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ABSTRACT
The constraints of energy and power density, as well as the speed of internal communica-
tions, will drive the next generation of robotic and autonomous systems to computation
that is distributed away from a central processor towards embedded computation, per-
haps within the compositional materials themselves. One of the most critical drivers for
computation within classical systems is control—the ability to impact a system’s state
evolution in time through decisions—and estimation—the ability to estimate the state
based on sensory measurements. Typically both control and estimation techniques are
implemented using a centralized, digital computer. Widely used theories of control and
estimation unnecessarily push systems towards this centralization by relying on a foun-
dation of mathematical assumptions often employing continuous signals in time and a
continuous dependence of the dynamics on state variables. This reliance manifests itself
as a limiting but non-essential constraint for next generation robotics. As with recent
advances in nanotechnology, the ability to design materials at a variety of scales provides
opportunities to enable autonomous systems that operate while bypassing the need for
explicit computation. Such “algorithmic materials” can assume some aspects of decision
making and control embedded into their material properties.
Realizing this vision, however, prompts a revisiting of some of themost basic assumptions
of classical approaches. Materials as sensors and actuators will often display discrete
states (e.g. low or high conductivity, swelled or un-swelled) rather than continuous ones.
In this chapter a route to such “algorthmic materials” is developed. We show that, al-
though the two settings may appear rather dissonant with each other, the classical theory
of control and estimation can map in a natural way to materials-based implementations of
controllers and estimators. We provide a brief description of classical control and estima-
tion techniques and then use a simple example of a robot with a one-bit sensor (analogous
to chemical comparators) and control consisting of the ability to move toward a landmark
(analogous to controlled attraction to hydrogels in solution). We additionally provide
simulated examples of synthesizing designs based on data-driven models. Altogether,
this chapter provides a potential template of a pipeline of mathematical and computational
elements that combine to map a control task into an implementable physical design.
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1.1 INTRODUCTION

The benefits of next generation robotic and autonomous systems manifesting
computation that is distributed away from a central processor towards embedded
computation are manifold (McEvoy and Correll [2015]). This work aims to
show that traditional notions of control theory and system/controller design can
be reinterpreted for use in analysis and design of materials-based systems. The
chapter is split into twomain sections. Thefirst part is an introduction to classical,
continuous control and how its formulation creates the appearance of conflict
with the discrete capabilities a materials-based systems would often have. The
second part uses an example system to demonstrate how these challenges and
apparent conflicts can be addressed.

In Section 1.2, we introduce the classical controls perspective—that is, one
that assumes the availability of nearly unlimited computation to process signals.
This method generally takes the form of a system with an existing model (e.g.,
the cruise control system in a car) which is composed of a set of differential
equations based on physical laws, environmental constraints, and stochasticity
(e.g., Newton’s laws of motion, the maximum acceleration of a car engine, and
unmodeled disturbances from wind, respectively). Control is then synthesized
(Section 1.2.1) using an objective function that represents the desired behavior of
a system (e.g., error with respect to the desired speed). This control is based on
signals that the system measures from the environment (e.g., the speedometer)
that have to be processed and interpreted (Section 1.2.2) which requires compu-
tational effort. The question we are left with is how to map these capabilities to a
discrete setting where the control may be the ability to switch from one physical
state to another (e.g., using a chemical inhibitor or not) based on sensors which
themselves have a discrete number of states (e.g., chemical comparators that
measure threshold concentrations of a chemical). Moreover, given that com-
putation may not be available at the micro-scale, can systems controlled using
discrete controllers in a computation-free setting have the same characteristics
as systems in a classical controls setting? That is, can we synthesize cyber-free
autonomy using new capabilities to design and create sophisticated devices using
new materials?

To address the above question, Section 1.3 proposes solutions to these chal-
lenges. First, in Section 1.3.1, we discuss a simple robotic example that uses
a one-bit sensor and six discrete actuator states to control itself in an austere
environment, using a nominal model of the relationship between control deci-
sions and the robot’s time evolution. Although nominal models, developed from
first-principles, are not always good, the model is good enough for the control
system to make decisions. Next, in Section 1.3.2, we use the example to motivate
the importance of automated exploration, both for useful environmental data that
enable decision-making and for the purpose of evaluating and updating the sys-
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tem model. Importantly, autonomous systems have the ability to expend energy
in order to maximize the quality of information that is sensed. If models are in-
sufficient to predict time evolution well enough for decision-making, data-driven
models can be used, as discussed in Section 1.3.3. We end Section 1.3 using the
one-bit robot and micro-state machines (which are similar to “smarticles” intro-
duced in (Cannon et al. [2017])) in Section 1.3.4 as motivation for model-based
synthesis of cyber-free systems. That is, we argue that one can in some cases use
control principles to generate the organization of sensor components, actuator
components, and their interconnections to create desired autonomous behav-
ior. The techniques outlined in this chapter demonstrate that materials-based
implementations of controllers and estimators can be formulated using classical
methods of control as a foundation of analysis. They can improve traditional
autonomy by taking advantage of the relationships of form and function to omit
explicit computation in the cases of systems that are cyber-free either by choice
(e.g., to reduce cost) or necessity (e.g., physical scale).

1.2 THE BASICS OF AUTONOMOUS CONTROL

Control has a long history in electronics and macroscale mechanical systems.
Generally, there are two classes of systems—linear and nonlinear—addressed
using a combination of analysis and computation. Both of these typically assume
that there is a state x ∈ Rn, a control u ∈ Rm, and outputs/measurements
y ∈ Rl , all measured in time t. An illustration of a basic discrete-time control
system is shown in Fig. 1.1. The archetypal distinction between linear and
nonlinear systems is in the synthesis techniques available, discussedmomentarily
in Section 1.2.1. A key thing to note is that the fundamental data associated
with the mathematical specification of a control problem is a collection of finite
dimensional vectors x and u, consisting of real-valued variables, changing over
time.

...

u1 u2u un-1

x1 x2 x3 xn

y2 y3 yn

FIGURE 1.1 Basic control environment

A basic control loop begins with an observed state yk , which the controller
uses to compute an action uk . After uk is applied, the new state of the system
is xk+1 and the new observed state is yk+1. This new observed state is then
used to calculate the new control output uk+1, and the cycle continues. The



444

fundamental goal of control theory is to adjust u so that a desired set of x values
is achieved. For those interested in a more thorough review of basic control
principles, (Franklin et al. [1994]) is an excellent resource.

