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Abstract

This paper presents a hybrid control method that controls to unstable equilibria

of nonlinear systems by taking advantage of systems’ free dynamics. The ap-

proach uses a stable manifold tracking objective in a computationally efficient,

optimization-based switching control design. Resulting nonlinear controllers

are closed-loop and can be computed in real-time. Our method is validated

for the cart-pendulum and the pendubot inversion problems. Results show the

proposed approach conserves control effort compared to tracking the desired

equilibrium directly. Moreover, the method avoids parameter tuning and re-

duces sensitivity to initial conditions. The resulting feedback map for the cart-

pendulum has a switching structure similar to existing energy based swing-up

strategies. We use the Lyapunov function from these prior works to numerically

verify local stability for our feedback map. However, unlike the energy based

swing-up strategies, our approach does not rely on pre-derived, system-specific

switching controllers. We use hybrid optimization to automate switching control

synthesis on-line for nonlinear systems.
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1. Introduction

This paper presents a hybrid control technique that exploits the free, i.e.

uncontrolled, dynamics of nonlinear (control-affine) systems to reach a desired

unstable equilibrium state. The method generates a closed-loop switching-type

control, by which challenging and underactuated control problems such as pen-5

dulum inversion can be solved in a numerically efficient way. If the desired

target point is an unstable equilibrium exhibiting a nontrivial stable manifold,

a control strategy can benefit from this structure by steering the system to a

larger set of points on this manifold instead of the desired target. However, a nu-

merical optimization-based approach is not guaranteed to exploit this structure10

automatically, e.g. due to the chosen time horizon in a receding horizon imple-

mentation or because of local optima in the nonlinear optimization problem. To

overcome the issue, we propose a control method that explicitly incorporates

and tracks stable manifolds in a cost functional. Instead of minimizing the dis-

tance to the desired target point, this cost functional can be minimized by any15

trajectory that approaches an arbitrary point on the stable manifold.

As a preliminary step, we compute the stable manifold for the desired target

state based on the free dynamics. This manifold consists of the set of states for

which the free dynamics guide the system to the equilibrium. Using the recently

developed control method Sequential Action Control (SAC, [1]), we generate a20

sequence of constrained, least-norm optimal actions that track the nearest points

on the manifold on-line, in a receding horizon fashion. By tracking the manifold

rather than the desired state, SAC controllers can conserve control effort by

leveraging free dynamics as much as possible in reaching the desired state.

Contributions. Since manifolds can often only be approximated numerically, we25

require controllers that are robust to noisy data and, in particular, to derivative

information. Control synthesis should also be computationally efficient for real-

time requirements. Furthermore, we seek controllers that take advantage of

free dynamics to conserve effort as often as possible, even before the system is

close to the stable manifold. We show how these requirements can be met by30
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our approach that is based on a switching control strategy providing nonzero

input only when it is most efficient. The control strategies use a specialized

SAC controller with a system’s free dynamics as a nominal mode and defines an

alternate control mode that optimizes a manifold tracking objective. Thus, we

present a method to automate the process of determining the switching policy35

(SAC decides when to switch and the value of the optimal control mode) on-line

for nonlinear systems. In benchmark swing-up examples for a cart-pendulum

and a pendubot, SAC rapidly synthesizes constrained switching controls over

receding horizons that track stable manifolds with low control effort on-line.

We compare the resulting feedback map for the cart-pendulum to those from40

established energy-tracking control methods and adapt their Lyapunov function

to numerically show stability of our controller.

A preliminary version of this work has been presented in [2]. The current

version extends the results; see in particular Sections 3, 4.3, and 4.4.

Related Works. The idea of exploiting free dynamics in control problems orig-45

inates from astro-dynamics. For instance, [3] makes use of inherent structures

of nonlinear mechanical systems such as invariant (un)stable manifolds to de-

sign complex space mission trajectories with minimal control effort. In [4], this

idea was extended to general mechanical systems by defining motion primitives

along the manifolds and sequencing them with control maneuvers into a motion50

plan. The work (and application in [5]) focused on the off-line synthesis of single

open-loop plans to serve as initial seeds for optimal control. In contrast, this

work aims to directly track stable manifolds, i.e. objects in state space instead

of time-dependent trajectories, in closed-loop.

SAC computes control modes in a receding horizon fashion, thus it shares55

characteristics with nonlinear model predictive control (NMPC) methods [6, 7,

8]. SAC action plans are applied in open loop, i.e. previously computed actions

are applied while current calculations complete as is done in NMPC. However,

while NMPC methods have to solve nonlinear optimal control problems by it-

erative optimization methods repeatedly, the design of SAC actions allows for60
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computationally more efficient solutions and thus, higher bandwidth applica-

tions.

The SAC approach is based on ideas from switched system optimization.

The mode insertion gradient, i.e. the first-order sensitivity of a cost function to

a switch in dynamics of infinitesimal length [9, 10, 11, 12] is used in a novel way65

to define infinitesimal optimal actions (see Section 2.3 for details).

Combining SAC with stable manifold tracking objectives resembles energy-

based control methods ([13, 14, 15, 16, 17, 18, 19]), which exploit dynamical

structures (e.g. energy conservation and homoclinic orbits of closed-loop sys-

tems) for analytical control design. This is in contrast to our method, which is70

an optimization-based numerical technique that utilizes stable manifold struc-

ture of the free dynamics and automates switching control synthesis. We will

recite from these related works in more detail as we analyze the feedback control

map for the cart-pendulum system (Section 4.3).

Outline. Following this introduction, we summarize all preliminary material in75

Section 2: The definition and numerical approximation of stable manifolds, a

hybrid system definition for our control method, and an overview of SAC for

the hybrid system optimization. Section 3 discusses invariance and stability of

our proposed closed-loop manifold-tracking method, as well as general compu-

tational aspects. To validate our approach, Section 4 formulates the manifold-80

tracking problem to invert a cart-pendulum system, while Section 5 solves a

pendubot swing-up control problem and includes a comparison to prior results.

