
Chapter 1
Assistive Optimal Control-on-Request with
Application in Standing Balance Therapy and
Reinforcement

Anastasia Mavrommati, Alex Ansari and Todd D. Murphey

Abstract This chapter develops and applies a new control-on-request (COR) method
to improve the capability of existing shared control interfaces. These COR enhanced
interfaces allow users to request on-demand bursts of assistive computer control au-
thority when manual / shared control tasks become too challenging. To enable the
approach, we take advantage of the short duration of the desired control responses to
derive an algebraic solution for the optimal switching control for differentiable non-
linear systems. Simulation studies show how COR interfaces present an opportunity
for human-robot collaboration in standing balance therapy. In particular, we use the
Robot Operating System (ROS) to show that optimal control-on-request achieves
the therapy objectives of active patient participation and safety. Lastly, we explore
the potential of a COR interface as a vibrotactile feedback generator to dynamically
reinforce standing balance through sensory augmentation.

1.1 Introduction

This chapter develops and explores the benefits of a specific form of control— re-
ferred to as burst control—to human-robot collaboration settings. Burst control laws
consist of a continuous nominal control mode (NC) that switches to alternate, assis-
tive control modes (AC) lasting for short but finite durations (see Fig. 1.1). One of
the simplest way robots can collaborate with humans is to aid in the completion of
physical tasks. More often than not, this assistive setting requires that control author-
ity is shared between the collaborators. Where traditional shared control strategies
work in conjunction with or filter user input commands (see [13, 15, 25, 48, 63]),
burst control strategies can provide for a different form of shared control follow-
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ing a control-on-request (COR) paradigm. Potentially working along with existing
shared controllers, burst control signals can be applied on request to implement
quick changes, assisting with control goals as human tasks become too challenging
to maintain. Due to their short duration, the key advantage of these signals is that
they allow computers to take control authority and implement changes before users
notice the loss in control. Through interactive simulation studies, we demonstrate
how this COR paradigm can be implemented using simple interface components
(e.g. buttons, toggles, or switches), providing users the ability to collaborate with
robotic systems by quickly requesting bursts of assistance.

The challenge in implementing these on-demand, quick-assist controllers is that
optimal control responses for nonlinear systems require constrained iterative opti-
mization and so are infeasible to compute on-the-fly. To address this concern, the
first part of this chapter provides the theoretical foundation that allows for rapid gen-
eration of optimal burst control laws. First, the process computes the control action1

to apply at any time to which a system’s tracking objective is optimally sensitive.
As Section 1.2.1 proves, this action is guaranteed to exist under standard assump-
tions. Planning for infinitesimal activation durations, we show optimal actions can
be computed extremely rapidly from a simple algebraic expression of state and co-
state (no iterative optimization). Next, Section 1.2.2 provides a simple line search
that is guaranteed to find a finite application duration for any selected activation
time, τm, that will provide a desired improvement in trajectory. By quickly com-
puting optimal actions and resolving their finite application durations, the approach
calculates assistive burst controls on-demand.

The remainder of this chapter explores the potential of the proposed COR in-
terface in enhancing human-robot collaboration in the field of rehabilitation. We
present two studies, each of which aims to address different aspects of collabora-
tion between humans and robotic platforms. Our first study focuses on the element
of human-robot interaction and regards rehabilitative devices as assistant robots.
In particular, we demonstrate that COR interfaces embedded in robotic lower-limp
exoskeletons can benefit standing balance therapy by promoting real-time collab-
oration between the therapist and the robotic device. To illustrate our approach,
consider the case where a standing patient attempts to maintain an upright pos-
ture while wearing a robotic lower-limb exoskeleton. In this scenario, a monitoring
physical therapist equipped with a COR interface has the option to either assist the
patient manually or activate a corrective exoskeleton response on demand—hence
actively collaborating with the robot to improve and facilitate therapy. In the event
of COR activation, a burst of optimal assistance is calculated in real time and ap-
plied for a very short duration, so that immediately after, full control authority is
ceded back to the patient/therapist. Using the Robot Operating System (ROS), Sec-
tion 1.3 shows that this therapist-robot collaboration paradigm can ensure patient
safety while promoting active patient participation.

However, there is one central aspect of collaboration that is not addressed in this
first study, and that is human-robot communication. Past results suggest that a robot

1 In this chapter a control action is a control vector with constant values applied for a (possibly
infinitesimal) duration of time.
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Fig. 1.1 An example burst
control law. Continuous NC
mode u(t) = 0 (blue curve)
switches at t = 1.22s and
t = 1.38s to alternate control
modes (red) that are ap-
plied for short time horizons
(0.04s).
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needs to be able to produce non-verbal communication cues to be an effective col-
laborative partner [24]. Diverging from commonly employed communication chan-
nels, our second—short—study proposes that the robot uses vibrotactile feedback to
communicate COR-generated intents. As opposed to the first study where the ther-
apist is the epicenter, Section 1.4 examines how the patient can actively collaborate
with the robot in achieving a desired upright posture, by interpreting and following
tactile cues.

Following this Introduction, Section 1.2 derives a technique that takes advantage
of the structure of burst control signals to compute an algebraic optimal control so-
lution for systems with nontrivial dynamics. Section 1.3 discusses the application
of COR interfaces to robot-assisted balance therapy and provides promising simula-
tion results. Finally, Section 1.4 explores the potential of employing COR-generated
vibrotactile signals to achieve posture reinforcement.

1.2 Assistive Control Synthesis

This section presents a method to compute burst AC laws that attain specified levels
of improvement in trajectory tracking cost functionals. Section 1.2.1 leverages the
short intended switching duration of burst AC signals to avoid dynamic constraints
and iterative optimization in solving for a schedule of infinitesimal optimal actions
to apply at any time. These infinitesimal actions specify the magnitude and direction
of the burst control. The following Section 1.2.2 provides a line search process that
returns a finite duration to apply each action to produce a burst control law that
achieves a desired reduction in tracking cost over a specified horizon.
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1.2.1 Calculating a schedule of optimal infinitesimal actions

The type of systems addressed in this chapter are assumed to follow continuous
trajectories, (x(t),u(t)), such that

ẋ(t) = f (x(t),u(t)) . (1.1)

The dynamics vector, f (x(t),u(t)), can be nonlinear with respect to the state vector,
x(t) ∈ Rn, but is assumed to be linear (or has been linearized) with respect to control
vector, u(t) ∈Rm. With these assumptions, (1.1) can be written in control-affine form

f (x(t),u(t)) = g(x(t)) + h(x(t))u(t) . (1.2)