To illustrate the use of these variables, we consider a kinematic car example
(further described in Section 1.3.1). A kinematic car evolves in a plane and
is able to observe its x and y position in meters and its orientation angle θ in
radians (with respect to a fixed frame). In terms of control, it is able to move
forward (u1) and rotate about an axis (u2). For this example, the state vector
is x = (x, y, θ) (variables upon which the controller depends) and the control
vector is u = (u1, u2) (outputs from the controller). The goal of the control is
typically to move the car from an initial state x(t0) to a final x(t f ) in time t f − t0
in an efficient manner, often while avoiding obstacles. Other potential goals are
discussed shortly.

The relationship between state and control variables is typically described by
a model in the form of an ordinary differential equation (ODE)

Ûx(t) = f (x(t), u(t)) (1.1)

where special cases include

Ûx(t) = f (x(t)) + g(x(t))u(t) (1.2)

and

Ûx = A(t)x(t) + B(t)u(t), (1.3)

the last of which is a linear ordinary differential equation. (In general, we will
drop the dependence on t for notational brevity.) In the context of materials, a
note is helpful here. The ODEs above are almost always finite dimensional—it
is comparatively rare to see control of partial differential equations (PDEs). As a
result, control typically focuses on regulating how a finite set of variables evolve
over time, treating Eq. (1.1) as a constraint on allowable evolutions in time. The
list (x(t), u(t)) is a trajectory if it satisfies Eq. (1.1), where x(t) is the series of
measurements one would expect if each state was measured by a sensor.

The right hand side of the ODEs above must be obtained in some manner.
First-principle modeling (e.g., based on Newton’s Laws in mechanics, Kirch-
hoff’s laws in circuits, or other physical laws) often play a large role. Examples
of this include equations of motion describing an automobile suspension or laws
of thermodynamics describing fluid in a thermometer. These equations rarely
fully specify a correct predictive model of a system. Instead, there are typically
parameters that must be empirically determined (e.g., coefficients of friction)
through system identification (Åström andEykhoff [1971]); there are caseswhere
nonparametric models must be generated. Models can be based purely or par-
tially on empirical data—something discussedmore in Section 1.3.3. Controllers
based off of first principle models or empirical models are both consideredmodel
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predictive controllers, but there exist other controllers (e.g., PID controllers) that
do not use models.

Constraints often play a role in a model. For instance, it may be known that a
motor saturates (and that as a result a ≤ u ≤ b, where a and b may depend on x).
Or it may be that a state xi is restricted to a subset ofRn because of obstacles in the
work space. These restrictions are called constraints, and—although common—
create significant procedural and mathematical obstacles when designing control
approaches. Another commonpart of amodel includes stochasticity (the addition
of a noisy signal) (Chirikjian [2009]). One of the challenges in modeling
uncertainty using stochastic models is that stochastic signals model uncertainty
in time (i.e., the random variable is a forcing function in time, such as in
Brownian motion), whereas in robotics a great deal of uncertainty—perhaps the
majority of it—is spatially distributed (e.g., an unexpected visual occlusion does
not necessarily vary in time, so a robot with a camera has to move in order to
overcome the resulting uncertainty or ambiguity, a point we return to in Section
1.3.2).

Only rarely can models be used to analytically predict a system’s state re-
sponse to control. Usually numerical methods (Hairer and Wanner [1996]) must
be used to make predictions, and the choice of numerical methods influences
both precision of the prediction and complexity of the computation involved.
This challenge will be explored further in Section 1.3.3.

To sum up, if materials science is going to help with the practical control
aspects of autonomy, it will do so at least partially by impacting f (x, u) in
(1.1) and, potentially, impacting the processing associated with controlling the
system described by f (x, u). For instance, using materials to make f more “well
behaved”—e.g., lowering the frequency response or imposing linear interactions
between otherwise nonlinearly interacting components—would make control
easier and reduce the requirements on the autonomy. Or, materials that simply
make the system more predictable in its evolution would radically improve
control effectiveness. However, this impact of materials on f is generally not
what we mean by “Algorithmic Materials” in this chapter. Instead, we intend
algorithmic materials to refer to how materials properties can enable control,
encode properties of f or even encode the control design u itself.

It is important to note several abstractions of control are possible, and these
provide more flexibility in interpreting what an algorithmic material could be.
For instance, discretization of (1.1) in time yields, with some choices of inter-
polation, a dynamical system of the form x(i + 1) = f (x(i), u(i)), which is an
example of digital control. Moreover, u(t) ∈ Rm can often be discretized so that
u(t) ∈ {u1, ...., uM }, which occurs in the cases of stepper motors, switches, and
gears. Lastly, the state—or, more likely, the measurement—can be rewritten
as a finite set x(t) ∈ {x1, ...xN }. Such a system is a hybrid system (Liberzon
[2012b]) or a finite state machine, depending on whether any of the variables
are left in the continuous regime. We will argue that synthesis of these hybrid
models from continuous representations will form part of the basis for designing
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algorithmic materials.

1.2.1 Synthesis Approaches to Control

System synthesis involving control systems typically focuses on control syn-
thesis—finding u based on f ’s dependence on x and a mathematical statement
of the objective of the control. Conventionally, this objective is taken to be a
function of the trajectory x(t) and control u(t).1 This allows for a reasonably
broad set of specifications of the control system’s purpose; for the kinematic car
example, the objective could be approaching a specific location in the state space
in minimum time, or tracking a desired trajectory while minimizing energy, et
cetera. However, not all goals are neatly represented this way, particularly those
that focus on linguistic or information-oriented specifications. (Later, we will
discuss some alternative choices of objective that could enable/facilitate the use
of algorithmic materials.) Most objectives can be written as a functional of the
following form:

J(x(t), u(t)) =
∫ t f

t0

`(x(t), u(t))dt + m(x(t f )) (1.4)

and, sometimes, the final time t f under consideration is taken to be ∞. (In this
expression, `() is the Lagrangian of the objective, similar to the Lagrangian from
the extreme action principle of mechanics (Marsden and Ratiu [2013]).) In the
case of the car example, choosing (xd, yd, θd) as the desired state could lead to an
objective of the form: J(x(t), u(t)) =

∫ t f

t0

1
2 (u1(t)2 + u2(t)2)dt + 1

2 (x(t f ) − xd)2 +
1
2 (y(t f ) − yd)

2 + 1
2 (θ(t f ) − θd)

2. Parametric changes can be made in terms of
weighting terms—there are substantial choices to be made by a designer. If J
is differentiable with respect to (x(t), u(t)), one extremizes J subject to the con-
straint Ûx = f (x, u) with x(t0) = x0—that is, the constraint from (1.1)—in order
to obtain u(t). Alternatively, one can find u(x) (which we refer to as a control
policy, since it is dependent on the state x), which forms the control as a feedback
law. Both approaches typically require nontrivial computation, often in the form
of optimizations, including: a) direct methods (Kelley [1999]) that discretize the
control in time and solve a finite dimensional constrained optimization, b) trajec-
tory optimization (Liberzon [2012a]) optimizing the functional directly, using
numerical methods at every iterate, c) dynamic programming (Bertsekas [1995])
where discretization of the state (rather than time) allows one to approximate
u(x). All of these approaches are mathematically and practically formidable, and
would appear to be a prerequisite to designing materials that implicitly encode
the control response, making computational overhead seemingly prohibitive.

There are special cases where control synthesis simplifies dramatically.
When one has a system of the form of (1.3), and a quadratic function J(x, u),

1. This function is often called a functional to indicate that it takes functions as arguments. It is
perfectly fine to view it as a standard function like those encountered in vector calculus.
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then u(t) can be expressed in closed form by solving a Riccati equation (Bryson
and Ho [1975]), yielding u as a linear policy based on state u(x) = K(t)x.
The Riccati equation itself satisfies a nonlinear, matrix-valued ordinary differ-
ential equation, even though the dynamics are themselves linear; as a result,
solutions to the differential equation can exhibit finite escape time and other
types of numerical instability. Moreover, synthesis of this type can lead to
arbitrarily nonrobust control response. Nevertheless, control of linear systems
is one of the most successful areas of both theoretical and practical advances.
Even in the nonlinear setting, recent progress in synthesis techniques has made
many control computation issues less challenging. Specifically, techniques for
efficiently approximating the optimal u(t) and the optimal policy u(x) have be-
come more common (Horowitz et al. [2014], Ansari and Murphey [2016], Gong
et al. [2008]). (As the engineer faced with control synthesis for nonlinear, high
dimensional systems, things have gotten much easier in the last two decades.)

However, as previously mentioned, control synthesis is not the only synthesis
onemaywish to do. Classical framing of control assumes f is given, but onemay
wish to design f to make control synthesis easier (e.g., designing a mechanism
so that its input-output dynamics are linear). Most challenging is the co-design
problem—simultaneously designing f and u so that together they regulate x
(Censi [2015]).

Lastly, given x, f (x, u), and u (either expressed as u(t) or u(x)), how do we
determine if u should be applied to a system? Generally, stability is the key
requirement used to indicate whether a system will be well-behaved. Roughly
speaking, a system is stable if there exists a positive definite function V(x)—
called a Lyapunov function—that is monotonically decreasing in time for all
trajectories (that is, ÛV < 0) (Khalil [1996]). There are variants of this idea, but
for our purposes they all have roughly the same implications—stable control
policies are better than unstable ones.

1.2.2 Autonomous Estimation and Perception

If control theory is the mathematical basis of action based on state, then esti-
mation theory forms the basis of processing data in order to generate a state
update. Although estimation is important, a related—and in some respects more
general—idea in autonomy is that of perception. For our purposes here, the
distinction between estimation and perception is the difference between identi-
fying a signal (e.g., a state (x, y, θ) in a vector space) and an abstraction (e.g., a
square or a cup or a door). Despite the dominance of state estimation in classical
control, perception algorithms play an extremely important role in robotics, par-
tially because perception of a feature (say, of a door) enables a robot to use the
feature as a landmark for localization. Here we will argue that perception-based
decisions generalize usefully to the setting where sensors may only be sensitive
to a discrete set of changes (e.g., a sensor that is purely a door sensor, returning
a 0 whenever a door is absent and a 1 whenever it is present). Such sensors are
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ridiculous sounding in the context of macro-scale robotic systems—a door will
always be detected with a multi-purpose sensor such as a camera—but in the
case of micro-scale systems chemical comparator sensors can be interpreted in
exactly this way—they detect structural features in the environment.

Next, we briefly describe estimators, specifically particle filters and Kalman
filters. These two classes of estimation techniques dominate practical estimation,
particularly in robotics.

Particle Filters: Particle filters (Thrun et al. [2005]) sample a distribution
with a collection of particles, generate a prediction of the distribution by forward
predicting each particle using Eq. (1.1), and then compare and update that
prediction using a measurement and its uncertainty characteristics. There are
many variants on how to implement this relatively simple idea, but the key
aspects of most implementations are as follows. First, there exists a distribution
φ(x(ti)) that describes the probability that the state x ∈ Rn is any particular
value at time ti . This distribution is called the belief at time ti . However,
we know that whatever the state is, it satisfies Eq. (1.1) in time, so we have a
model of how each state would evolve. As a result, we can generate a prediction
called a prior, at time ti+1 for each state using Eq. (1.1) (possibly including
noise as an additive term, if the system has a stochastic model). Naturally
we cannot generate a prediction for every possible state, since there are an
infinite number of them if the belief has a nonzero value over a volume, but
we can sample the belief with N states and then use (1.1) for each one of the
N samples, called particles. Then we compare the prior distribution for time
ti+1 with the measurement at time ti+1, combining the two in an optimal way
that takes into account the uncertainty of the prediction and the uncertainty of
the measurement. The resulting prediction is a reweighting of each sample at
time ti+1, and is called a posterior. This posterior then becomes the belief for
the next time increment. Fig. 1.2 illustrates the operation of a particle filter
for a one-dimensional state space. This particle filtering process is able to
handle nonlinearities, impacts, and other challenging mechanical phenomena
without modification (though sometimes the mathematical analysis of the filter
can become challenging in those settings), at the expense of extremely high
computation requirements. This description of particle filters is just one of
several approaches to implementation, and these sample-based approaches are
just one of a broad class of nonparametric filters.