Finally, Section 6 provides concluding remarks and future work.

2. Preliminaries

This section provides background material related to the manifold tracking85

method developed in this paper. In Section 2.1, we recite the definition of

(un)stable manifolds from dynamical systems’ literature and summarize the

computation method from [20, 21] that we apply in our examples. We then

present a hybrid system definition that is tailored to SAC for manifold tracking
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in Section 2.2. Section 2.3 summarizes the presentation of SAC from [1] with90

a focus on uncontrolled dynamics and the previously derived hybrid system

definition. However, we emphasis the fact that SAC can be used with any

nominal, non-zero control, and we refer to [1] for details.

2.1. Computation of (Un)Stable Manifolds in Free Dynamics

Stable and unstable manifolds belong to invariant objects, such as equilibria,95

of uncontrolled systems. They are subsets of the state space that are invariant

w.r.t. the flow and form important organizing structures of the global dynamics,

i.e. they separate regions of qualitatively different system behavior, for instance.

The stable manifold of an equilibrium, x̄, consists of all points that approach x̄

under the system’s flow. Analogously, the unstable manifold contains all points100

that show the same behavior if time was reversed.

Formally, we start with a local definition of (un)stable manifolds. Denoting

the system’s flow by Φ(x, t), the local stable manifold for a neighborhood Ux̄ ⊂ X

of the state space X is given by (cf. e.g. [22])

W s
loc(x̄) = {x ∈ Ux̄ |Φ(x, t)→ x̄ for t→∞ and Φ(x, t) ∈ Ux̄ ∀t ≥ 0}.

For the local unstable manifold, Wu
loc(x̄), the definition holds in backward time,

i.e. with t ≤ 0 and t → −∞. The stable manifold theorem (cf. e.g. [22]) en-

sures the existence and defines the dimension of the (un)stable manifolds under

certain assumptions. For instance, if f is a smooth vector field and x̄ a hyper-

bolic fixed point, the (un)stable manifold is a smooth manifold tangent to the

(un)stable eigenspace of the linearization of f at x̄ and of the same dimension.

Therefore, (un)stable manifolds can be seen as generalizations of the stable and

unstable eigenspaces of linear dynamical systems. The global stable manifold

W s is governed by the preimages of the flow on W s
loc(x̄), that is

W s(x̄) =
⋃
t≤0

Φ(W s
loc(x̄), t)

and, respectively, the global unstable manifold Wu is obtained from images of

Wu
loc(x̄) under the flow.
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The free planar pendulum (cf. also our results on the cart-pendulum in

Section 4) gives an example how stable and unstable manifolds organize the105

dynamical behavior in state space. Here, the (un)stable manifolds form the so

called separatrix that separates the pendulum’s swinging motions with rollovers

from those without. Due to the pendulum’s 2π periodicity, the global stable

and unstable manifolds coincide and are also known as the homoclinic orbit. In

other words, all points on these manifolds have exactly the right combination110

of angle and velocity to reach the equilibrium if left unforced.

An overview of different numerical approaches for the computation of (un)-

stable manifolds can be found in [23]. In this paper we use the publically

available software, GAIO (Global Analysis of Invariant Objects, [20, 21]), for

manifold approximation. GAIO, like several other numerical packages, itera-115

tively grows the manifold object from a local neighborhood of the equilibrium.

Since the unstable manifold is the global attractor relative to prescribed set B

(see [20]), convergence of the approximation to the part of the unstable manifold

is guaranteed. From the definitions above, it follows that the stable manifold

is equal to the unstable manifold of the time-reversed system. Therefore, the120

stable manifold can be computed by integrating backwards in time starting from

the neighborhood of the equilibrium.

We shortly summarize the idea of GAIO’s continuation method in the fol-

lowing, but we refer to [21] for a detailed description. A large predefined box B

in state space (see Fig. 1) and a coarseness for the subdivision of the box have125

to be defined beforehand and an equilibrium point has to be specified. The al-

gorithm starts with determining the small initial box containing the target fixed

point. Iteratively, in the continuation step, test points in all found boxes are

mapped forward by a short time integration of the system’s dynamics. Then,

all boxes that are hit by one or more test points are marked as “active” and130

used for the next continuation step. The algorithm terminates if the part of

the unstable manifold in the predefined large box B is fully covered, i.e. no new

boxes inside B are hit by mapped test points, or if a predefined maximal num-

ber of continuation steps has been performed. The algorithm takes advantage of
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Figure 1: GAIO’s continuation method for the computation of unstable manifolds: Firstly,

an initial box (dark gray) containing the equilibrium x̄ is marked as “active”. Iteratively,

test points in active boxes are mapped forward by an integrator for a short time horizon

(continuation step). If mapped test points reach new boxes, these are set to “active” (gray

shadings) and will be filled with new test points for the next continuation step. This procedure

ends if the entire part of the unstable manifold in the predefined large box B is covered by

boxes.

the unstable manifold being the attractor of the system: test points which are135

slightly off the manifold due to the box discretization will be pulled towards the

manifold in the following integration step. The size of the small boxes has to be

chosen as a trade-off between accuracy of the box covering and computational

effort. The default integration method is a fourth-order Runge-Kutta scheme.

GAIO can be used for problems with state spaces of moderate dimensions (usu-140

ally between two and ten), since the computational effort primarily depends on

the dimension of the manifold that has to be approximated, and not on the

dimension of the full state space.

2.2. Hybrid Control System Definition

Our control method aims to conserve control effort by leveraging free dy-145

namics as much as possible, in particular along the stable manifold of the target

state. Therefore, we design a hybrid switching control with a nominal mode of

zero control and a second mode with a constant control value that is determined

within the SAC procedure.

