the initial, nearly-uniform belief; although
the belief converges, the EID does not converge to a unimodal
distribution due to nonlinearities in the measurement model.

This paper deals exclusively with finding information about
a finite set of stationary targets. However, ergodic search gen-
eralizes to both time-varying systems as well as estimation of
a continuum of targets (e.g., fields [20], [21]) in a reasonably
straightforward fashion. Field exploration can be achieved by
using an appropriate choice of measurement model and belief
update in the EID calculation [20], [35], [36], [21], [37],
[38]. Time can be incorporated into the measurement model
describing not just where information about a parameter might
be obtained, but also when—by extending the state in Section
III-B to use time as a state.

The formulation of ergodic exploration provided in this
paper also assumes that the dynamics are deterministic. How-
ever, the determinism restriction primarily makes calculations
and exposition simpler. Adding stochastic process noise to the
model can be achieved by replacing the deterministic, finite-
dimensional equations of motion with the Fokker-Planck equa-
tions [71] for the nonlinear stochastic flow, without changing
the mathematical formulation of ergodic control. Moreover,

Note that this would only happen for measurement models that cause the
EID to converge to a low-variance, unimodal distribution that approximates
a delta function (where the equivalence between an information maximizing
solution and an ergodic solution follows directly from their definitions); this
does not happen in the examples shown in Section V. Because of the highly
nonlinear measurement model, the EID converges to a multimodal density
function, as shown in Fig 6b.
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stochastic flows can be efficiently computed [78], [79] for
a wide variety of robotic problems. Even when they cannot
be, a wide class of stochastic optimal control problems are
easily computable [80], [81], though for different objectives
than ergodicity. Although generalization will be easier in some
cases than others, the generalization of ergodic control to
uncertain stochastic processes may be initially approached
rather procedurally. Generalizing ergodic control to more gen-
eral uncertain (non-stochastic) systems, such as robust control
strategies [82], would substantially complicate matters and
would require a much more challenging generalization that
would be a very promising avenue of future research.

In addition to the various limiting assumptions mentioned in
Sections III-C and IV-A in constructing the EEDI algorithm for
target localization, one of the major limitations of the current
formulation is computational expense. Computational expense
stems both from the need to calculate a map of the expected in-
formation density over the workspace in order to formulate the
ergodic objective function, and the need to calculate trajecto-
ries over a finite time horizon. The projection-based trajectory
optimization involves solving a set of differential equations,
which scale quadratically with the state. This is not necesserily
a problem for applications where offline control calculations
are acceptable, or in a receding horizon framework that uses
efficient numerical methods. To that end, preliminary work
has explored solving a discrete version of ergodic trajectory
optimization using variational integrators [83]. Nevertheless,
for applications that have a linear measurement model, trivial
dynamics, and a simple environment, standard strategies like
gradient-based approaches that only locally approximate the
expected information [47], [30], [32], [33] would be effective
and much more computationally efficient. The advantage of
using ergodic trajectory optimization is that it is possible
to formulate and solve exploration tasks whether or not the
environment is simple or the measurement model linear, and
to perform robustly when these “nice” conditions cannot be
guaranteed, as in the experimental work featured in this paper.

APPENDIX
EEDI FOR STATIONARY TARGET LOCALIZATION USING THE
SENSORPOD ROBOT

A. Bayesian Probabilistic Update

The goal is to estimate a set of m unknown, static, pa-
rameters 6 = [0y, 6,, ..., 0,,] describing individual underwater
targets. We assume a measurement V' is made according
to a known measurement model V' = Y(6,x) + J, where
the measurement model Y(-) is a differentiable function of
sensor location and target parameters, and § represents zero
mean Gaussian noise. Specifically, we use a previously derived
measurement model for submerged, sufficiently isolated, non-
conducting spheres [73]. The joint distribution p(8) is updated
every iteration k& of the EEDI algorithm using a Bayesian filter
based on the measurement Vi (t), the measurement model, and
the sensor trajectory x(t) over the planning period T,

Pr1 (0Vi(t), 2k (1) = np (Vi(8)|0, 21 (t)) pe(0).  (6)

p(@) is the PDF calculated at the previous iteration,
D (60, Vi—1(t),®r-1(t))), n is a normalization factor, and
p(Vi(t)]0, i (t)) is the likelihood function for 8 given V().