Kalman Filters: Kalman filters (Kalman [1960]) are representative of the
other most standard approach to filtering. Rather than represent the entire distri-
bution, Kalman filters minimize the variance of the prediction, as illustrated in
Fig. 1.2. The formulation of the Kalman filter is perhaps one of the most famous
in signals and systems theory, because Kalman used the fact that the optimal
update to the estimation problem must be in the form of a projection, and used
this to generate an explicit formula for how to incorporate a measurement into
an estimate, as a weighted average between the predicted state and the measured
state (again balancing the uncertainty of the prediction and the uncertainty of
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prior at ti+1
samples at ti+1

weighted samples at ti

y

p(y)

measurement model
posterior at ti+1

measurement

weighted samples at ti+1

[th]

FIGURE 1.2 Left: Particle Filter. The leftmost plot shows the posterior distribution at time ti , and
N = 13 samples taken from the posterior. The weights of each sample are indicated by the size of the
circle. The top right plot shows the prior distribution at time ti , which is computed by stepping the
samples forward in time using Eq. (1.1). The bottom right plot shows the single measurement taken
at time ti+1 and the distribution of states that may have generated the measurement. The posterior
at time ti+1 is computed using this measurement model and the prior at time ti+1. New weights
for the samples are calculated based on this posterior distribution. Practical implementations of
particle filters often have N > 103. Right: Kalman Filter. The leftmost plot shows the variance
in the prior distribution (the prediction at time ti of the state at time ti+1) and the top right plot
shows the measurement taken at time ti+1 and the distribution of states that may have generated the
measurement. The bottom right plot illustrates the linear combination of the predicted state and
measured state, weighted based on the uncertainty of each, resulting in the posteriot at time ti+1.
The Kalman filtering process is notably simpler than the particle filter, requiring only one algebraic
calculation involving the mean and variance.
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the measurement). In fact, a Kalman filter is an implementation of a particle
filter if we were to assume a normal distribution of particles and a mapping from
ti to ti+1 that preserves the normality of the distribution. As a result, Kalman
filters are extremely simple to implement, and require much less computation
than particle filters. Moreover, they are globally optimal in the case of linear
systems with normally distributed beliefs, and are in fact optimal in an even
broader set of nonlinear situations. The upshot is that when one is looking for a
minimal implementation, Kalman filters and their variants are almost invariably
the preferred filter. Like the particle filter, Kalman filters as described here are
representative of a broad class of parametric filtering approaches.

1.3 SYNTHESIS AND DESIGN OF ALGORITHMIC MATERIALS

If classical control and estimation provide our starting point for creating sys-
tems that can sense the environment and act on those sensations, which of those
ideas translate to a materials-based approach, where explicit computation is
replaced—entirely or partially—with the designed physical response of a system
component? In circuits, an archetype of this kind of equivalence is the inter-
changeability of a gain K with a physical amplifier. This interchangeability is so
effective that much of the analysis of linear circuits (signal manipulation using
physical elements) is exactly the same as the analysis of linear control (signal
manipulation through computation and actuation) (Franklin et al. [1994]). Here
we wish to create a similar analogy between computational control and mate-
rial properties, but we will need to do so in a context of nonlinear and even
nondifferentiable behavior.

Materials, even as they become more and more diverse in their designable
physical properties, will often be combinatoric in terms of the control authority
and sensing capability they provide; there will only be a finite number of choices
of how to embed control and perception into the material properties of a system.
For example, in the case of a micro-state machine (which will be introduced in
the next few paragraphs) there are a finite number of sensors and actuators that
can physically be on the state machine, and a finite number of ways that logical
operators can connect these elements and their specific abilities. The design of
this physical system is combinatoric because any combination of these elements
exists and is countable, and (by definition of being in the feasible set of designs)
is physically realizable.

Here we discuss reasons to believe that combinatoric capabilities should be
sufficient for enabling autonomy in many systems. We discuss this in terms
of two example systems, where the sensing, control, and/or computation have
been severely constrained. First, the example of a very simple device with a
one-bit sensor and a few control actions is used to demonstrate that control and
estimation can potentially be carried out in a much simpler setting than those
seen in Section 1.2. But where do these sensor definitions come from? Where
do the actions come from? And what should one do if the computation required
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to process simple sensory data and simple controls is not available?
The second example system with limited sensing, control, and computation

is a micro-state machine—a mechanically designed device at the micro-level
(Koman et al. [In Preparation]). Micro-state machines are just that: micro-
particles that can act as state machines. They can be thought of as synthetic
(engineered) cells. In the example, the machines exist in a chemical bath and
are capable of movement using chemical inhibitors, and they contain onboard
circuits that include simple sensors and very limited nonvolatile memory. At
100µm in size or less, classical computation is impossible. But the movement,
sensory, and memory elements can potentially be combined with a series of
logical operators to enable a specific task. We will also show that these discrete
structures can sometimes be algorithmically derived using numerical methods,
leading to finite state machines that define the sensing, control, and computation
all at once.

1.3.1 Robots with One-Bit Sensors

How useful is a one bit sensor to a control system? We looked at this question in
(Tovar and Murphey [2012]), where we investigated the use of a one-bit sensor
in estimation and feedback control in a planar environment with a differential
drive robot. This effort falls within a broader area of inquiry in robotics that falls
under minimalist robotics (Bicchi and Goldberg [1996]) and sensorless robotics
(Erdmann and Mason [1988]), and is also described in Strano Chapter . In this
work we took a differential drive robot—with a configuration q = (x, y, θ), where
(x, y) is the position in the plane and θ is the orientation between a body frame
of the vehicle and the fixed world frame—with kinematics nominally described
by

Ûx =


cos θ
sin θ

0

 u1 +


0
0
1

 u2. (1.5)

(This is likely the most studied nonholonomic system in existence, since it is
both simple and describes the geometry of a great number of wheeled vehicles.)
Moreover, we assumed that the robot can only move in one of six directions, as
in Fig. 1.5. Note that this model does not describe the dynamics of the real robot
particularly well, but the model does well enough to predict time evolution in an
actionable manner; this won’t always be the case, as discussed later.