To begin with, we consider nonlinear control-affine systems,

ẋ(t) = f(x(t), u(t)) = g(x(t)) + h(x(t))u(t), (1)
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Figure 2: SAC sequences finite horizon optimal switching control laws in receding horizon

fashion. The process results in a piecewise-constant response to state.

with state trajectories assumed to be (Lebesgue) square-integrable curves, x(·) ∈150

L2(V,Rn), V ⊂ R, and piecewise-constant controls u(·) : V 7→ U , U ⊂ Rm.

Based on this, we define a switched system by introducing two different

modes. Mode 1 is the default mode and corresponds to the system’s free dy-

namics, i.e. f1 : Rn 7→ Rn such that

f1(x) = g(x) ∀x ∈ Rn.

In mode 2, the system is controlled by a constant control action u∗2 ∈ U , i.e. the

vector field in mode 2 is defined by f2 : Rn × Rm 7→ Rn, such that

f2(x, u∗2) = g(x) + h(x)u∗2 ∀x ∈ Rn, u∗2 ∈ Rm.

Switching mode sequences are constrained to be of the form {1, 2, 1} and are

computed by SAC in a receding horizon online optimization process.

2.3. Sequential Action Control

Sequential Action Control is a hybrid control method for nonlinear (control-155

affine) systems that has been developed in [1].

Consider system dynamics (1), a tracking cost functional to be minimized,

J =

∫ tf

t0

`(x(t)) dt+m(x(tf )), (2)
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and the free dynamics as mode 1 of the switched system. The SAC algorithm

determines the optimal value of mode 2 by selecting u∗2. It chooses an optimal

time, τ , to insert this mode, and selects a short duration, λ, which yields mode 2

switching times τ ± λ
2 . In receding horizon format, SAC applies the optimal160

controls (based on the {1, 2, 1} sequence) for a brief sampling interval, updates

the current state, and repeats the process to obtain the next optimal sequence.

Figure 2 shows how the u∗2 from mode 2 are sequenced together into a piecewise-

constant response.

Thus, SAC consecutively solves hybrid optimization problems by computing165

1.) the schedule of optimal control values u∗2(·) : V 7→ U to which J is maximally

sensitive, 2.) the optimal time, τ , for when to apply u∗2 ∈ U , and 3.) the

duration, λ, to apply u∗2 ∈ U , which together define the control input of mode

2 and the switching times from mode 1 to mode 2 and back at τ ± λ
2 . Note

that with this notation, the mode 2 control is defined based on the schedule170

of control values, u∗2(·), and optimal time, τ , such that u∗2 := u∗2(τ). We now

discuss the three optimization steps of SAC in more detail.

The sensitivity of (2) to an infinitesimal insertion of mode 2 at any time τ

is provided by the mode insertion gradient, denoted by dJ
dλ+ (for a background

on the mode insertion gradient and its use in hybrid mode scheduling see [9, 10,

11, 12]). With mode 1 as the free dynamics, the mode insertion gradient,

dJ

dλ+
(τ, u∗2) = ρT (f2(x, u∗2)− f1(x))

∣∣
t=τ

= ρT (g(x) + h(x)u∗2 − g(x))
∣∣
t=τ

= ρ(τ)Th(x(τ))u∗2,

measures the effect of applying the control value u∗2 around a time τ as duration

λ → 0+. The ρ term is the adjoint variable, which is defined by the linear

differential equation

ρ̇ = −Dx`(x)T −Dxf1(x)T ρ = −Dx`(x)T −Dxg(x)T ρ,

ρ(tf ) = Dxm(x(tf ))T ,

in which the partial derivatives are evaluated for the nominal trajectory, i.e. the

free dynamics solution.
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The first optimization problem to find the schedule of optimal control values,

is stated as

u∗2(·) := arg min
u(·)

1

2

∫ tf

t0

[
dJ

dλ+
(t, u(t))− αd

]2

+ ‖u(t)‖2R dt, (3)

with αd ∈ R− as a design parameter defining the desired sensitivity and R =

RT > 0 weighting control effort. As shown in [1, Theorem 1], the solution to

(3), can be written in closed-form as

u∗2(t) =

[ (
h(x)T ρρTh(x) +R

)−1
h(x)T ραd

]
t

.

In each finite horizon switching time optimization, SAC assumes the mode

sequence {1, 2, 1}. Rather than choosing τ as the current time, SAC provides

the option to choose an optimal time, τ , to apply a control from u∗2(·). This

time (along with the duration, λ) specifies when the switch to mode 2 occurs.

The SAC algorithm determines the optimal time to apply a control value as a

trade-off between the efficiency of control (based on the value of dJ
dλ+ (·, ·) relative

to a norm on control effort), and the time of waiting,

τ := arg min
t

dJ

dλ+
(t, u∗2(t)) + ‖u∗2(t)‖+ (t− t0)β , β ∈ R+.

Once τ is specified, the next control value, u∗2, is known. As described in175

[1], the control value can be restricted to satisfy box constraints with minimal

assumptions and without any additional computation.

Finally, in order to fully specify the times to switch from mode 1 to 2 and

back again, SAC computes a duration λ > 0 to define the switching sequence.

While formal switching time optimization can be used to determine an optimal

duration, in practice, λ is very short as controls are only applied briefly before

the next iteration of finite horizon calculations update the signal (following the

receding horizon process). As such, SAC locally approximates the change in

tracking cost around τ as

∆J ≈ dJ

dλ+
(τ, u∗2) · λ ≈ αd · λ .
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The algorithm then uses a line search to reduce λ from an initial duration until

a value is found that provides a change in cost within tolerance of this model

(see [1]).180

3. Closed-Loop Tracking of Stable Manifolds

As previously discussed, our approach to closed-loop tracking of stable man-

ifolds is comprised of the following steps:

1. Computing the stable manifold for the desired equilibrium based on the

free dynamics,185

2. formulating a manifold tracking cost functional,

3. computing the control signal by SAC on-line.