Assuming independence between individual measurements,
given that the SensorPod state is known and the measurement
model is not time-varying, the likelihood function for all mea-
surements taken along xy(t) is the product of the likelihood
of taking a single measurement V}(;) at time ¢, for all times
tj € [to, T]. Assuming a Gaussian likelihood function, this is

p(Vi(1)|0, @k (t) = ()
k) 1 Vi tj -7 0,:1; tj 2
H — e {_( k(t5) 2(52 k(t5)))

1) Probabilistic Update for Multiple Targets: We assume
an additive measurement model 2 (®) to describe the expected
measurement for multiple targets,

h(©,z(t;)) =Y (01, z(t;)) + T(02,2(t;)) +... (8
+ Y (Om, z(t))),

where 6; is an m x 1 vector made up of m parameters
describing the i target, and © is the M length set of vectors
[01, 02, ...,0,], where M is the number of targets. Because
we assume the measurements Y (0;) for different targets are
independent of each other, we use different Bayesian filter
updates for each target parameter set, evaluating M instances
of Eq. (6). The likelihood function for parameter set 6; is

(H(0:, =(t;)) — V(t;))*
2

T
1
V(t)|(6;)) = ex
vl = [T oo 2
where H(0;,x(t;)) is the marginalization [71] of h(©, z(¢;))
over the parameters describing all other targets 6;;.

B. Expected information density

Fisher information [54] defines the informative regions of
the search space based on the measurement model, a function
of the parameter 6. Assuming Gaussian noise, the Fisher
information for estimation of ¢ reduces to

0= (7162 1’

The Fisher information, Z(6, x) is the amount of information
a measurement provides at location x for a given estimate of
0 (based on the measurement model).

For estimation of multiple parameters @ from a random
variable v, the Fisher information is represented as an m x m
matrix. For a measurement model Y (6, x) each element of
the Fisher information matrix (FIM) can be simplified to

1 8%Y(0,x)
(o2 2 89180]
Note that while we assume Gaussian noise to simplify
the expression in (10), use of Fisher information in this
context does not strictly require Gaussian noise. The Fisher
information can be calculated offline and stored based on the

measurement model which reduces the number of integrations
necessary at each iteration.

€))

I@j(iE,G) = (10)
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Since the estimate of @ is represented as a probability
distribution function, we take the expected value of each
element of Z(x, @) with respect to the joint distribution p(8)
to calculate the expected information matrix, ® (). This is an
m X m matrix, where the 1, jth element is

9?7 (0, x)
o[

060,00, 09,
This expression can be approximated as a discrete sum as
required for computational efficiency.
Using the D-optimality metric [51] on the expected infor-
mation matrix, the expected information density (EID) that is

p(6:,0,)do;do;.  (11)

EID(x) = det ®(x). (12)

1) Expected Information Density for Multiple Targets:
Since the total information is additive for independent obser-
vations, we can write

1(©,2) =1(01,2) + ... + I(On1, ), (13)

where each term is calculated as in (10).

The expected information density for all parameters, for all
targets, can be calculated as the sum of the determinants of the
expected value of each term in Eq. (13), ®;(z), given the set
of independent probabilities p(6;) for each set of parameters
0, describing a single target,

—nZdet@

Since the FIM is positive-semidefinite, the determinant of the
FIM for each target is non-negative. Note that this is just
one approach of combining the expected information from
several independent sources into a single map. Another option
would have been to calculate the D-optimality for each target
individually and calculate the subsequent trajectory based only
on EID for the target with the highest integrated information
(prior to normalization).

FID(z (14)
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