We equipped the robot with a “one-bit” sensor that can register zeros and
ones in an environment, as seen in Fig. 1.3. Experimentally, we realized this
sensor with a camera that was pointed down at the surface of a table that was
white except for black tape, so that the sensor reads zero if the surface is light
and one if the surface is dark. As a result, the robot could always sense if it was
in a white or black region, such as those shown in Fig. 1.4.
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FIGURE 1.3 Example binary output from a one-bit sensor. The robot records a 0
when it detects the white surface and a 1 when it passes a dark line (or beam).
For this trajectory in this environment, the robot records the following sequential data:
{0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0}.

The state estimation question, as discussed earlier, is to take sensor readings—
in the case of Fig. 1.3 a sequence of ones and zeros—e.g.,{0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0}
at even time intervals—and reconstruct the state (x, y) from those readings. The
key idea is as follows. When the robot starts moving, it will have very high
uncertainty—until it registers a one, at which point the uncertainty plummets
because the robot now knows it is in one of the sparse dark areas seen in Fig. 1.4.
Now, as the robot continues moving, since it has a model of its own motion and
access to the map, the number of possible states at time t will slowly dwindle,
so long as the robot is moving; we will shortly describe how one can design this
motion. This point about the necessity of motion is critical—the limited sensing
capability is explicitly offset by the ability to record a map to memory, to make
predictions about movement, and—most importantly—the ability to move by
expending energy.

In (Tovar and Murphey [2012]), we showed that so long as the lines (techni-
cally features called beams (Tovar et al. [2009])) in these figures intersect, one
can uniquely determine (x, y) after encountering three nonparallel dark regions.
Moreover, the calculation for determining (x, y) is mathematically equivalent to
the Kalman filter projection, but in this case the projections are event driven
instead of time driven. In the same experiment we equipped the robot with a
finite number of control capabilities—basically that it could move toward one
of six landmarks (see Fig. 1.5, where the red targets are directions the robot
can move towards at any given time). These six control modes and one bit
of sensory information were sufficient to enable trajectory tracking of a curve
that intersections the dark regions in the environment, both in simulation and
experiment.

The key point in all this is that very limited amounts of data, and very
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FIGURE 1.4 Differential environmental configurations have different amounts of information. Here
the environment-sensor pairing has light and dark binary readings, so that trajectories through the
environment will lead to a sequence of ones and zeros being registered in the sensor. Depending on
the configuration of these regions (A-C and many others), the robot can completely localize itself in
(x, y) coordinates using binary sensory data.
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FIGURE 1.5 Control authority is modeled as the ability to go toward a landmark. At any location
(x, y), the robot may choose u ∈ {u1, u2, u3, u4, u5, u6 }. Scheduling u in time based on an objective
is the control synthesis problem.
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limited control authority, can provide sufficient combined capability to create an
operational autonomous system. In the case of the one-bit sensor and six control
modes, a similar model might arise from the movement of a micro-state machine
in a hydrogel, where movement of the state machine is guided by its attraction
to each distinct hydrogel, which can each be turned on and off through chemical
inhibition.

Moreover, this example makes it clear that the choices of sensor and control
depend on each other, on what is known about the environment, and what of
that information can be stored in memory and used computationally. Hence, the
one-bit sensor is sufficient for control, but only when paired with environmental
information so that it is meaningful—e.g., actionable to the control system.
However, as noted above, motion for information is critical, and we have not yet
discussed how to automate what the autonomous system should do when it is
not getting useful data. This is the focus of Section 1.3.2.

1.3.2 Exploration and Ergodic Control

The differential drive one-bit examples makes it clear that two things are true.
First, the absolute signal from a sensor — the sequence {0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 1, 0, ...}— is meaningless without context (likely provided by the combina-
tion of a map and a motion model). Secondly, when environmental landmarks,
such as the dark regions in Fig. 1.4, are rare , movement is essential in order to
obtain information. The first of these comments is just the observation that infor-
mation is in the changes in a signal rather than the signal itself—this iswhy amea-
sure of entropy , defined as the average amount of information needed to specify
the state of a randomvariable, is useful for determiningmotion . As a result, what
we want is to move so that the sequence {0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ...} has
as much variation (increasing its entropy) as possible, avoiding catastrophic out-
comes like sitting at a single state recording {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...}
indefinitely. How do we formulate that need as a control objective? This is
where coverage, and later ergodicity, plays a role.

Moreover, once a “one” is detected, how we might explore a region should
change dramatically. Suppose a region’s map looks like Fig. 1.6. Before a “one”
is detected, one might expect a uniform search policy is called for; that is, the
agent should search in a way that does not prioritize any area over any other area,
while avoiding areas already visited. Now note that this is not the same as a
“randomwalk”, partially because a randomwalk may involve excessive amounts
of visiting the same region over and over; more importantly, a random walk is
defined as an input (a random forcing signal) and generally the output (the state)
will not be randomly structured at all. If one wants the output to look like a
random walk, one must synthesize control or design the system in some other
way to create an output that satisfies a statistical goal (i.e., make the state appear
to be a random walk, even if the inputs are chosen deterministically).

To enable this type of random-looking trajectory synthesis—that is, the syn-
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FIGURE 1.6 The goal of ergodic control is to drive the spatial statistics of a trajectory to match
those of the distribution of expected information density. This trajectory starts out similar to a
random walk, but when a "one" is detected, the EID changes dramatically and therefore so does the
trajectory.

thesis of trajectories that have desirable spatial statistical properties—we devel-
oped ergodic control (Miller et al. [2016]), based on the work in Mathew and
Mezic [2011]. The upshot of Miller et al. [2016] is that for a nonlinear system of
the form (1.1), we can synthesize control that optimizes a measure of ergodicity
of a trajectory x(t) relative to a distribution Φ(x). This measure of ergoditicy is
defined by the requirement that the percentage of time the trajectory x(t) spends
in any neighborhood of Rn must be proportional to the the integral of Φ(x) over
that region . As a result, the need for exploration is met in much the same way
as trajectory tracking from Section 1.2.1.