This section discusses invariance and stability of the resulting control, as well

as general computational aspects. The method will be evaluated for benchmark

problems in the remainder of this paper.190

Theorem 3.1 (Stable Manifold Invariance with SAC). Assume we use

SAC with free dynamics as the default mode and with manifold tracking objec-

tives. That is, we assume `(x) = ‖a(x)‖2 and m(x) = ‖b(x)‖2 in (2), where

a(x) = b(x) = 0 if and only if x ∈ W s, i.e. x lies on the stable manifold of

the desired final point. Then, SAC returns zero as the optimal schedule of con-195

trol actions for current states on the manifold, independent of the chosen time

horizon.

Proof: The stable manifold is invariant under the flow of free dynamics. There-

fore, the predicted dynamics of mode 1 satisfy x(t) ∈ W s for all t ∈ [0, tf ]

assuming the initial state x(0) ∈ W s. The adjoint’s boundary condition is200

ρ(tf ) = Dxm(x(tf ))T = Dx

(
1
2‖b(x(tf ))‖2

)
= b(x(tf )) ◦ Dxb(x(tf )) = 0, be-

cause b(x(tf )) = 0 for x(tf ) ∈ W s. Similarly, we have that Dx`(x(t))T =

a(x(t)) ◦ Dx(a(t)) = 0, so that the adjoint equations reduce to purely linear

differential equations and the solution is ρ(t) ≡ 0 for all t ∈ [0, tf ]. Then, the
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SAC control gives u∗2 ≡ 0 as well, i.e. SAC does not steer the system away from205

the manifold once the system is on it. �

Note that the invariance of SAC control along the stable manifold is due

to the choice of cost function. The standard SAC implementation that tracks

single states does not necessarily have the same behavior. While SAC with

manifold tracking is less sensitive of the chosen time horizon, the performance210

of SAC with single state tracking crucially depends on the chosen final time tf .

That is, only if tf is sufficiently large, the state prediction can get close enough

to the desired final point so that SAC recognizes that it would be detrimental

to switch to the other control mode. This can be observed in the cart-pendulum

example in Section 4 (see the discussion of Fig. 4, in particular).215

Theorem 3.2 (Local Stability along Manifolds). Let xd : [t0, tf ] → Rn

be a trajectory along the stable manifold and consider the cost function J =

1
2

∫ tf
t0
‖x(t)−xd(t)‖2Q dt+ 1

2‖x(tf )−xd(tf )‖2P1
. Then, SAC approximates a linear

feedback regulator in the neighborhood of xd.

Proof: The manifold trajectory satisfies ẋd = f(xd, ud) with ud ≡ 0, i.e. xd is a

solution for the mode 1 dynamics. Thus, the linearization along this trajectory

gives ẋ ≈ f(xd, ud) + Dxf(xd, ud)xe + Duf(xd, ud)u with xe(t) = x(t) − xd(t).

Define A(t) := Dxf(xd, ud), B(t) := Duf(xd, ud), and ue(t) = u(t) − ud(t) =

u(t). Then, the error dynamics are

ẋe = ẋ− ẋd = A(t)xe +B(t)ue = A(t)xe +B(t)u.

Assume that the original system is in the neighborhood of (xd, ud) so that

the linearization provides a first-order approximation. Note that the cost is

then equal to 1
2

∫ tf
t0
‖xe(t)‖2Q dt+ 1

2‖xe(tf )‖2P1
, i.e. our aim is to steer the error

system to zero. We apply SAC with zero nominal control. The final cost gives

the boundary condition ρ(tf ) = P1xe(tf ), which, by continuity assumptions,

can be extended to ρ(t) = P (t)xe(t) in some neighborhood t ≤ tf . A first order
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approximation of the SAC action leads to

u∗2 = (BT (t)Pxex
T
e P

TB +R)−1(BTPxex
T
e P

TBu1 +BTPαdxe)

≈ R−1BTPαdxe.

We find P from the adjoint equation ρ̇ = −Qxe−AT (t)ρ and by differentiating

the linear relationship (recall that the adjoint depends on the nominal state

trajectory with zero control)

ρ̇ = Ṗ xe + Pẋe = Ṗ xe + P (Axe +Bu) = Ṗ xe + PAxe

⇒ (−Q−ATP )xe = Ṗ xe + PAxe

⇒ − Ṗ = Q+ATP + PA.

The linear closed-loop system is given by ẋe = (A+BR−1BTPαd)xe. �220

The stability of the closed-loop system can be determined by analyzing the

time-varying state-transition matrix. In particular, this analysis can be used

for selecting the design parameters, e.g. αd, in SAC. As discussed in [1], we

could switch to a continuous feedback law in the vicinity of xd. However, unlike225

in single state tracking, this would still result in time-dependent feedback and

therefore, LTV stability analysis has to be applied.

Computational Approach to Stable Manifold Tracking. In general, (un)stable

manifolds of nonlinear dynamical systems can only be approximated numeri-

cally. As the process is computationally costly, we perform this step off-line230

using GAIO (see Section 2.1). With a numerical approximation of the stable

manifold W s(x̄), the task becomes designing `(x) in (2) such that `(x) = 0 if

and only if x ∈W s(x̄). The same is true for the final cost m(x(tf )), if present.

In the special case of Hamiltonian systems with one-degree-of-freedom, the

energy function can be used to represent one-dimensional manifolds. Combin-235

ing SAC with stable manifold tracking objectives then resembles energy-based

control methods ([13, 14, 15, 16, 17, 18, 19, 24]), which have been developed for
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Figure 3: Model of the acceleration controlled cart-pendulum.

various single and double pendulum alternatives. In these works, feedback con-

trollers are analytically designed using partial feedback linearization and Lya-

punov functions derived from system energy functions. For design and stability240

analysis, dynamical structures (e.g. homoclinic orbits) of the closed-loop system

are exploited. In contrast, our approach is optimization-based and thereby, it

automates the exploitation of free dynamics and the on-line synthesis of switch-

ing control laws. The method is not restricted to energy-preserving systems

and works robustly even with coarse approximations of the stable manifold.245

Also, by combining manifold and state tracking goals, our approach can avoid

undesirable convergence to homoclinic orbits.

