Demonstration and Imitation of Novel Behaviors
under Safety Aware Shared Control

Alexander Broad*, Todd Murphey!, and Brenna Argall*f
*Department of Electrical Engineering and Computer Science
TDepartment of Mechanical Engineering
Northwestern University, Evanston, IL 60208
Email: alex.broad @u.northwestern.edu

Abstract—We describe a shared control algorithm that im-
proves both a human operator’s ability to provide demonstra-
tions, and a learning algorithm’s ability to recreate the novel
behavior. Our method introduces an autonomous agent that
assists the human partner by enforcing safety and stability
constraints. The autonomous agent has no a priori knowledge
of the desired task and therefore only interferes when there is
concern for the safety of the system. We evaluate the impact
of our shared control algorithm on a user’s ability to provide
successful demonstrations in a variety of environments with a
human subject study consisting of 20 participants. We then
use the collected demonstration data to train a neural network
policy through simple behavior cloning. A preliminary evalua-
tion reveals that the continued application of the safety aware
shared control algorithm is integral in producing autonomous
policies that successfully mimic the desired behavior. We discuss
limitations and future work in the conclusion.

I. INTRODUCTION

To improve the acceptance and efficacy of robotic devices
in human environments, we must design autonomous agents
that are capable of learning novel behaviors without explicit
programming or interference from a robotics expert. This is
particularly important when we consider the class of robotic
devices that are designed explicitly for interaction with a
human partner. For example, mechanical devices in assistive
and rehabilitation medicine can be used to help restore lost
functionality to people suffering from motor control disorders
or impairments due to physical injury. By designing robots
that can grow in functionality alongside their human partner,
we offer greater freedom to the person in need.

Learning from Demonstration (LfD) is a paradigm that
solves this problem by enabling a robotic partner to reproduce
novel behaviors demonstrated by a human operator [3, 5].
One challenge not currently addressed in the LfD literature is
how to help users provide high-fidelity demonstrations when
there are difficulties related to the complexity of the control
problem, the complexity of the task, or limitations due to
the skill of the human partner. We address this problem by
allowing users to provide demonstrations under shared control.

In general, shared control is a paradigm that can be used to
produce joint human-machine systems that are more capable
than either the human or machine on their own [11]. In
this work, we are interested in offloading challenging aspects
of the control problem to an autonomous partner to enable
human operators to provide demonstrations when they would
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Fig. 1. Visualization of the experimental environments and task. A demon-
stration is considered complete when the lander moves outside the boundary
defined by the green line. The lunar lander is enlarged for visualization.

otherwise not be able to. This is particularly important when
the dynamic system is inherently challenging to control (e.g.,
unstable systems like exoskeletons) or when it is easy to
provide demonstrations that may be dangerous for the human
or environment (e.g., navigation through a dense crowd).
We therefore define a shared control system that allows a
human operator the freedom to demonstrate desired motions
while the autonomous partner ensures safety constraints (see
Section [ITI). The provided demonstrations can then be used to
train an autonomous control policy that is capable of recreating
the desired motion [[16]. Importantly, we demonstrate how the
structural knowledge encoded in the safety aware autonomous
controller can be used to improve the efficacy of simple behav-
ior cloning techniques in recreating learned system behavior
(see Section . Finally, we conclude with a discussion of
limitations and future work in Section [V

II. EXPERIMENTAL SYSTEM

We begin by describing the experimental system, a sim-
ulated “lunar lander” (see Figure [I) from OpenAl’'s Gym
testbed [8]. The lunar lander is defined by a six dimensional
vector, x, in which the first three components (z1_3) define
the 2D position and heading, while the final three components
(z4—g) define their rates of change. The control input, wu,
is a continuous two dimensional vector which represents the
throttle of the main (u1) and rotational thrusters (us). This
system was chosen to demonstrate the impact that shared
control can have on the safety of demonstrations when the
control problem and environment are complex. The lunar
lander exhibits nonlinear dynamics and can easily become
unstable as it rotates away from its point of equilibrium.



III. SAFETY AWARE SHARED CONTROL

We now describe our method for allowing human operators
to provide demonstrations of novel behaviors under a safety
aware shared control paradigm.