The goal of the proposed COR controllers is to predict the trajectory of the sys-
tem and compute an optimal AC that produces a specified level of improvement in
this trajectory when activated. To accomplish this, a cost functional is used to com-
pare the performance of different trajectories. The state tracking cost functional,2

J1 =

∫ t f

t0
l1(x(t))dt + m(x(t f )) (1.3)

=
1
2

∫ t f

t0
‖x(t)− xd(t)‖2Q dt +

1
2
‖x(t f )− xd(t f )‖2P1

,

serves this purpose. For control derivations, J1 need only obey general form (1.3).
However, the quadratic form is applied in the implementation described in this chap-
ter, i.e. l1(x(t)) := 1

2 ‖x(t)− xd(t)‖2Q and m(x(t f )) := 1
2 ‖x(t f )− xd(t f )‖2P1

. For this case,
Q = QT ≥ 0 defines the metric on incremental state tracking error and P1 = PT

1 ≥ 0
defines the metric on state error at terminal time t f . Initial time, t0, is assumed to be
the activation time of the COR interface to select controls that improve the future
system trajectory.

Assume the system can be in one of two dynamic modes at a given time that differ
only in control. Under nominal conditions, the system applies NC law, u(t), and
dynamics, f1 = f (x(t),u(t)), result. Upon activating the COR interface, the dynamics
switch from NC mode f1 to an alternate AC dynamic mode f2 = f (x(t),u2(t)) for
a short duration, λ+, before switching back. Consider the extreme case where the
system evolves according to f1, and AC u2(t) is applied for an infinitesimal duration
before switching back to the NC law, u(t). In this case the mode insertion gradient,

dJ1

dλ+
= ρ(t)T [ f2− f1] , (1.4)

measures the resulting change in cost functional (1.3) (see [18, 19, 57]). The term,
ρ(t) ∈ Rn, is the adjoint (co-state) variable calculated from the current system trajec-

2 The notation, ‖·‖2M , indicates a norm on the argument where matrix, M, provides the metric (i.e.
‖x(t)‖2Q = x(t)T Q x(t) ).
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tory based on the differential equation3,

ρ̇(t) = −Dxl1(x(t))T −Dx f T
1 ρ(t) , (1.5)

such that at the final time ρ(t f ) = Dxm(x(t f ))T . The control duration, λ+, is evaluated
infinitesimally, as λ+→ 0.

Through the course of the trajectory, any time, τm, the mode insertion gradient is
negative, the state tracking cost functional can be reduced if u2(τm) is activated for
some duration at that time. The magnitude of the mode insertion gradient provides
a first-order model of the change in trajectory cost that would result relative to the
duration of application of this control.

To produce a desired degree of improvement in a system trajectory, each applied
burst of AC needs to improve cost (1.3) by a specified amount. In other words, con-
trol actions, u∗2 (τm), need to be computed that drive the mode insertion gradient to a
desired negative value, αd ∈ R

−. However, there is generally a cost associated with
the application of control authority. As such, a trade-off must be made in tracking
the desired value of the mode insertion gradient, αd, relative to control effort. Fol-
lowing a trajectory optimization approach, these competing goals can be encoded
into the cost functional,

J2 =

∫ t f

t0
l2(x(t),u(t),u2(t),ρ(t))dt where

l2(·) :=
1
2

[
dJ1

dλ+
−αd]2 + ‖u2(t)‖2R :=

1
2

[ρ(t)T ( f2− f1)−αd]2 + ‖u2(t)‖2R .

(1.6)

Matrix R allows the designer to encode the cost of control relative to tracking αd.
The continuous schedule4 of control actions, u∗2(t), that minimizes (1.6), optimizes
this trade-off.

The remainder of the chapter assumes quadratic norms in (1.6) with R = RT > 0.
Proved in [9], quadratic functionals and the space of positive semi-definite / definite
cones is convex. Because convexity is preserved for non-negative weighted sums
and integration, this choice of R > 0 provides convexity of (1.6). Additionally, NC
is often (indicated by case) assumed to be null, u(t) = 0, over the control planning
horizon. This choice allows easier interpretation of u∗2 (τm) as the optimal action
at τm relative to doing nothing (allowing the system to drift for a horizon into the
future).

Theorem 1. Define Λ , h(x(t))T ρ(t)ρ(t)T h(x(t)). The schedule of controls, u2(t),
that optimizes (1.6) based on dynamics (1.2) and state tracking cost functional (1.3)
is given by the algebraic expression,

3 Dx f (·) denotes the partial derivative ∂ f (·)
∂x .

4 At any specified application time, τm, of the COR interface, u∗2(τm) represents the optimal action
that balances control authority and drives the mode insertion gradient to αd if activated around that
time. Thus, u∗2(t) is a schedule of optimal actions that can be switched to from NC, u(t), to produce
a desired change in mode insertion gradient at τm.
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u∗2(t) = (Λ+ RT )−1 [Λu(t) + h(x(t))Tρ(t)αd] . (1.7)

Proof. Any time t ∈ [t0, t f ], action u2(t) is assumed to be applied infinitesimally
and so does not affect state trajectory (i.e. x = x(u(t), t)). Optimization of convex
cost (1.6) with respect to u2(t)∀t ∈ [t0, t f ] is therefore unconstrained by (1.2) and it
is necessary and sufficient for (global) optimality to find a curve u2(t) that sets its
first variation to 0. Using the Gâteaux derivative and the definition of the functional
derivative,

δJ2 =

∫ t f

t0

δJ2

δu2(t)
δu2(t)dt

=
d
dε

∫ t f

t0
l2(x(t),u(t),u2 + ε η(t),ρ(t))dt|ε=0

=

∫ t f

t0

d
dε

l2(x(t),u(t),u2 + ε η(t),ρ(t))|ε=0 dt

=

∫ t f

t0

∂l2(x(t),u(t),u2(t),ρ(t))
∂u2(t)

η(t)dt

=0 , (1.8)

where ε is a scalar and ε η(t) = δu2(t).
At the optimal value of u2(t) (i.e. u2(t) = u∗2(t)), the final equivalence in (1.8)

must hold ∀η(t). By the Fundamental Lemma of Variational Calculus (see [45]),
this implies ∂l2(·)

∂u2(t) = 0 at the optimizer. The resulting expression,

∂l2(·)
∂u2(t)

= (ρ(t)T h(x(t)) [u2(t)−u(t)]−αd)

ρ(t)T h(x(t)) + u2(t)T R

= h(x(t))T ρ(t) (ρ(t)T h(x(t))
[u2(t)−u(t)] −αd) + RT u2(t)

= [h(x(t))T ρ(t)ρ(t)T h(x(t))]u2(t)
+RT u2(t)− [h(x(t))T ρ(t)ρ(t)T h(x(t))]
u(t)−h(x(t))T ρ(t)αd = 0 , (1.9)

can therefore be solved in terms of u2(t) to find the value, u∗2(t), that minimizes (1.6).
Algebraic manipulation confirms this optimal value is given by (1.7).