We study this approach for the cart-pendulum example in Section 4. For

higher-dimensional manifolds, it is not necessarily desirable to restrict to sin-

gle manifold trajectories xd as in Theorem 3.2. An alternative design choice250

based on a projection to the stable manifold velocities is presented in Section 5.

Note that due to the numerical manifold approximation, `(x) is not generally

continuous.

4. Energy Tracking for the Cart-Pendulum

Demonstrating a scenario where stable manifold tracking reduces to energy255

tracking, this section includes swing-up results for a cart-pendulum. We take

advantage of the low state dimension of this example for graphical analysis.
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Included control and energy phase portraits (Figs. 4 and 6) illustrate how the

proposed switching structure yields SAC controllers that leverage free dynamics

whether or not manifold tracking goals are included in costs. The example also260

shows how trajectories evolve through phase space and onto stable manifolds

under these different objectives.

This section pertains to the frictionless, acceleration controlled cart-pendulum

in Fig. 3, with length r = 2 m, mass m = 1 kg, and gravity g = 9.81 m
s2 . The

uncontrolled pendulum is a Hamiltonian system with energy

E(θ, θ̇) =
1

2
mr2θ̇2 +mgr(cos θ + 1)

such that the free dynamics areθ̇
θ̈

 = f1(θ, θ̇) =

 θ̇

g
r sin(θ)

 .

The dynamics of the acceleration controlled cart are defined as ẍc(t) = u(t),

so that the controlled mode 2 is

f2(θ, θ̇, u∗2) =

 θ̇

g
r sin(θ) +

u∗
2

r cos(θ)

 .

4.1. Stable Manifold and Cost Formulation

While the pendulum’s downward equilibrium, (θ̄, ˙̄θ) = (π, 0), is stable, the

upright equilibrium, x̄ := (θ̄, ˙̄θ) = (0, 0), is not. The eigenvalue spectrum of

the linearization at this point consists of one pair of real, stable and unstable

eigenvalues. Thus, there are one-dimensional local (un)stable manifolds. For

this low-dimensional system, the manifolds can be computed analytically by

the energy conservation property, i.e. for (θ, θ̇) ∈ W s
loc(x̄) ∪ Wu

loc(x̄) it holds

E(θ, θ̇) = E(x̄) = 2mgr and we define Ē := E(x̄). Locally around x̄, the stable

manifold is given by

W s
loc(x̄) =

{
(θ, θ̇)

∣∣∣∣ θ̇ = −sign(θ)

√
2
g

r
(1− cos θ)

}
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Figure 4: Manifold tracking solution (green) to the inverted equilibrium, x̄, of the cart-

pendulum system. The stable manifold (homoclinic orbit) is in red, and the inverted equilib-

rium is indicated by black spheres. For comparison, classical tracking solutions are given: only

for longer time horizons (see purple, long dashed curve) comparable results can be obtained,

otherwise solutions (cf. blue trajectory, short dashes) requires roughly twice the control effort

(see Fig. 5).

Manifold Tracking Control State Error Tracking Control

Figure 5: The left plot corresponds to the green manifold tracking solution from Fig. 4. The

right plot corresponds to the blue trajectory (short dashed curve in the same figure) that is

based on the same parameters but does not use the manifold to invert.
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and the unstable manifold by the same relation with opposite sign. Globally, the

stable and unstable manifolds form a so called homoclinic orbit (cf. red curve265

in Fig. 4).

For this system, we can simplify the manifold tracking problem to tracking

the energy of the homoclinic oribit, Ē. Simulations revealed that a running cost

term in the objective function (2) was unnecessary provided a terminal energy

cost. Thus, the manifold tracking results use

J = JĒ :=
1

2
(E(θ(tf ), θ̇(tf ))− Ē)2.

4.2. Comparison to State-Tracking Solutions

For comparison, Figs. 4 and 5 include trajectory results based on directly

tracking the inverted equilibrium state, x̄. These results are derived using a

state tracking cost,

Jx̄ =
1

2

∫ tf

t0

‖x(t)− x̄‖2Q dt+
1

2
‖x(tf )− x̄‖2P1

,

with weight matrix Q = Diag({1000, 10}) and P1 = 0. Numerical simulations

verified that reliable tracking is possible with these matrices.

Testing scenario. Both SAC controllers are derived with horizons of T = 0.5 s,270

constraints u ∈ [−5, 5] m
s2 , and R = 1.0. The desired rate of cost improvement

is specified based on the current cost as αd = γJ − α0. Because closed-form

SAC controls (3) are linear state feedback controllers around x̄ (see [1]), one can

linearize the dynamics around x̄ and choose αd to provide local stability based

on eigenvalue analysis of the closed-loop (LTI) system. Following this approach,275

we specify α0 = −10 to guarantee stability as Jx̄ → 0 and apply γ = −5 to

scale αd based on the current cost when the system is away from equilibrium.

Swing-Up Results. Figure 4 includes three different swing-up trajectories in

phase space along with the energy E(θ, θ̇) at each state. Starting from the

downwards equilibrium, (π, 0), with zero energy, SAC controllers steer each sys-280

tem upwards toward the equilibrium with Ē = 39.24. The red curve indicates
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the stable manifold (homoclinic orbit) of states with energy Ē, from which the

free dynamics will lead the system to the inverted equilibrium. The solid green

curve in Fig. 4 and control results on the left of Fig. 5 correspond to the SAC

trajectory resulting from manifold (energy) tracking cost, JĒ . The blue curve285

(short dashes) in Fig. 4 results when the same SAC controller uses the state er-

ror cost, Jx̄. The controls for this trajectory are included on the right of Fig. 5.