A. Model-based Shared Control

To implement a shared control paradigm we need to define
a method for computing the policy of the autonomous agent
and a method for dynamically allocating control between
the two partners. In this work, we use model-based optimal
control [4, [18] (MBOC) to compute autonomous policies.
MBOC uses a model of the system dynamics learned directly
from data [1} [12], which is then incorporated into an optimal
control algorithm to produce autonomous policies [2]]. To
compute policies that are specifically concerned with the safety
of the dynamic system we define a cost function based on
the underlying structure of the system and task. In particular,
we consider two notions of safety: stability around points of
equilibrium and collision avoidance. Therefore we define a
cost function that (1) penalizes states that are far from points
of equilibrium using a quadratic cost, and (2) penalizes the
system from entering dangerous portions of the state space
using polynomial barrier functions [6].

To close the loop in our shared control system, we must
define a dynamic allocation method that intelligently integrates
the control provided by each partner. If the control allocation
method is too permissive of the human operator, it may
do a poor job enforcing the necessary safety requirements.
However, if the control allocation method is too stringent,
it can negatively impact the ability of the human operator
to produce their desired motion. In this work, we use a
modified version of Maxwell’s Demon Algorithm (MDA) [17]]
to allocate control authority. At a high-level MDA uses the
output of an optimal control algorithm as a guide by which to
evaluate the input from a human partner [7, 9]. We define a
modified, safety aware MDA in Algorithm [1]

Algorithm 1 Safety Aware Maxwell’s Demon Algorithm
1: if §(system, object) < € then

2: U= Ug;

3: else

4:  if (up,uq) > 0 then
5: U = up;

6: else

7: u = 0;

8: end if

9: end if

where § is a function that computes the distance to the nearest
obstacle, € is a hand-selected distance threshold, (-,-) is the
inner product, uy is the input from the human operator, uq
is the input produced by the autonomy, and u is the control
applied to the dynamic system. Under this paradigm, if the
system is deemed to be in a dangerous state (i.e. too close to
an obstacle), the autonomous partner’s signal is used to control
the system. If the system is outside of the distance threshold
€, and the user’s input is close enough to the input computed
by the autonomy (i.e. safe enough), the user’s input is used to

control the system. In all other cases, zero input is passed to
the dynamic system. This algorithm is defined to balance the
control authority given to the human and autonomous partners
such that the human partner can provide demonstration data,
while the autonomous partner improves safety and stability.

B. Experimental Evaluation

To evaluate the efficacy of our shared control paradigm,
we performed a human subjects study consisting of 20 total
participants (16 female, 4 male). Each subject was asked to
provide 10 demonstrations of desired behaviors in three exper-
imental environments (see Figure [1) under both a user only
control paradigm and the defined shared control paradigm.
There was no goal location specified to the participants, instead
a demonstration was considered complete when the human
operator navigated the lunar lander outside of a barrier defined
by a green line in the environment. The first environment
included only the lunar lander and the ground surface. This
environment illuminates the challenges associated with main-
taining the stability of a complex dynamic system, while
simultaneously providing demonstrations of a new behavior.
The second environment incorporated dynamic obstacles that
obstructed the motion of the system. In this environment, a
series of circular obstacles moved directly across the screen
at the same height as the lunar lander (one at a time). The
third environment included two static obstacles that forced
the operator to navigate through a narrow passageway, thereby
increasing the required control fidelity.
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Fig. 2.  Average number of successful trials under each control paradigm
in each environment. We find that participants under the safety aware shared
control paradigm provide successful demonstrations significantly more often
then participants under the user only control paradigm (p < 0.005).
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C. Average Success Rate of Demonstration

The primary metric we evaluate in this study is the ability
of the human operator to navigate the lunar lander beyond
the green border indicating the successful demonstration of a
desired behavior. This metric can be used as a simple binary
indicator of control competency. We therefore compare how
often users are successful under each control paradigm. We use
the non-parametric Wilcoxon signed-rank test to statistically
analyze the results. We display pertinent metrics of the data
and results of the described statistical tests in Figure [2| The
results of the statistical tests reveal that our described shared
control paradigm significantly improves the human partner’s
ability to provide safe demonstrations of a desired behavior.