Though the principles applied to derive the schedule of infinitesimal optimal con-
trol actions (1.7) are reasonable, they are also non-traditional. To provide intuition
regarding the properties of these solutions, the following proposition proves that the
optimization posed to derive these controls is equivalent to a well-studied class of
Tikhonov regularization problems (see [12], [14], [23], [27]).
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Proposition 1. Assume u, u2, ρ, h ∈ H where H is an infinite dimensional repro-
ducing kernel Hilbert function space (RKHS).5 With appropriate change of vari-
ables, minimization of (1.6) obeys the structure of generalized continuous-time lin-
ear Tikhonov regularization problem 6

min
z
‖Γz−b‖2 + κ2‖L(z− z0)‖2 , (1.10)

and (1.7) obeys the structure of associated solution

z∗ = (ΓTΓ+ κ2LT L)−1(ΓT b + κ2LT Lz0) . (1.11)

Above, Γ and L are bounded linear operators on H , vectors z and z0 ∈ H , and b
and κ ∈ R. See [12], [14], [23], and [27] for more detail on (1.10) and (1.11).

Proof. Using the control affine form of dynamics f1 and f2, the final equality in
(1.6) can be stated as

J2 =
1
2

∫ t f

t0
[ρ(t)T h(x(t))(u2(t)−u(t))−αd]2 + ‖u2(t)‖2R dt .

Performing change in variables z(t) = u2(t)−u(t), z0(t) = −u(t), Γ = ρ(t)T h(x(t)), and
b = αd yields

J2 =
1
2

∫ t f

t0
[Γz(t)−b]2 dt +

1
2

∫ t f

t0
‖z(t)− z0(t)‖2R dt .

Because R = RT > 0, it can be Cholesky factorized as R = MT M. By pulling out a
scaling factor κ2, the factorization can be rewritten R = MT M = κ2(LT L). Applying
this factorization and posing the expression in terms of L2 norms results in

J2 =
1
2
‖Γz(t)−b‖2 +

1
2
‖κL(z(t)− z0(t))‖2 .

Minimization of (1.6) is thus equivalent to (1.10) up to a constant factor of 1
2 that

can be dropped as it does not affect z∗.
Additionally, equivalence of solutions (1.7) and (1.11) can be proved directly.

With the previous change of variables, u∗2 (t) can be written as z∗(t)− z0(t) and (1.7)
as

z∗(t)− z0(t) = (ΓTΓ+ κ2LT L)−1(−ΓTΓz0(t) +ΓT b) .

Algebraic manipulation verifies this is equal to Tikhonov regularization solution
(1.11).

5 Practically, this is not a very stringent requirement. Most spaces of interest are RKHS. Refer
to [12] for more detail.
6 For equivalence, ‖·‖ refers to the L2 norm andH is additionally assumed to be an L2 space.
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As the following corollary indicates, because minimization of (1.6) can be posed
as a Tikhonov regularization problem, solutions (1.7) inherit useful properties that
regularization solutions obey.

Corollary 1. With the assumptions stated in Proposition 1, solutions (1.7) for mini-
mization of (1.6) exist and are unique.

Proof. The proof follows from Proposition 1, which shows the minimization can
be formulated as a Tikhonov regularization problem with convex L2 error norm,
‖Γz−b‖. These problems are guaranteed to have solutions that exist and are unique.
A proof is provided in [14].

Globally, optimal control actions (1.7) inherit properties of Tikhonov regulariza-
tion solutions. However, the following corollary shows that near equilibrium points,
solutions (1.7) simplify to linear state feedback laws.

Corollary 2. Assume system (1.2) contains equilibrium point x = 0, the state and
co-state are continuous, and tracking cost (1.3) is quadratic7. There exists a neigh-
borhood around the equilibrium and nonzero time horizon for which optimal actions
(1.7) are equivalent to linear feedback regulators.

Proof. At final time, ρ(t f ) = P1x(t f ). Due to continuity, this linear relationship be-
tween the state and co-state must exist for a nonzero neighborhood around t f such
that

ρ(t) = P(t) x(t) . (1.12)

Applying this relationship, (1.7) can formulated as

u∗2 (t) = (h(x(t))T P(t) x(t) x(t)T P(t)T h(x(t)) + RT )−1

[h(x(t))T P(t) x(t) x(t)T P(t)T h(x(t))u(t)
+ h(x(t))T P(t) x(t)αd] .

This expression contains terms quadratic in x(t). In the neighborhood of the equi-
librium these quadratic terms go to zero faster than the linear terms, and controls
converge to

u∗2 (t) = R−T h(x(t))T P(t) x(t)αd . (1.13)

By continuity, in a sufficiently small neighborhood of the equilibrium the system
dynamics can be approximated as LTV system, ẋ(t) = A(t) x(t) + B(t)u(t), (where
A(t) and B(t) are linearizations about the equilibrium). Applying this assumption
and differentiating (1.12) produces

ρ̇(t) = Ṗ(t) x(t) + P(t) ẋ(t)
= Ṗ(t) x(t) + P(t) (A(t) x(t) + B(t)u(t)) .

7 A quadratic cost is assumed so that resulting equations emphasize the local similarity between
burst control and LQR [6].
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Inserting relation (1.5) yields

−Dxl1(·)T −A(t)T P(t) x(t) = Ṗ(t) x(t) + P(t)
(A(t) x(t) + B(t)u(t)) ,

which can be re-arranged such that

0 = (Q + Ṗ(t) + A(t)T P(t) + P(t)A(t)) x(t) + P(t) B(t)u(t).