Note that the green manifold tracking solution in Fig. 4 reaches the manifold

(red curve) well before x̄. Though it converges to x̄ at t ≈ 9 s, the control plot

shows SAC ceases control at t = 6.5 s. At this point the system is on the mani-290

fold and so follows the free dynamics to the goal. In contrast, the state tracking

solution does not use the manifold to reach the inverted state. Its control plot

shows effort is required until convergence at t ≈ 8 s. The manifold tracking

solution also better utilizes the free dynamics throughout the trajectory (indi-

cated by the intervals of zero control in Fig. 5). As such, the trajectory uses less295

effort to invert, with an L2 norm of 35 compared to 60 for the same controller

using Jx̄. State tracking costs yield results that use the manifold only for certain

parameters and typically longer horizons. For instance, the long dashed purple

curve in Fig. 4 tracks J = Jx̄ with T = 1.2 s. The controller reaches the mani-

fold and switches to the free dynamics because the time horizon is sufficient to300

see it will reach x̄ and it will be detrimental to switch to mode 2.

Enhanced Robustness and Bandwidth of Algorithm. Another benefit we found is

that tracking stable manifolds reduces sensitivity to control parameters. Sam-

pling T in the range [0.05, ..., 1.5] s and γ ∈ [−1, ...,−100], we found solutions

with only modest qualitative differences (even when we varied the control con-305

straints / norm). In contrast, controlled trajectories derived for Jx̄ vary dra-

matically as T changes. Whereas shorter time horizons lead to more direct

“pushing” toward the goal, longer horizons yield behaviors similar to energy

tracking.

Testing of initial conditions for pendulum angle θ ∈ [0, . . . , 2π] in increments310

of 0.1 rad confirmed that manifold tracking is successful in all cases for a variety
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of horizons. For state error controllers, horizons near T = 1.2 s proved best,

with convergence from all test conditions. Horizons near T = 0.5 s resulted in a

failure rate of ≈ 58% and this became worse as horizon length further reduced.

We emphasize that SAC’s receding horizon style calculations are (approx-315

imately) linearly dependent on horizon length. Because JĒ facilitates shorter

horizons and uses only a terminal cost, manifold tracking allows higher band-

width feedback and control. As a benchmark, a typical 10 s trajectory with

T = 0.5 s and 100 Hz feedback requires ≈ 150 ms to compute using JĒ versus

≈ 250 ms using Jx̄ on a laptop with an Intel i7 processor.320

4.3. Comparison to Energy-Based Control Laws

The left plot in Figure 6 shows the state-dependent SAC switching con-

trol computed over a grid (0.01 discretization) of the phase plane.3 Controls

track JĒ with the parameters described previously but relaxed constraints,

u ∈ [−10, 10] m
s2 . Streamlines indicate the flow resulting from closed-loop vector325

field.

We compare this phase plane plot to the energy-based feedback control laws

proposed in [15], illustrate in Fig. 7. These feedback laws have been analytically

derived from the appropriate Lyapunov functions which, in turn, are based on

the system’s energy function. The bang-bang-type control (upper right plot in330

Fig. 7) has been chosen so that it changes energy as fast as possible. However,

these feedback laws have been designed to provide stability, but do not consider

optimality. Opposed to that, our approach is based on optimization in order

to develop efficient, admissible control solutions on-line and it does not require

identification of Lyapunov functions.335

As can be seen in Fig. 7, SAC as well as the energy-based control-laws all

capture the system’s internal structure given by the stable manifold/homoclinic

orbit, i.e. they have a defined switching structure that outlines the stable man-

3This plot takes seconds to compute and can be used as a look-up table to control low

dimensional nonlinear systems to stable manifolds on-line.
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1.0

Figure 6: Left: SAC switching controls (constrained to u∗2 ∈ [−10, 10]) computed over a

portion of the phase space. Streamlines indicate closed-loop flow. The controls have a defined

switching structure that outlines the stable manifold (red curve in Fig. 4). SAC applies no

control but drifts under the free dynamics in orange regions. Right: Sign structure of the

Lyapunov function derivative showing stability over large regions of state space.

ifold. Except for the bang-bang control, all controls go to zero on the stable

manifold.340

The SAC approach applies no control in orange regions, conserving effort

by allowing the system to drift along the free dynamics. Locally around the

homoclinic orbit and in the neighborhood of the upright equilibrium at (0, 0)

and (2π, 0), the color gradients indicate controls smoothly transition to zero.

Although our choice of SAC control constraints generates large regions of “bang-345

bang-type” control apart from that (i.e. dark red and light yellow regions with

u = ±umax), we do not see the undesirable energy overshoots as obtained from

the minimum-time swing up solution of [15] (compare also the green trajectory

depicted in Fig. 4).

4.4. Stability Analysis of SAC Feedback Map350

We use the Lyapunov function proposed in [15] for the energy-based feedback

laws (see Fig. 7) to analyze the stability of the cart-pendulum feedback. That

is, we take the Lyapunov function V = (E−Ē)2

2 , which has the derivative

d

dt
V = (E − Ē)mrθ̇ cos(θ)u.
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Figure 7: Comparison of feedback control laws for the cart-pendulum system. Top left:

feedback from SAC with energy tracking. Top right: bang-bang feedback control de-

fined by u = umaxsign(E − Ē)θ̇ cos(θ). Bottom left: saturated control law defined by

u = max(−umax,min(umax, k · (E − Ē)sign(θ̇ cos(θ)))) with k = 0.5. Bottom right: lin-

ear, energy-based feedback law u = k · (E − Ē)θ̇ cos(θ) with k = 0.04. The SAC control

shares structural similarities with the analytically designed feedback laws and combines their

advantages: bang-bang type control to change the energy as fast as possible, but also large

regions of zero/low control as in the linear feedback map.
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This expression is evaluated for the control from the SAC feedback map and its

sign structure is depicted in Fig. 6 on the right.