Ergodic control uses a measure of the distance from ergodicity between
the time-averaged trajectory and the expected information density2 (EID)—the
distributionΦ(x)—as ametric to beminimized for control synthesis. We assume
a bounded, n-dimensional workspace (the search domain) X ⊂ Rn. The spatial
statistics of a trajectory x(t) are quantified by the percentage of time spent in
each region (open set) of the workspace,

2. An expected information density EID(x) is generally computed based on a measurement
model—for instance, of the form z = Υ(α, x) + δ, where z is the measurement, α is
the parameter being estimated, x is the state, and δ is zero-mean noise. This measure-
ment model is then used to compute an information measure—e.g., the Fisher information
Ii, j (x, α) =

∂Υ(α,x)
∂αi

T
Σ−1 ∂Υ(α,x)

∂α j
, where Σ is the noise covariance or the relative entropy, and

entropy H(x) = −
∑

x p(x) log2 p(x), where x is a random variable and p(x) is its probability
distribution. Finally, the expected value of this information measure is taken to calculate the
amount of information anticipated in any region. The key point is that ergodic control does not
depend on how the EID is computed, only that it exists and is representable as a distribution
Φ(x). One may, for instance, use an entirely different information measure (e.g., one for detection
(Streit [2013])) without changing the control approach.
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C(x) =
1
T

∫ T

0
δ [x − x(t))] dt, (1.6)

where δ is the Dirac delta (Mathew and Mezic [2011]). The goal of ergodic
control is to drive the spatial statistics of a trajectory x(t) to match as much as
possible those of the distribution EID(x); this requires the choice of a norm on
the difference between the distributions EID(x) and C(x). Following (Mathew
and Mezic [2011]), we quantify the difference between the distributions—i.e.,
the distance from ergodicity E—using the sum of the weighted squared distance
between the Fourier coefficients φk of the EID, and the coefficients ck of the
distribution representing the time-averaged trajectory,3

E(x(t)) =
K ∈Zn∑
k=0∈Zn

Λk [ck (x(t)) − φk ]2 (1.7)

where K is the number of coefficients calculated along each of the n dimen-
sions, and k is a multi-index (k1, k2, ..., kn). The coefficient Λk =

1
(1+ | |k | |2)s

is a weight where s = n+1
2 , which places larger weight on lower frequency

information.
Ergodic control enables coverage by insisting that the statistical distribution

of a trajectory x(t)match, as much as possible, a reference distributionΦ(x). So,
if Φ(x) is a uniform distribution, a trajectory will look somewhat like a random
walk. If, however, the distribution is non-uniform—say, because a “one” was
encountered in our example—then the resulting trajectory will be statistically
similar to a new distribution that reflects that the number of possible states has
decreased dramatically. Why should this new distribution be chosen to be the
EID? The EID from above measures the expected likelihood of information at a
state x, where the information is measured using a metric—we choose the Fisher
information (Frieden [2004]) in (Miller et al. [2016]), but any measure can be
used. Indeed, any measure could be used and any distribution could be used,
leaving the algorithm designer quite a bit of (potentially unwanted) flexibility in
implementation.

With the ability to explore, the simplicity of a sensor may be compensated
by the ability to actively acquire data. For the robot with a one-bit sensor and
six control modes, this means that the robot needs to search, using its control
authority, for that “one” sensor value. Moreover, the ability to explore the state
will have other uses, including obtaining useful data for generating data-driven
models. This is discussed next in Section 1.3.3.

3. The Fourier coefficients φk of the distribution Φ(x) are computed using an inner product,
φk =

∫
X
φ(x)Fk (x)dx, and the Fourier coefficients of the basis functions along a trajectory

x(t), averaged over time, are calculated as ck (x(t)) = 1
T

∫ T

0 Fk (x(t))dt, where T is the final
time and Fk is a Fourier basis function.
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1.3.3 Data-Driven Models

One of the fundamental problems in using model-based control is that a model
generally must be present. However, novel materials—and novel configurations
of materials—are often difficult to model based on first principles. If one wants
to build up a model based on experimental data, and incorporate that model in
control, how should the model be created?

Example situations where this might be matter occur at both the macroscale
andmicroscale. At themacroscale, robotic systems generally have had rigid bod-
ies connected by one or two degree-of-freedom joints. In the last two decades
compliant (and even soft) robot designs have become more common (Pratt and
Williamson [1995]), but these designs lead to substantial modeling challenges.
Moreover, physical interfaces (e.g., the contact patch between a robotic finger
and an object a robot is attempting to manipulate) are hard to model if they are
inhomogenous (e.g., with nonisotropic friction). Even at the macroscale, novel
materials lead to poorly posedmodels, particularly if thematerials are inhomoge-
nous in some way. At the microscale (e.g., at the scale of 100µm), predictive
models are challenging because of stochastic uncertainty (due to Brownian mo-
tion) and uncertainty about the underlying physics governing motion. The key
point is that at both the macro scale and the micro scale one may need to use
experimental data to generate models of the form in (1.1).

To approach the problem of generating models from data in the context of
robotic systems, we have been using Koopman operators (Budišić et al. [2012],
Abraham et al. [2017a]). The key idea of a Koopman operator is to represent
(1.1) as a linear operator over functions of the state x (much like kernel methods,
Gaussian processes, or nonlinear system indentification methods). That is, if
ψ = {ψi(x)} is an infinite set of functions of x (indexed by i), then d

dt (ψ(x)) =
K(ψ(x)), where K is the Koopman operator. This somewhat abstract attitude
towards the dynamics has the considerable upside that all possible equations
of motion are linear. As a result, one can directly compute K in terms of the
spectrum (e.g., eigenvalue/eigenvector pairs) of experimental data to generate a
dynamic mode decomposition of a dynamic system. The considerable downside
to this attitude about model derivation is that nominally an infinite number of
ψ(x) are required. In practice, ψ is chosen to be some choice of basis functions
(e.g., polynomials, Fourier coefficients) and is then truncated to a finite number.
The choice of ψ is an art at present, with no rigorous methods—of which
the authors are aware—available for choosing basis functions and the order of
truncation.

