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Abstract—Although a number of solutions exist for the prob-
lems of coverage, search and target localization—commonly
addressed separately—whether there exists a unified strategy
that addresses these objectives in a coherent manner with-
out being application-specific remains a largely open research
question. In this paper, we develop a receding-horizon ergodic
control approach, based on hybrid systems theory, that has
the potential to fill this gap. The nonlinear model predictive
control algorithm plans real-time motions that optimally improve
ergodicity with respect to a distribution defined by the expected
information density across the sensing domain. We establish
a theoretical framework for global stability guarantees with
respect to a distribution. Moreover, the approach is distributable
across multiple agents, so that each agent can independently
compute its own control while sharing statistics of its coverage
across a communication network. We demonstrate the method
in both simulation and in experiment in the context of target
localization, illustrating that the algorithm is independent of the
number of targets being tracked and can be run in real-time on
computationally limited hardware platforms.

I. INTRODUCTION

This paper considers the problem of real-time motion plan-
ning for area search/coverage and target localization. Although
the above operations are often considered separately, they
essentially all share a common objective: tracking a specified
distribution of information across the terrain. Our approach
differs from common solutions of space grid decomposition in
area coverage [1]–[5] and/or information maximization in tar-
get localization [6]–[13] by employing the metric of ergodicity
to plan trajectories with spatial statistics that match the terrain
spatial distribution in a continuous manner. By following this
approach, we can establish a unified framework that achieves
simultaneous search and localization of multiple targets (e.g.,
localizing detected targets while searching for new targets
when the number of total targets is unknown) without added
complexity. Previous work [14]–[16] has suggested using
ergodic control for the purpose of motion planning for search
and localization (albeit separately). However, due to its roots
to optimal control theory, ergodic control has been associated
with high computational cost that makes it impractical for
real-time operations with varying information distribution.
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The contribution of this work is a model predictive ergodic
control algorithm that exhibits low execution times even for
high-dimensional systems with complex nonlinear dynamics
while providing stability guarantees over both dynamic states
and information evolution. To the best of our knowledge,
this paper includes the first application of an online ergodic
control approach in real-time experimentation—here, using the
sphero SPRK robot [17].

Ergodic theory relates the time-averaged behavior of a sys-
tem to the set of all possible states of the system and is primar-
ily used in the study of fluid mixing and communication. We
use ergodicity to compare the statistics of a search trajectory
to a terrain spatial distribution—the distribution may represent
probability of detection for area search, regions of interest
for area coverage and/or expected information density for
target localization. To formulate the ergodic control algorithm,
we employ hybrid systems theory to analytically compute
the next control action that optimally improves ergodicity,
in a receding-horizon manner. The algorithm—successfully
applied to autonomous visual rendering in [18]—is shown
to be particularly efficient in terms of execution time and
capable of handling high-dimensional systems. The overall
contribution of this paper combines the following features in
a coherent manner.

Real-time execution:
In Sections VI-A and VI-B, we demonstrate in simulation

real-time reactive control for a quadrotor model in SE(3). In
Section VII, we show in experimentation how an ergodically
controlled sphero SPRK robot can localize projected targets
in real time using bearing-only measurements.

Adaptive performance: The proposed algorithm reactively
adapts to a changing distribution of information across the
workspace. We show how a UAV can adapt to new target
estimates as well as to increasing numbers of targets.

Nonlinear agent dynamics: As opposed to geometric point-
to-point approaches [4], [19], [20], the proposed algorithm
controls agents with complex nonlinear dynamics, such as
robotic fish [21], [22], 12-dimensional unmanned aerial ve-
hicles (UAVs) [23], [24], etc., taking advantage of their
dynamical features to achieve efficient area exploration.

Stability of information states: We establish requirements
for ergodic stability of the closed-loop system resulting from
the receding-horizon strategy in Section IV-B.

Multi-objective control capacity: The proposed algorithm
can work in a shared control scenario by wrapping around
controllers that implement other objectives. This dual control
problem solution is achieved by encoding the non-information
related (secondary mission) control signal as the nominal
control input unom

i in the algorithm (see Algorithm 1). In the
simulation examples, we show how this works by wrapping



the ergodic control algorithm around a PD controller for height
regulation in order to control a quadrotor to explore a terrain.

Multi-agent distributability: We show how ergodic control
is distributable to N > 1 agents with no added computational
complexity. Each agent computes control actions locally using
their own processing unit but still shares information globally
with the other agents after each algorithm iteration.

Generalizability and robustness in multiple-targets local-
ization: The complexity of sensor motion planning strategies
usually scales with respect to the total number of targets,
because a separate motion needs to be planned for each target
[25], [26]. As opposed to this, the proposed ergodic control ap-
proach controls the robotic agents to track a non-parameterized
information distribution across the terrain instead of individual
targets independently, thus being completely decoupled from
the estimation process and independent of the number of
targets. Through a series of simulation examples and Monte
Carlo experimental trials, we show that ergodically controlled
agents with limited sensor ranges can reliably detect and
localize static and moving targets in challenging situations
where a) the total number of targets is unknown; b) a model
of prior target behavior is not available; c) agents acquire
bearing-only measurements; d) a standard Extended Kalman
Filter (EKF) is used for bearing-only estimation.

Joint area coverage and target localization: Planning routes
that simultaneously optimize the conflicting objectives of
search and tracking is particularly challenging [27]–[29]. Here,
we propose an ergodic control approach where the combined
dual objective is encoded in the spatial information distribution
that the statistics of the robotic agents trajectories must match.