Locally around the target state (θ, θ̇) = (0, 0) (and (2π, 0), respectively),

we see that dV
dt ≤ 0 except for very few points that probably occur due to

numerical inaccuracies in the computation of SAC controls. Thus, this proves355

local stability of SAC under the Lyapunov function chosen in [15]. As in [15], we

cannot formally show asymptotic stability by means of this Lyapunov function,

since dV
dt is equal to zero for all θ̇ = 0 and for u = 0. However, observing the

vector field, we see that the cart-pendulum does not stay within the areas of zero

control or on the θ̇ = 0 axis. This corresponds to our computational tests, in360

which the pendulum stabilized to the inverted equilibrium for all globally chosen

initial conditions. The closed-loop vector field obtained from our numerical

results (Fig. 6) also indicate it is likely that we can prove global optimality

using a better choice of Lyapunov function. We leave this for future work.

4.5. Concluding Discussion365

Conclusions from studying the cart-pendulum example are twofold: Firstly,

the comparisons to final state tracking and energy-tracking methods serves as

a validation of the SAC manifold tracking approach. In particular, the SAC

feedback map is sandwiched by the bang-bang and the linear feedback law from

[15] (cf. Fig. 7 top right and bottom right plot). Thus the SAC map not only370

provides controls in a reasonable range, it also automatically determines state

space regions where bang-bang control and linear control, respectively, are favor-

able. Moreover, these results show how SAC as an optimization-based control

method can be used to combine classical types of energy-shaping feedback (lin-

ear feedback, bang-bang) in a beneficial way. Secondly, unlike classical energy-375

based control laws that are generated by a system specific analysis, SAC is an

optimization-based numerical approach. The energy tracking cost used for the

cart-pendulum can be replaced by a manifold tracking cost that uses numerical

approximations of the stable manifold. Thus our approach also scales to higher

dimensional systems as demonstrated for the pendubot in Section 5.380
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5. Swing-Up of the Pendubot

The pendubot is a two-link manipulator, see Fig. 8, with only the first link

actuated. The pendubot’s states are its angles and velocities, x = (θ1, θ̇1, θ2, θ̇2),

and its control is the torque about the attachment point of the first link, u = τ1.

This section uses the methods previously described to compute a switching con-385

trol sequence that swings the pendubot from the down-down equilibrium, x0 =

(π, 0, π, 0), to its unstable up-up equilibrium, x̄ := (θ̄1,
˙̄θ1, θ̄2,

˙̄θ2) = (0, 0, 0, 0).

The pendubot’s dynamics match those from simulations in [1, 25] and phys-

ical experiments in [26], with

m1 = 1.0367 kg m2 = 0.5549 kg

l1 = 0.1508 m l2 = 0.2667 m

lc1 = 0.1206 m lc2 = 0.1135 m

I1 = 0.0031 kg m2 I2 = 0.0035 kg m2 .

390

We design a SAC controller that performs swing-up control tasks by tracking

the pre-computed stable manifold for the inverted equilibrium. Final stabiliza-

tion is provided by the same LQR controller as in [1], with state feedback gains

Klqr = (−0.23, −1.74, −28.99, −3.86 ).

Through numerical simulations, we roughly estimated the region of attraction

for the LQR controller and defined the switch to LQR stabilization to occur

once |θ1|, |θ2| ≤ 0.25 rad and |θ̇1|, |θ̇2| ≤ 0.5 rad
s . Future work will use formal

Sums of Squares methods from [27] to optimize and better define the region of

attraction. Results described in this section apply the same control constraints395

to the LQR controller as enforced for SAC.

5.1. Stable Manifold Approximation and Cost Formulation

The inverted equilibrium, x̄, is a hyperbolic equilibrium of the pendubot’s

free dynamics that is structurally equivalent to a frictionless planar double pen-

dulum. The equilibrium has 2-D stable and unstable manifolds, which are com-400

puted using GAIO as described in Section 2.1 (also see [5] for details). Figure 9

shows the box approximation of the stable manifold.
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Figure 8: Model of the pendubot
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Figure 9: Box approximation of the stable manifold of the pendubot’s inverted equilibrium.

The box coloring indicates the value of the fourth coordinate, θ̇2.
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Over the region depicted, states on the stable manifold can be parametrized

as a function of the two angular coordinates (θ1, θ2), i.e.

S : R2 7→ R4, S(θ1, θ2) := (θ1, S1(θ1, θ2), θ2, S2(θ1, θ2)),

where Si : R2 7→ R, i = 1, 2, map from angular coordinates to manifold veloci-

ties. The cost,

J(x, u) := JS =
1

2

∫ tf

t0

‖x(t)− S(θ1(t), θ2(t))‖2Q dt

+
1

2
‖x(tf )− S(θ1(tf ), θ2(tf ))‖2P1

,

tracks these stable manifold states. We apply Q = Diag({0, 5, 0, 10}) and P1 =

0. After testing 25 initial conditions with angles (θ1, θ2) sampled (linearally)

in a 0.4 rad windows centered around their (down-down) equilibrium values,405

these weight matrices lead to the highest inversion rate for a variety of SAC

parameters (T and γ).