When nominal control u(t) = 0, this reduces to

0 = Q + A(t)T P(t) + P(t) A(t) + Ṗ(t). (1.14)

Note the similarity to a Lyapunov equation. As mentioned, this relationship must
exist for some nonzero neighborhood of t f . Therefore, by continuity of ρ(t), there
must exist a finite time horizon and neighborhood of the equilibrium where (1.7)
simplifies to linear feedback regulator (1.13) and P(t) can be computed from (1.14)
subject to P(t f ) = P1.

As in model predictive control (MPC) from [4, 5, 11, 26], it is possible to com-
pute open-loop optimal actions (in this case u∗2(τm)) to provide finite-horizon track-
ing improvements and to sequence these in closed-loop. This would be equivalent to
continuously activating a COR interface. In such implementations, one could spec-
ify αd to provide local stability based on (1.13). Alternatively, if (1.3) is quadratic
and NC u(t) modeled as applying consecutively computed optimal actions (1.13)
near equilibrium, (1.14) becomes a Riccati differential equation for the closed-loop
system (see [28]) and actions (1.13) become finite horizon LQR controls [6]. In this
case one can prove the existence of a Lyapunov function and guarantee stability us-
ing methods from MPC and LQR theory to drive Ṗ(t)→ 0 ([4, 26, 28, 31, 37, 43]).
While beyond this scope, we have begun to explore close-loop implementation and
stability to leverage the efficient synthesis methods presented.

1.2.2 Computing the control duration

Theorem 1 provides a means to compute a schedule of open-loop optimal AC ac-
tions, u∗2 (t). When implemented infinitesimally around any time, τm, u∗2 (τm) is the
needle variation (see [64]) in u(τm) that optimizes control authority in driving the
mode insertion gradient, dJ1

dλ+ , to αd at that time. This value of the mode insertion
gradient reflects the achievable sensitivity of cost (1.3) to application of u∗2 (τm) for
infinitesimal duration. However, by continuity of the adjoint and mode insertion gra-
dient as λ+→ 0, there exists an open, non-zero neighborhood, V , around λ+→ 0 for
which the mode insertion gradient models this sensitivity to first order (see [10, 19]).
Hence the mode insertion gradient can be used to model the change in cost achiev-
able by application of u∗2 (τm) over a finite duration λ+ ∈ V as
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Algorithm 1 Burst Control Synthesis
Initialize αd , minimum change in cost ∆Jmin from (1.15), current time tcurr , default control du-
ration ∆tinit, scale factor β ∈ (0,1), time horizon T , and the max line search iterations imax.
if COR interface activated then

(t0, t f ) = (tcurr , tcurr + T )
Simulate (x(t),ρ(t)) for t ∈ [t0, t f ] from f1
Compute initial cost J1,init
Specify αd
Compute u∗2(t) from (x(t),ρ(t)) using Theorem 1
τm =

∆tinit
2 + t0

Initialize i = 0, J1,new =∞

while J1,new − J1,init > ∆Jmin and i ≤ imax do
λ+ = β i ×∆tinit
(τ0, τ f ) = (τm −

λ+

2 , τm + λ+

2 )
Re-simulate x(t) applying f2 for t ∈ [τ0, τ f ]
Compute new cost J1,new
i = i + 1

end while
end if
return (u∗2(τm), τ0, τ f )

Fig. 1.2: The algorithm above includes an optional line search phase which re-simulates the state
x(t) and trajectory cost until an appropriate duration for AC application of u∗2(τm) can be found.
This is only required if the approximation provided by the mode insertion gradient is not accurate
over the default control interval chosen.

∆J1 ≈
dJ1

dλ+

∣∣∣∣∣
λ+→0

λ+. (1.15)

As u∗2 (τm) regulates dJ1
dλ+ ≈ αd, (1.15) becomes ∆J1 ≈ αdλ

+. Thus the choice of λ+

and αd allow the control designer to specify the desired degree of change in (1.3)
provided by each u∗2 (τm). Also note that for a given dJ1

dλ+ and any choice of λ+, (1.15)
can be applied to test if λ+ ∈ V or that it at least provides a ∆J1 that is known to be
achievable for λ+ ∈ V .

Though the neighborhood where (1.15) provides a reasonable approximation
varies depending on system, in practice it is fairly straightforward to select a λ+ ∈ V .
The easiest approach is to select a single conservative estimate for λ+. This is anal-
ogous to choosing a small, fixed time step in finite differencing or Euler integration.
However, to avoid a-priori selection of a λ+ ∈ V and unnecessarily conservative step
sizes, we use a line search with a descent condition to select a λ+ ∈V or one that pro-
vides a minimum change in cost (1.3). Described in [62], the line search iteratively
reduces the duration from a default value. By continuity, the process is guaranteed
to find a duration that produces a change in cost within tolerance of that predicted
from (1.15). In implementation, we use an iteration limit to bound the algorithm in
time. Note that failing to find an acceptable λ+ within the iteration limit is not usu-
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ally a concern because (1.7) provides a schedule of control values so a duration can
be sought for any nearby time if the system is overly sensitive at the current time.

For a more thorough discussion on the results, see [7]. Next, we perform real-
time simulation studies using ROS to show how Algorithm 1 can benefit human-
robot collaboration in a rehabilitation setting.

1.3 Human-Robot Interaction in Assisted Balance Therapy

In the previous section, we provided the theoretical foundation for the calculation
of optimal burst control signals (i.e. their magnitude and direction u∗2 , and their du-
ration λ+) when assistance is requested. Here, we consider the application of COR
interfaces that use these signals in the field of rehabilitation. Stroke and spinal cord
injuries (SCI) are the main causes of motor disability and severely affect the abil-
ity to control every-day tasks, such as standing, walking, reaching etc. [47, 22, 50].
During the past decades, there has been a substantial increase in the range, type,
and number of robotic trainers for rehabilitation of motor impairments that follow
stroke and SCI. Most of the robot-driven trainers currently in use, serve to augment
the therapeutic tools available to the physical therapists and physicians, by guiding
the patient’s limbs through movement [32, 58, 56, 8]. However, the amount of assis-
tance provided by the robot can have a large effect on the patient’s recovery. To fa-
cilitate motor-neuron recovery, it is essential that patients actively participate in the
training task [30]. It is for this reason that assist-as-needed algorithmic paradigms
have shown promise for robotic therapy, inherently promoting patient participation
by limiting assistance to the minimum the patient requires.