However, even with ad hoc decisions about basis functions and order, the
Koopman operator representation of a mechanical control system is surprisingly
useful. A simulation of Koopman-assisted modeling is shown in Fig. 1.7. This
example consists of an unknown, highly nonlinear potential field (a) and a
nominal model that is a simple, quadratic potential field (b). Starting with some
initial conditions, a trajectory is predicted using the nominal model (shown in
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(c)) which is significantly different from the actual trajectory of the point in the
potential. The Koopman operator is then computed using a small amount of
data points and twenty five basis functions (including first order polynomials
and radial basis functions). The new model of the dynamic system resulted
in the improved trajectory shown in (d). This process is repeated in (e) and
( f ), with increasing numbers of Koopman operator updates in the trajectory
calculation. Even though the nominal model was quite inaccurate, the Koopman
operator constructed a model of the system that is indistinguishable from the
actual trajectory.

Nominal Trajectory

(a) (b)

(c) (d) (e) (f)

Trajectory
Actual

FIGURE 1.7 Koopman operator for one-bit, finite action robot. (a) Simulated “actual” potential
field (b) Simulated “nominal” potential field (c) Nominal trajectory (orange) versus actual trajectory
(blue) (d)Koopman operator trajectorywith 50 updates versus actual trajectory (e)Koopman operator
trajectory with 500 updates versus actual trajectory (f) Koopman operator trajectory with 5000
updates versus actual trajectory. Note that the last Koopman operator captures the dynamic behavior
very well, without any additional analytical modeling.

To show the effects of the Koopman operator in a physical experiment,
we took a sphero (by Sphero [2017]) robot—a sphere that has a kinematic
internal mechanism similar to an animal toy—to run on the surface of the
ground. Placing this robot on a sandy medium leads to granular mechanics—a
traditionally challenging area for robotic vehicles. However, by building up a
model of the robot/sand interface and finding dynamics based on data obtained
from experiments running the robot through the sand, a much more aggressive
model-based controller became possible (Abraham et al. [2017a]).

In many regards, data-based modeling for model-based control is a major en-
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abling capability for robots with novel materials in them, including soft robots,
robots operating in soft or nonhomogeneous environments, et cetera. It avoids
the need for precise analytical modeling of the robot, instead using analyti-
cal models as the starting point for generating a data-based model. Moreover,
although Koopman operators are the authors’ current preference, other data-
driven modeling techniques are available, including modeling state evolution
using Gaussian processes. What is necessary, however, is the ability to accumu-
late data over a sufficiently large volume of the state space so that the models
are predictive over the range of states one expects to encounter (e.g., using the
techniques from Section 1.3.3). The feasibility of turning models, first-principle
or data-driven, into feasible physical designs is the focus of the next section.

1.3.4 From Continuous Control to Finite State Machines

Thus far, we have focused on the analog between classical, continuous control and
forms of control and autonomy that might be more amenable to implementation
with materials (e.g., replacing continuous data with discrete detections that can
be implemented using a binary comparator, identifying f (x, u) based on data,
et cetera). But even with these techniques in use, microscale devices face
one last obstacle—computation. Computation on very small devices will be
anywhere from energetically expensive to infeasible. If we wish to create micro-
state machines, such as those discussed in Section 1.3, how can we make them
“smart” without equipping them with a computer?

The way we approach this question is to ask the following, technically precise
variant. How can we take a control design and map it to a finite set of state-
dependent actions? That is, how can we replace the control policy u(x) with
a finite state machine that captures the same essential control response as u(x)
(Mavrommati and Murphey [2016])? The way we approach this is to compute
u(x) using a finite number of control actions {u1, u2, ..., uM }—called the control
alphabet, all dependent on x and potentially data-driven—using an optimal
control scheme to minimize an objective function J(x, u). This policy, u(x), is
called a control alphabet policy. A gearbox, for example, has a finite number of
controls (gears), where each gear constitutes a symbol in the control alphabet.
The control alphabet policy indicates which gear to use as a function of the state
measurements, to minimize some objective function (e.g. a measure of energy
expenditure of the gearbox as it varies with state).

We created a special purpose control technique to approximate this optimal
control solution efficiently, called switched sequential action control (Mavrom-
mati and Murphey [2016]), but any optimal control method appropriate for a
finite set of control choices may be used. Using this method, at any state x, u
can be selected from the set of possible ui . Then a cell subdivision algorithm
is used to generate an x-dependent finite state machine (FSM). The finite state
machine encodes the global policy as a finite number of dependencies, all a func-
tion of the sensor data. As a result, simple circuitry could completely encode
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the relationship between sensor data and control action, without ever explicitly
computing anything—creating cyber-free autonomy in the form of what we are
calling a micro-state machine. We will explore this critical concept with an
example system that is analogous to the robot with the one-bit sensor, but instead
uses a micro-state machine in an environment of chemical sources.

x

y

1 2

3

5

4

6

P

FIGURE 1.8 An example system limited by both sensory ability and control authority. At any
location (x, y), the robot may choose u in {u0, u1, u2, u3, u4, u5, u6 }, where u0 is the default state
of zero control and u1 −u6 are chemical potentials centered around the indicated points. The control
synthesis problem is to schedule u based on an objective (here, to approach a point P).

In this system, there are six controls (or chemical potentials) distributed
throughout the space, shown in Fig. 1.8. The micro-state machine can move in
the direction of any of these six sources, or do nothing—totaling seven possible
controls. A desired point, P, is located near the middle of the environment.
We will go into further detail of the capabilities of micro-state machines later in
this section, but for now the state machine is moving around in a chemical bath,
and it has sensors that can approximate its location based on the beams in the
environment. The dotted lines indicate the beams, which in this case are lines
of equipotential between the chemical sources detected using chemiresistors and
comparators, rather than dark lines detected by a camera, as they were in the
one-bit robot example in Sec. 1.3.1. Using the methods described above, a finite
state machine can be generated for this system to directly map the control outputs
to the sensory inputs. This control policy is shown in in Fig. 1.9.