IV. LEARNING FROM DEMONSTRATION

We now show that we can use the demonstration data
collected under shared control to produce autonomous con-
trol policies that imitate behaviors exhibited by human part-
ners [[13}[15]]. Our goal, then, is to learn an autonomous policy

i (s) = arg min/ [|7a(s) — 7h(8)||2 ds (1)

ses

where s is the state, m(s) : s — wu defines a control
policy, mp, represents the human’s policy and 7, represents
the autonomy’s policy. To generate m,, we define a neural
network which we train on the successful demonstration data
using a behavior cloning objective [13l]. There are, however,
well known problems with autonomous policies trained using
vanilla behavior cloning techniques. One particularly common
issue is that the data used to train the policy may come from
a different distribution then the data observed at runtime [14].
We address this issue by combining the learned neural net-
work model with the shared control paradigm described in
Section That is, by incorporating the same shared con-
trol algorithm used during data collection, we encourage the
system to operate in a similar distribution of the state space
to what was observed during the demonstration phase. One
can view this solution as a shared control paradigm in which
the control is shared between two autonomous agents : the
autonomy mimicking the human control and the autonomy
enforcing safety constraints.
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Fig. 3. A visualization of the user’s demonstration data (blue) provided
under our safety aware shared control algorithm, and trajectories generated
autonomously (pink) using the learned control policy. This image displays the
vertical and horizontal position of the system and obstacles (black) over time.

To evaluate the efficacy of our LfD approach, we examine
whether the resulting policies are capable of safely repro-
ducing the behavior demonstrated by the human operator
under shared control. Figure [3| is a visualization of data
collected from Environment 2. Figure |4] is a visualization of
data collected from Environment 3. In both figures, we see
that the learned control policy, operating under our safety
aware shared control algorithm, is able to mimic the be-
havior demonstrated by the human operator under the same
shared control paradigm. In fact, all trajectories produced au-
tonomously under this paradigm safely avoid both the dynamic
and static obstacles. Additionally, in Figure ] we see that
the user was unable to provide any successful demonstrations

Fig. 4. A visualization of (1) user demonstration data provided under
our safety aware shared control paradigm (blue), (2) user demonstration
data provided under the user only control paradigm (yellow), (3) trajectories
produced autonomously using the learned shared control policy (pink), and (4)
trajectories produced autonomously using solely the behavior cloning policy
(purple). All data is overlaid on Environment 3.

without safety assistance. Similarly, the learned control policy
was unable to avoid obstacles in the environment without
the safety assistance. These two final points elucidate the
need for our safety aware shared control system in both the
demonstration and imitation phases. Without assistance from
an environment aware shared control algorithm, the human
operator is unable to demonstrate desired behaviors, and the
learned neural network policy fails to generalize.

V. CONCLUSION AND LIMITATIONS

The results of our human subjects study show that our safety
aware shared control paradigm is able to help human partners
provide demonstrations of novel behaviors in situations in
which they would otherwise not be able to (see Figure [J). An
evaluation of our ability to use this data in a LfD paradigm
demonstrates that the integration of structural knowledge based
on the underlying system is integral in the successful appli-
cation of simple behavior cloning techniques. Without this
controller, the autonomous agent is unable to reproduce the
motion trajectories demonstrated by the human operator.

We now discuss some of the limitations of this early
work. The first limitation relates to the safety aware shared
control algorithm. Ideally, our dynamic allocation algorithm
would formally guarantee safety over the course of the entire
interaction. However, with each additional constraint added to
the system, we increase the complexity of the shared control
algorithm and reduce the freedom afforded to the human
operator. In future work we plan to explore notions of shared
control that address this balance. A second limitation of this
work relates to the learned autonomous policy. As we see
in Figure 3] the successful application of the policy requires
a continued integration with our safety aware shared control
algorithm. In future work, we plan to explore methods that use
the safety aware optimal controller as a supervisor in training
more robust policies that can reproduce the behavior on the
own. This idea is related to the use of an optimal control-based
supervisor in Guided Policy Search [10].
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