In the particular case of stroke rehabilitation, one of the main objectives is to im-
prove posture stability [59]. In this section, we use the COR interface as an assist-
as-requested controller that allows for an alternative robot-assisted training scheme
where collaboration between the therapist and the robot is encouraged. In particu-
lar, therapist’s guidance is integrated in real time with the assistive control, hence
ensuring that therapy objectives are attained all while the therapist’s work load and
interference remains low. See Section 1.3.1 for an analysis of how our approach
differs from existing assist-as-needed techniques.

Section 1.3.2 tests the real-time performance of a COR interface acting on a sim-
ulated standing figure, using the Robot Operating System (ROS), a standard plat-
form for real robotic applications [1]. COR is shown to be suited for implementation
on an embedded platform. In particular, our example verifies that real-time COR ac-
tivation is feasible and requires only modest computational resources. In addition, it
demonstrates how COR interfaces are effective even in the absence of force/pressure
sensors which are usually required for assist-as-needed techniques [33, 8]. Note that
a modified version of the optimal burst control in (1.7) is employed here, where AC
is set to act in conjunction with NC when activated (as shown in Fig. 1.3). For a
detailed description of this derivation, see [42].
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1.3.1 Related work: assist-as-needed techniques

Most existing assist-as-needed techniques in rehabilitation therapy provide perfor-
mance based assistance. This is a common solution with promising results that
uses task performance metrics as thresholds to initiate robot assistance. Krebs et al.
[35, 34] propose an algorithm that uses performance-triggered impedance control to
guide the patient through task completion. Speed, time, or EMG thresholds have
been tested as performance metrics. Impedance control, systematized by Hogan
[29] in 1985, is particularly effective when applied to contact tasks. However, this
approach usually requires force feedback and also constitutes a sustained control
strategy where the robot is continuously applying support (i.e. after the specified
threshold has been exceeded). Banala et al. [8] follow a similar approach to provide
support for an active leg exoskeleton (ALEX). In particular, they employ force-
field controllers where tangential forces are reduced as the patient’s performance
improves.

Wolbrecht et al. in [61] establish an assist-as-needed paradigm using a standard
model-based adaptive controller and adding a novel force reducing term to the adap-
tive control law, which decays the force output from the robot when errors in task
execution are small. The performance metric used in this technique is the kinematic
error between the hand and goal location during reaching tasks.

Emken et al. in [21] formulate the “assist-as-needed” principle as an optimization
problem. In particular, the robotic movement trainer is assumed to minimize a cost
function that is the weighted sum of robot force and patient movement error. The
authors find the controller that minimizes this cost function for the case in which
motor recovery is modeled as a process of learning a novel sensory motor transfor-
mation. Here, step height achieved during walking is used as performance criterion.
Although the approach has the advantage of being optimal, the resulting error-base
controller is precalculated based on a fixed training model which does not allow for
real-time model updates. For that, and because the controller is constantly active,
possible inaccuracies of the selected model can have a negative impact on the long-
term controller’s performance as far as active patient participation is concerned.

Compared to the aforementioned control approaches that need formal perfor-
mance metrics to be activated and remain active for a long time period, we follow
an alternative approach that promotes real-time collaboration between the therapist
and the robotic trainer. We can allow a therapist in the loop because the triggered
optimal actions are only applied for a short duration of time and are calculated to
assist the system as best as possible in the limited time frame available. This concept
of shared control through intermittent bursts of optimal support comprises a unique
assist-as-needed approach in that it completely avoids the issues of sustained con-
trol strategies where the interaction between two or more controllers acting on the
same system simultaneously proves problematic8. An interactive simulation study

8 Interestingly, this scheme of intermittent instead of sustained control has been suggested to be
natively used by the central nervous system (CNS) in human posture control in [41, 40].
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Fig. 1.3: Schematic representation of the COR interface used in balance therapy, consisting of the
AC and NC.

provides more information about COR interfaces in the context of balance training
in the following section.

1.3.2 Interactive simulation study

This section assesses the performance of the COR interface (shown in Fig. 1.3) in
shared balance control of a simulated standing, humanoid figure allowed to move
in the sagittal plane. Here, we use a double inverted pendulum to model the hu-
manoid. This is a common abstraction used extensively to examine the dynamics of
humanoid or human balance [39, 44, 36, 41, 52, 16]. Alternative methods commonly
control this system using simplified center of mass (COM) and center of pressure
(COP) models [46, 3]. In this work we demonstrate results directly controlling the
nonlinear double pendulum model for two main reasons. First, it demonstrates the
scalability of the proposed COR approach. In particular, we show that the controller
is fast and applies to nonlinear dynamics in a way that directly generalizes to mod-
els with different number of links and actuator placement. Secondly, the choice to
control to the double pendulum dynamics demonstrates flexibility. While the COR
approach can be applied equally well to COP models, these models require specific
force/pressure sensing hardware for feedback. Controlling to the double pendulum
demonstrates how balance control can be achieved using alternative feedback based
on joint angles and velocities.

The system model is illustrated in Fig. 1.4. Specifically, with both feet firmly
planted to the ground and the knees locked in place, we allow 2 degrees of freedom,
with the two pendulum pivot points corresponding to the hips and ankles respec-
tively. The pendulum may be controlled through direct application of torque to the
hip and ankle joints. Thus, the system has n = 4 states, i.e. the two joint angles θ2×1

and their velocities θ̇2×1, and m = 2 inputs, i.e. the torques at the joints. The mass, in-
ertia and length of the model segments were determined from anthropometric data
provided by [60]. The pendulum equations of motion take the form in (1.2) and
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can be derived using Lagrangian Mechanics and the Euler-Lagrange equation. The
derivation is straightforward and will not be shown here.

Our performance objective in this application is to drive the system to the upright
position, i.e. to keep the center of gravity (COG) at the center of the base of support.
As there are no particular constraints on our choice for the tracking cost function,
we employ a quadratic performance metric of the form in (1.3), using the vertical
body position as an angle reference so that xd = 0.

For performance verification, we consider the example case where a human with
impaired balance ability is in a standing position wearing a lower-limb robotic ex-
oskeleton. In this scenario, the main system corresponds to the biomechanical model
of a human augmented by a transparent overlying suit, while the NC plays the role
of the central nervous system (CNS) attempting to maintain human balance. In lit-
erature, the CNS has been implemented both as a PID [44] and an optimal LQR
controller [36]. Here, we chose to implement it as a PD controller providing feed-
back control on each of the joints. The AC is assumed to be embedded in the robotic
suit. We emulate a scenario where the PD gains of the NC are insufficiently tuned
and as a result, the provided torques fail to hold the figure upright.