If a micro-state machine happens to be in the upper right corner of the state
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FIGURE 1.9 Control policy for the six source system. The different colors correspond to the
different sources that are being tracked (the seven different control modes from Fig. 1.8). Dark blue
for zero control, blue for tracking source 1, light blue for source 2, green for source 3, yellow for
source 4, orange for source 5, and red for source 6. This phase plane plot of the control policy is a
function of x and y, where Ûx and Ûy are both zero.

space , the control policy directs the state machine toward Source 3, which is
below and to the left of the state machine’s current location, therefore moving it
toward the desired point P.

This example is a four-dimensional system, with state (x, y, Ûx, Ûy), but we only
illustrate a two dimensional control policy map in (x, y) with ( Ûx, Ûy) = (0, 0). The
rest of this chapter will use only the two-dimensional control policy in figure
Fig. 1.9.

To control amicro-statemachinewith this policy, the statemachine’smemory
would need to contain a list to look up the assigned control for its estimated state.
The control policy in Fig. 1.9 has 1040 data points, which could be too much for
a simple micro-state machine to physically encode. Fig. 1.10, on the next page,
illustrates the same control policy generation method but with different levels of
cell subdivision, so that the calculations are done on an increasingly coarse grid.
Fig. 1.10 shows that when the control policy becomes very coarse, the Monte
Carlo simulations still remain quite accurate—even if the coarse control policy
maps are not necessarily very intuitive.

It should be noted that the success of this finite state machine generation
method depends on the initial complexity of the system and the number of
control and sensory options. But even with 7 possible discrete controls and
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limited sensory information, the simulated micro-state machine exhibits good
autonomous control accuracy. The key point is that replacing a control policy
u(x) with a finite state machine can potentially yield very reliable results. The
benefit of having an approach that directly relates sensor data to control action
is that it presents an opportunity for real-time control of complex robots with
no online computation involved. This means that if the calculated finite state
machine can be encoded using material properties, a computer is completely
unnecessary in a system. Which brings us to our discussion of the micro-state
machine.

A micro-state machine is an excellent example system to demonstrate the
principle of cyber-free autonomy. Let us first review the capabilities of a micro-
state machine, and then apply them to this example. Micro-state machines use
chemical inhibitors to locomote, and they contain purposefully chosen materials
and physical devices that react in desired ways, including, but certainly not
limited to, sensors (e.g., photodetectors and chemiresistors) and nonvolatile
memory (e.g., a memristor). And because explicit computation is infeasible,
logical operators are used to convert these elements into a finite state machine
that executes a specific task.

One of the easiestways to implement state estimation in amicro-statemachine
is the use of chemical comparators. Typically, a comparator is an electronic
device that compares two voltages (or currents) and outputs a digital signal
indicating which of the two is larger. In this case, relative chemical potentials
in the environment are being compared. In our example there are six different
chemical potentials, and each comparator can only compare two. Fig. 1.11 (a)
shows how two comparators can divide the space into four quadrants, which
is all of the sensory information that is necessary to estimate its location and
implement the most coarse control policy map from Fig. 1.10. Using these two
chemical comparators, the micro-state machine can sense that, for example, it is
closer to Source 1 than Source 2, meaning that it is in the left half of the map.
And if the micro-state machine also senses that Source 5 is closer than Source 2,
it can further deduce that it is in the lower left quadrant of the state space. Since
the state machine already has the control policy encoded in a list, it knows that in
this quadrant it should apply control u2. This decision tree is shown in Fig. 1.11
(c) and is illustrated in the form of a finite state machine in Fig. 1.11 (d). This is
a physically realizable design of a micro-state machine, incorporating existing
sensors, actuators, and memory capabilities.

Thismethod can be expanded tomicro-statemachineswithmore comparators
and more complicated control policies. Control policy maps can be discretized
to fit the divisions of the state space that are detectable by sensors on micro-
states and—more importantly—micro-state machines can be designed with only
the sensors deemed necessary by control policy maps. Once again, this imple-
mentation of control and estimation emphasizes the idea of designing physical
elements and control policies together.



Algorithmic Materials: Embedding Computation within Material Properties for Autonomy
Chapter | 1 23

Algorithmic Materials: Embedding Computation within Material Properties for Autonomy
Chapter | 1 23

Algorithmic Materials: Embedding Computation within Material Properties for Autonomy
Chapter | 1 23

1.4 CONCLUSION

This chapter provided a brief description of classical modeling, control, and
estimation. These three topics provided the foundation for our discussion of au-
tonomy, and how we can rethink the sense-think-act cycle in terms of embedding
what would normally be accomplished computationally into a materials-based,
cyber-free setting. After the introduction to the classical view, we introduced
a simple robotic system—a differential drive robot with six actuation states
and two sensor states, analogous to micro-state machines composed of chemi-
cal comparators and inhibitors; this system is characterized by limited actuation,
limited sensing, and limited computation in a dynamically rich environment with
significant model uncertainty. We demonstrated how the discrete sensors and
actuators could be used to generate useful control response, and ended by show-
ing that the control response could be implemented without the use of explicit
computing. Although a robotic system could rely on computation, it is unlikely
that micro-state machines can be expected to, making this last contribution key
to the chapter.

The framework described in this chapter is by no means the only way to real-
ize autonomy using novel material properties as a proxy for explicit computation.
The particular techniques by which we pursue those goals are not unique; data-
driven models can be generated by other means than Koopman operators (e.g.,
Gaussian processes), exploration can be enabled in other ways (e.g., coverage
algorithms), and presumably there are other approaches to generating intercon-
nections between sensors and actions to accomplish a task. Nevertheless, we
expect that any cell-sized system that exhibits autonomous, qualitatively rich be-
havior will be designed using roughly the components we describe here: models
built on principles and data, limited sensing compensated for by exploration,
and limited computation compensated by explicit, task-based physical design
that exploits computation for continuous systems to create cyber-free designs for
discrete systems.
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FIGURE 1.11 Physically realizable design of amicro-statemachine. (a) Equipotential lines demon-
strating how the micro-state machine can use chemcial comparators to estimate its location in the
environment. LEFT: comparing chemcial Sources 1 and 2 divides the state space into left and
right. RIGHT: comparing Sources 1 and 5 divides the space into top and bottom). (b) The simplest
representation of the control policy from Fig. 1.10. (c) Decision diagram for this system. (d) Finite
state machine for control.
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