In practice, S(θ1, θ2) is obtained from GAIO’s discrete manifold represen-

tation by sampling over a 64 × 64 grid of the (θ1, θ2) plane and storing the

corresponding manifold velocities (θ̇1, θ̇2) in two 64× 64 matrices. Through the410

same initial condition trails just described, we tested different techniques for ap-

proximating derivatives (the adjoint variable from SAC requires the derivative

of the integrand and terminal cost of JS w.r.t. x) and interpolating the coarsely

sampled manifold representation. As an unexpected benefit of SAC calcula-

tions, tests showed no significant differences when using manifold derivatives,415

dS
dx , versus approximating the cost derivatives by zeroing these terms. This was

true when computing derivatives by forwards, backwards, and central differ-

ences and for different parameters Q, P1, T , and γ. Similar experiments showed

bilinear interpolation of the manifold performed no better than rounding (using

the value of the nearest sample point in the 64× 64 grid).420

The manifold derivatives likely prove of little use due to noise in GAIO data.

Similar noise issues may limit the effectiveness of bilinear data interpolation. In

either case, the fact that SAC calculations can be applied to coarsely sampled
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data and sampled cost functions with only approximated derivatives is ideal in

that it reduces computation (no finite differences) and filtering requirements.425

The following subsection shows that, in spite of these issues, SAC can out-

perform alternatives and successfully inverts the pendubot with only manifold

tracking goals.

5.2. Discussion of Numerical Results

For comparison with previous pendubot swing-up results from [1], which are430

based on a SAC controller performing state tracking with Jx̄, Q = Diag({100,

0.0001, 200, 0.0001}), and P1 = 0, we present results based on the same SAC

control parameters. As such we use γ = −15, α0 = 0, T = 0.6 s, R = 0.1,

u ∈ [−7, 7] Nm, and receding horizon style control computations occur at a

200 Hz feedback sampling rate.435

Figure 10 shows the swing-up solution produced by manifold tracking cost,

JS , with the control parameters described. These results are similar to those

achieved using Jx̄ (in [1]). Without any state error goal, SAC successfully inverts

the pendubot in roughly the same time of ≈ 4 s using the same peak torque

(matching physical experiments in [26] and half that from simulations in [25]).440

In both cases (tracking with JS and Jx̄), SAC controllers use free dynamics and

apply control only when needed.

Lower peak torque swing-up solutions. As for the cart-pendulum, typical pen-

dubot swing-up control laws exhibit sections where no control is applied and

the system is allowed to drift (see Fig. 10). Unlike for the cart-pendulum, af-445

ter sampling initial conditions and a variety of parameter values, we found no

reliable differences in control effort according to an L2 norm (in some cases

state tracking outperforms manifold tracking and in other cases we see the op-

posite). Results show manifold tracking requires much less peak control effort

for swing-up tasks (better L∞ norm). This is of higher practical importance,450

since peak torque requirements drive motor selection. While we were unable to

find parameters to invert the pendubot using less peak torque with the state
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tracking goal, Jx̄, parametric exploration revealed several combinations of pa-

rameters that invert the pendubot using less peak torque under the manifold

tracking goal, JS . Simply adding the terminal cost P1 = Diag({0, 15, 0, 10}) to455

JS , yields inversion with |u| < 4 Nm, nearly half that of the best case state error

tracking results.

Enhanced Robustness and Bandwidth of SAC. Also, similar to the cart-pendulum

case, tracking the stable manifold was more robust to both control parameters

of the SAC algorithm and to initial conditions. Upon simulating different com-460

binations of time horizon and cost, we found time horizons as low as T = 0.1 s

would invert the pendulum using only a terminal cost, P1 = Diag({0, 15, 0, 10})

in JS , with all the same parameters and constraints defined earlier. Again,

with a state error cost, we were unable to find values of Q, P1 or γ that allow

horizons significantly below T = 0.6 s and still invert the pendubot. As men-465

tioned previously, the ability to use shorter horizons and only a terminal cost

is an advantage to using the stable manifold that allows control calculation and

feedback at higher rates.4 The previously described initial condition tests con-

firm that well chosen parameters can invert the pendubot from all 25 sampled

conditions for manifold tracking, while the best case parameters identified for470

tracking Jx̄ fail for 3 of the 25 sampled conditions.

4At 200 Hz, SAC calculations typically range from < 1s to several seconds to compute a

20s swing-up trajectory (depending on parameters) on an Intel i7 laptop. Time horizon shares

a (roughly) linear relationship with simulation timing.
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t = 0.0 s - 1.62 s t = 1.62 s - 2.62 s

t = 2.62 s - 5.00 s

Figure 10: Manifold-tracking swing-up solution.
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6. Conclusion

This paper shows that nonlinear control to unstable equilibria can be effi-

ciently computed using a hybrid SAC controller that tracks the stable manifold

of free dynamics. Two benchmark underactuated swing-up control examples475

show the resulting nonlinear controller can be easily computed in real-time and

in closed-loop. Using free dynamics (in stable manifold goals and the choice of

SAC switching modes), our approach requires less control authority than direct

equilibrium tracking in swing-up tasks. Stable manifold tracking provides a

larger target set that reduces sensitivity to control parameters and initial condi-480

tions. In particular, results show manifold targets allow shorter horizons in SAC

receding horizon calculations. Hence, our approach facilitates higher frequency

feedback and control. For the cart-pendulum example, our feedback map au-

tomatically combines structures of existing energy-based control strategies and

it is computationally shown to be stabilizing. As opposed to existing energy-485

based strategies, the proposed controllers use hybrid optimization to automate

synthesis and do not rely on pre-derived analytical strategies.

To generalize the proposed approach, future work will focus on developing

general yet computationally efficient metrics for tracking of “nearest” points

on stable manifolds. Furthermore, we intend to evaluate data filtering and490

low-dimensional storage methods for the representation of manifold data. The

feedback map for the cart-pendulum can be used to define automata for symbolic

control, as it has already been presented in [28] and will be investigated further

in future work.

Finally, in terms of stability, as mentioned in Section 5, Sums of Squares495

methods offer a means to numerically define and optimize regions of attraction

around time varying trajectories. Because SAC controllers are closed-form lin-

ear (time-varying) control laws around desired trajectories, such methods offer

numerical means to guarantee stability to stable manifold trajectories.
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