The Robot Operating System (ROS), available online [1], lies in the center of the
simulation setup, coordinating the real-time communication between the running
processes. The humanoid balance model provided by the double inverted pendulum
is simulated using the open-source software package called trep [2]. The system
simulation initiates at time t = 0 given an initial state (θ0, θ̇0). At each time step, the
program checks whether assistive control has been requested and enters one of the
modes described next and shown in Fig. 1.3.

Mode 1: With no assistance requested, the process simulates the system (1.1)
forward according to the NC input u(t), and outputs the next system configuration.

Mode 2: If assistance is requested, the module solves for the state and co-state
trajectories and evaluates the control formula (1.7) to compute the assistive con-
troller (AC) output u∗2(t) (see Algorithm 1). It applies the control for duration λ+,
before switching back to the nominal mode.

The simulation runs indefinitely, allowing the user to activate the AC in real time
as needed by pressing a button on the computer screen. For more information on the
experimental setup, see [42]. Fig. 1.4 demonstrates a sequence of snapshots where
the button is pushed three times sequentially and the figure is driven to the upright
position.9

1.3.2.1 Results based on therapy objectives

We now present three simulation examples that illuminate the benefits of using a
COR interface in robot-assisted balance training therapy. As an informal measure
of performance, we specify approximate angle safety constraints at θ = ±0.2. It is
assumed that if the angles advance beyond these values, the Center of Gravity leaves

9 As shown in Section 1.2, it is possible to provide parameters that guarantee local stability and
convergence in the case when the Assistive Controller is continuously activated.
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Fig. 1.4: Example of real-time standing balance control using the simulation setup. Assistive con-
trol (AC) is applied by pressing the button three times sequentially, eventually driving the system
to the upright position.

the base of support and a fall occurs. Furthermore, we quantify the magnitude of
nominal control effort as the energy ENC of the signals u(1)(t) and u(2)(t), one for
each joint. Specifically,

ENC =

∫ T f

0
‖u(t)‖2dt (1.16)

where T f is either the final time of simulation T in Algorithm 1 or the time when
the safety constraints are violated and the figure falls.

The COR parameters in Algorithm 1 were tuned as follows: the time horizon
T = 3.0s, the default control duration ∆τinit = 0.03s and the desired tracking cost
reduction αd = −200. The weight matrices in (1.6) and (1.3) were set as

Q =


0.8 0 0 0
0 0.8 0 0
0 0 1.0 0
0 0 0 1.0

 and R =

(
0.1 0
0 0.1

)
. (1.17)

The higher weights on the velocities ensure a more realizable AC performance
where fast motions are avoided. The parameter αd defines how aggressive the as-
sistance should be, i.e. either a “gentle” or a “strong push” towards the balanced
position. Therefore, by setting the absolute value of αd relatively low, we allow for
generation of more realizable and gentle controls for application to humans. Finally,
by tuning the time horizon value T , we define how long the assistive control has to
affect the change in cost. A value of 3.0s was selected, as it resulted in smooth angle
trajectories (see Fig. 1.5).
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Fig. 1.5: Three examples demonstrate the optimal COR benefits in robot-assisted balance therapy.
u∗2 indicates robot-applied torques and u corresponds to human-applied torques. ENC indicates to-
tal nominal control effort. (a) With no assistance, safety constraints are violated. (b) With burst
assistance, balance is maintained with high energy contribution from the NC (preferred implemen-
tation). (c) With intermittent assistance, balance is ensured with low energy contribution from the
NC.

In all cases described below, once the button was pressed, it took approximately
0.1s for the computation of the optimal assistive control in Python, on a laptop with
an Intel Core i7 chipset. This confirms the feasibility of COR activation in real time.

Case 1 - No assistance: Consider the case where a standing patient is allowed
to balance without assistance i.e. only the NC is active (Fig. 1.5(a)). With no in-
terference from the robot (u∗2(t) = 0), the joint angles advance beyond the safety
constraints indicating a fall. Therefore, although the training goal of active patient’s
involvement is achieved (E1

NC = 73.99, E2
NC = 25.33), there is insufficient automated

support to prevent falls.
Case 2 - Burst assistance: In the second example, a monitoring physical thera-

pist/observer is allowed to apply optimal control-on-request, to provide on-line op-
timal assistance when deemed necessary. The effect of the assistive controller acti-
vation is illustrated in Fig. 1.5(b). In the previous case the unassisted model violated
the safety constraints, now the patient is safely “pushed” back towards the upright
position and a potential fall is prevented. What’s interesting is that the patient is still
actively applying torques (u(t)> 0) and thus applies almost the same amount of con-
trol effort as in the first case (E1

NC = 80.31, E2
NC = 18.72). The robot interferes with

the human effort only for a very short duration, before ceding full control author-
ity back to the NC. Thus, in this case, both training goals are achieved: the patient
is actively involved and balance is maintained. Notice that this concept is similar
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to the action taken by a conventional therapist while assisting a person to maintain
balance by gently “pushing” them to the right direction as needed. However, here,
almost no effort is required from the side of the therapist (automated assistance).

Case 3 - Intermittent assistance: Our third example considers the case where
the COR interface is activated multiple times intermittently (Fig. 1.5(c)). It can be
observed that not only does the state remain inside the safety constraints but also it
successfully reaches the origin. In practice, this means that a fall has been prevented
and also that the upright posture has been achieved. However, in comparison to
the second case, this approach is not ideal because the patient is essentially held
in the upright position by the robot without using their own power (E1

NC = 24.25,
E2

NC = 14.17).
Therefore, the second case is the most effective application of the optimal COR

interface and indicates how an experienced therapist should take advantage of this
control scheme to get the best therapy outcomes out of automated balance training.

1.4 Human-Robot Communication in Posture Reinforcement: a
Short Study

In addition to employing COR interfaces to enhance therapist-robot collaboration, in
this section we also explore its efficacy as a means for patient-robot communication
in posture reinforcement. For this purpose, COR feedback is translated into vibro-
tactile cues to communicate intents through sensory augmentation. Previous studies
by T. Murphey’s group have provided evidence that task-based sensory augmenta-
tion yields nearly a factor of four improvement in time-to-failure for virtual balance
tasks [55]. The idea of combining robotics and sensory substitution ([49, 20]) may
be a viable alternative to conventional rehabilitation approaches. Several compari-
son studies have shown that neurologically intact people provided with tactile feed-
back can perform better than those acting on similar forms of auditory feedback;
there are also cases in which tactile feedback is at least equally effective as vision,

Fig. 1.6 An illustration of
the subject’s position during
trials. The subject wears a
vest with eight symmetrically
positioned vibration motors
around their torso (red cir-
cles) and uses crutches to
help maintain balance while
achieving different target pos-
tures.
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if not more so ([53, 51]). A number of studies ([17, 38, 54]) conclude that tactile
feedback can indeed be effective in promoting desired behaviors.

In this short study, it is hypothesized that optimal COR-generated tactile feed-
back on the torso can facilitate standing balance and prevent falls by providing cues
for the correct placement of torso in real time. A preliminary experiment was de-
signed to assess how a person perceives the optimal vibrotactile feedback generated
by the COR interface and whether they are able to interpret it correctly to achieve a
desired posture. The study was conducted with four healthy subjects. In the trials, a
standing subject is wearing a vest with eight symmetrically positioned vibration mo-
tors on their chest and uses crutches to adjust their posture, moving back and forth
(along the sagittal plane) and left and right (along the coronal plane). A Microsoft
Kinect is used to capture sensory information about the subject’s posture in real
time. ROS collects and processes data coming in from the Kinect at approximately
30Hz. For an illustration of the subject’s position during trials, see Fig. 1.6. The sub-
ject is instructed to hold their torso in a constant angle with respect to their hips so
as to closely mimic the movement of a person wearing a hip-actuated exoskeleton.

During the main session, the subject is instructed to track eight subsequent ran-
dom targets as fast as possible. Each target refers to a target ankle angle on the
sagittal plane and a target ankle angle on the coronal plane, considering the upright

Fig. 1.7: The first and second row of diagrams correspond to the sagittal and coronal plane move-
ment respectively. The first column shows the respective ankle angles with respect to time as they
were recorded during the trials. The green/red shaded area around the target angle (black dashed
line) illustrates the selected tolerance in angle which is dictated by the accuracy of the sensor used
(i.e. Microsoft Kinect). The second column of plots shows the vibration of the tactors with respect
to time, as generated by the optimal COR interface.
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position as the reference (zero) angle for both planes. The target may also be per-
ceived as a target body Center of Gravity (CoG) with these two definitions used
interchangeably. A new target is assigned as soon as the previous target has been
reached. There is no other indication that the target has been reached, other than the
vibration stopping.

A sample response from a single trial is illustrated in Fig. 1.7. It was observed
that the subjects were adequately familiarized to the vibrational signals after a short
training session. The metric used for preliminary evaluation of COR-based vibro-
tactile feedback perception is the mean time-to-target (TTT) normalized over dis-
tance between initial CoG and target CoG. Among the four trials, TTT was found to
decrease from an initial mean value of 40s/m over the first few targets, to approxi-
mately 20s/m by average for the last target. This preliminary result is an indication
that sensory feedback perception based on COR interfaces improved over time for
all four subjects resulting in an overall decreased reaction time to stimulus. In ad-
dition, optimal COR-generated signals were found to be sufficiently instructive to
always drive the subject towards the target posture.

However, a few exceptions were noted. In particular, in instances where reaching
the assigned CoG target required diagonal motion from the subject, TTT exploded
(up to approximately 120 s/m) to account for the fact that subjects were incapable
of interpreting the tactile signals as a cue for diagonal motion (i.e. on the sagittal
and coronal plane simultaneously).

Overall, it was concluded that the subjects were able to interpret the COR-
generated vibrotactile signals correctly in order to track the targets, while the mean
time-to-target (TTT) normalized over distance was found to decrease over the first
subsequent targets and remain fairly constant for the remaining targets. This prelim-
inary result is promising in that it promotes an alternative implementation of COR
interfaces as a means for human-robot collaboration through sensory augmentation.

1.5 Conclusion

This chapter presented an algebraic expression to compute optimal actions for non-
linear systems at any time. We demonstrated how a line search can resolve short
durations to apply these actions to provide long time horizon improvement in track-
ing. Compared to standard methods where optimal controls are synthesized based
on finite switching durations, these methods completely avoid constrained iterative
optimization. They facilitate the rapid exchange between human and computer con-
trol required to enable a new shared control paradigm where automated assistance
can be provided quickly and on-demand.

To demonstrate the performance of these enhanced COR interfaces, we utilized
ROS to apply optimal control-on-request to standing balance therapy and posture
reinforcement. In particular, the chapter focused on a shared control example where
bursts of optimal assistance are applied to a simulated standing figure to prevent
it from falling. This approach presents an opportunity for rehabilitation. Robot-
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assisted balance therapy is challenging as control authority is shared between the
robot and the user, rendering their integration problematic. In an ideal rehabilitation
setting, the robot should only provide as much assistance as needed to prevent a
fall, requiring active patient participation. However, existing assistive control strate-
gies either rely on sustained control or assume the use of force/pressure sensors
which are generally not available in current over-ground lower-limb exoskeletons.
To address these issues, we considered employing an optimal COR interface to as-
sist therapy. The short duration of activation ensures the feasibility of our design
in a shared control scenario, alleviating the need for force feedback. The controller
is easy to implement, has low computational demands and runs in real time. Our
real-time simulation studies showed that a therapist equipped with a COR interface
can ensure patient safety while requiring active participation.

Finally, we used the proposed COR design to provide instructive vibrotactile
feedback for posture reinforcement during standing. Preliminary results from a short
human study indicated that the subjects are able to interpret the sensory cues cor-
rectly in order to achieve a target posture with a decreasing normalized mean time-
to-target (TTT) over time.
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26. Grüne, L., Pannek, J.: Nonlinear model predictive control. Springer (2011)
27. Hansen, P.C.: The L-curve and its use in the numerical treatment of inverse problems. IMM,

Department of Mathematical Modelling, Technical Universityof Denmark (1999)
28. Hespanha, J.P.: Linear systems theory. Princeton university press (2009)
29. Hogan, N.: Impedance control: An approach to manipulation. In: American Control Confer-

ence, pp. 304–313 (1984)
30. Hogan, N., Krebs, H.I., Rohrer, B., Palazzolo, J.J., Dipietro, L., Fasoli, S.E., Stein, J., Hughes,

R., Frontera, W.R., Lynch, D., et al.: Motions or muscles? Some behavioral factors underlying
robotic assistance of motor recovery. Journal of rehabilitation research and development 43(5),
605 (2006)

31. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal
cost. IEEE Transactions on Automatic Control 50(5), 674–678 (2005)

32. Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: A
rehabilitation and research tool. Neuromodulation: Technology at the neural interface 6(2),
108–115 (2003)

33. Jezernik, S., Colombo, G., Morari, M.: Automatic gait-pattern adaptation algorithms for re-
habilitation with a 4-DOF robotic orthosis. IEEE Transactions on Robotics and Automation
20(3), 574–582 (2004)

34. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE
Transactions on Rehabilitation Engineering 6(1), 75–87 (1998)

35. Krebs, H.I., Palazzolo, J.J., Dipietro, L., Ferraro, M., Krol, J., Rannekleiv, K., Volpe, B.T.,
Hogan, N.: Rehabilitation robotics: Performance-based progressive robot-assisted therapy.
Autonomous Robots 15(1), 7–20 (2003)

36. Kuo, A.D.: An optimal control model for analyzing human postural balance. IEEE Transac-
tions on Bio-Medical Engineering 42(1), 87–101 (1995)

37. Lee, J.H.: Model predictive control: Review of the three decades of development. International
Journal of Control, Automation and Systems 9(3), 415–424 (2011)



22 Anastasia Mavrommati, Alex Ansari and Todd D. Murphey

38. Lieberman, J., Breazeal, C.: TIKL: Development of a wearable vibrotactile feedback suit for
improved human motor learning. IEEE Transactions on Robotics 23(5), 919–926 (2007)

39. Liu, C., Atkeson, C.G.: Standing balance control using a trajectory library. In: IEEE Interna-
tional Conference on Intelligent Robots and Systems, pp. 3031–3036 (2009)

40. Loram, I.D., Gollee, H., Lakie, M., Gawthrop, P.J.: Human control of an inverted pendulum:
Is continuous control necessary? Is intermittent control effective? Is intermittent control phys-
iological? The Journal of Physiology 589(2), 307–324 (2011)

41. Loram, I.D., Lakie, M.: Human balancing of an inverted pendulum: Position control by small,
ballistic-like, throw and catch movements. The Journal of Physiology 540(3), 1111–1124
(2002)

42. Mavrommati, A., Ansari, A., Murphey, T.: Optimal control-on-request: An application in real-
time assistive balance control. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 5928–5934 (2015)

43. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control:
Stability and optimality. Automatica 36(6), 789–814 (2000)

44. Milton, J., Cabrera, J.L., Ohira, T., Tajima, S., Tonosaki, Y., Eurich, C.W., Campbell, S.A.:
The time-delayed inverted pendulum: Implications for human balance control. Chaos: An
Interdisciplinary Journal of Nonlinear Science 19(2), 026,110–026,110 (2009)

45. Naidu, D.S.: Optimal control systems, vol. 2. CRC press (2002)
46. Ott, C., Roa, M.A., Hirzinger, G.: Posture and balance control for biped robots based on con-

tact force optimization. In: IEEE International Conference on Humanoid Robots, pp. 26–33
(2011)

47. Perry, J., Garrett, M., Gronley, J.K., Mulroy, S.J.: Classification of walking handicap in the
stroke population. Stroke 26(6), 982–989 (1995)

48. Philips, J., del R.Millan, J., Vanacker, G., Lew, E., Galan, F., Ferrez, P., Van Brussel, H.,
Nuttin, M.: Adaptive shared control of a brain-actuated simulated wheelchair. In: IEEE 10th
International Conference on Rehabilitation Robotics (ICORR), pp. 408–414 (2007)

49. Rauschecker, J.P.: Compensatory plasticity and sensory substitution in the cerebral cortex.
Trends in neurosciences 18(1), 36–43 (1995)

50. Sekhon, L.H., Fehlings, M.G.: Epidemiology, demographics, and pathophysiology of acute
spinal cord injury. Spine 26(24S), S2–S12 (2001)

51. Sklar, A.E., Sarter, N.B.: Good vibrations: Tactile feedback in support of attention allocation
and human-automation coordination in event-driven domains. Human Factors: The Journal of
the Human Factors and Ergonomics Society 41(4), 543–552 (1999)

52. Stephens, B.: Integral control of humanoid balance. In: IEEE International Conference on
Intelligent Robots and Systems, pp. 4020–4027 (2007)

53. Sun, M., Ren, X., Cao, X.: Effects of multimodal error feedback on human performance in
steering tasks. Journal of Information Processing 18, 284–292 (2010)

54. Tzorakoleftherakis, E., Bengtson, M.C., Mussa-Ivaldi, F., Scheidt, R.A., Murphey, T.D.: Tac-
tile proprioceptive input in robotic rehabilitation after stroke. In: IEEE International Confer-
ence on Robotics and Automation (2015)

55. Tzorakoleftherakis, E., Mussa-Ivaldi, F., Scheidt, R., Murphey, T.D.: Effects of optimal tactile
feedback in balancing tasks: A pilot study. In: IEEE American Control Conference, pp. 261 –
270 (2014)

56. Veneman, J.F., Kruidhof, R., Hekman, E.E., Ekkelenkamp, R., Van Asseldonk, E.H., Van
Der Kooij, H.: Design and evaluation of the lopes exoskeleton robot for interactive gait re-
habilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(3),
379–386 (2007)

57. Wardi, Y., Egerstedt, M.: Algorithm for optimal mode scheduling in switched systems. In:
American Control Conference, pp. 4546–4551 (2012)

58. West, R.G.: Powered gait orthosis and method of utilizing same (2004). US Patent 6,689,075
59. Winstein, C., Gardner, E., McNeal, D., Barto, P., Nicholson, D.: Standing balance training:

Effect on balance and locomotion in hemiparetic adults. Archives of Physical Medicine and
Rehabilitation 70(10), 755–762 (1989)



1 Assistive Optimal Control-on-Request for Standing Balance Therapy 23

60. Winter, D.A.: Biomechanics and motor control of human movement. John Wiley & Sons
(2009)

61. Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., Bobrow, J.E.: Optimizing compliant, model-
based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems
and Rehabilitation Engineering 16(3), 286–297 (2008)

62. Wright, S., Nocedal, J.: Numerical optimization, vol. 2. Springer New York (1999)
63. Yu, H., Spenko, M., Dubowsky, S.: An adaptive shared control system for an intelligent mo-

bility aid for the elderly. Autonomous Robots 15(1), 53–66 (2003)
64. Zabczyk, J.: Mathematical control theory: An introduction. Springer (2009)