II. RelatedWork

A. Area Search and Coverage

An area search function is required by many operations,
including search-and-rescue [30], [31], hazard detection [20],
agricultural spraying [32], solar radiation tracking [33] and
monitoring of environmental phenomena, such as water quality
in lakes [34]. In addition, complete area coverage navigation
that requires the agent to pass through every region of the
workspace [35] is an essential issue for cleaning robots [36],
[37], autonomous underwater covering vehicles [38], [39],
demining robots [40], automated harvesters [41], etc. Although
slightly different in concept, both applications—search and
coverage—involve motion planning for tracking a distribu-
tion of information across the terrain. For purposes of area
search, this terrain spatial distribution indicates probability of
detection and usually exhibits high variability in both space
and time as it dynamically responds to new information about
the target’s state. In area coverage applications, on the other
hand, the terrain distribution shows regions of interest and is
normally near-uniform with possible occlusions.

A number of contributions in the area of robotic search
and coverage decompose the exploration space to reduce
problem complexity. Grid division methods of various ge-
ometries, such as Voronoi divisions [1]–[5], are commonly
employed to accomplish this. While these methods work well,
their scalability to more complex and larger terrains where

the number of discrete divisions increases, is a concern. In
addition, existing methods plan paths that do not satisfy the
robotic agents’ dynamics and thus are not feasible system
trajectories. This raises the need for an additional step where
the path is treated as a series of waypoints and the agent
is separately controlled to visit them all [4], [19], [20].
This double-step process—first, path planning and then, robot
control—might result in hard-to-accomplish maneuvers for
the robotic system. Finally, decomposition methods often do
not respond well to dynamically changing environments—for
example when probability of detection across the workspace
changes in response to incoming data—because grid updates
can be computationally intensive. Therefore, most existing
solutions only perform non-adaptive path planning for search
and coverage offline—i.e., when the distribution of information
is known and constant1. As opposed to this, the algorithm
described in this paper does not require decomposition of
the workspace, by representing probability of detection as a
continuous function over the terrain. Furthermore, it performs
online motion planning by reactively responding to changes in
the terrain spatial distribution in real time, while taking into
account the agent’s dynamics.

Multi-agent Coordinated Coverage:
The objective of multi-agent coverage control is to control

the agents motion in order to collectively track a spatial
probability-of-detection density function [43] across the ter-
rain. Shared information is a necessary condition for coordi-
nation [44]. Several promising coverage control algorithms for
mobile sensor networks have been proposed. In most cases,
the objective is to control the agents to move to a static
position that optimizes detection probability Φ, i.e., to compute
and track the final states xζ(t f ) that maximize the sum of∫
S(‖x − xζ(t f )‖)Φ(x)dx over all agents ζ where S indicates

sensor performance. Voronoi-based gradient descent [45], [46]
is a popular approach but it can converge to local maxima.
Other approaches employ cellular decomposition [47], sim-
ulated annealing [48], game theory [49], [50] and ergodic
dynamics [51] to achieve distributed coverage. The main
drawback is that existing algorithms do not consider time-
dependent density functions Φ, so they are not suitable for
realistic applications where probability of detection varies. Er-
godic multi-agent coverage described in this paper differs from
common coverage solutions in that it aims to control the agents
so that the spatial statistics of their full trajectories—instead
of solely their final states—optimize detection probability, i.e.,
the time-averaged integral C(x) = 1

t f−t0

∫ t f

t0
δ[x− xζ(t)]dt, where

δ is the Dirac delta, matches the spatial distribution Φ(x) as
t f → ∞. This means that if we capture a single snapshot
of the agents’ ergodic motion, there is no guarantee that
their current configuration will be maximizing the probability
density. However, as time progresses the network of agents
is bound to explore the terrain as extensively as possible
by being ergodic with respect to the terrain distribution. An
advantage of this approach compared to other coordinated
coverage solutions, is that it can be performed online in order

1To overcome this issue when monitoring environments with changing
distributions, an alternative solution is to control only the speed of the robotic
agents over a predefined path [42].



to cover terrains with time-dependent (or sensed in real time)
density functions.

B. Motion Planning for Target Localization

Target localization2 refers to the process of acquiring and
using sensor measurements to estimate the state of a single
or multiple targets. One of the main challenges involved with
target localization is developing a sensor trajectory such that
high information measurements are acquired. To achieve this,
some methods perform information maximization (IM) [6]–
[12], [52] usually by compressing an information metric (such
as Fisher Information Matrix (FIM) [24], [53] and Bayesian
utility functions [10]) to a scalar cost function (e.g., using
the determinant [12], trace [11], or eigenvalue [54], [55] of
the information matrix) and then generating trajectories that
optimize this cost. The most general approaches to solving
these problems involve numerical techniques [56], classical
optimal control theory [6], and dynamic programming [34],
[57], which tend to be either computationally intensive or
application specific (e.g., consider only static and/or constant
velocity targets). Compared to IM techniques [6]–[12], [52],
the proposed algorithm explores an expected information
density map by optimally improving ergodicity, thus being
more time-efficient and more robust to the existence of local
maxima in information. In addition, it allows tracking multiple
moving targets without added complexity as opposed to most
IM techniques that would need to plan a motion for each
target separately. To overcome this issue with IM techniques,
Dames et al. [58], [59] propose an estimation filter that
estimates the targets’ density—instead of individual labeled
targets—over time, thus rendering IM complexity independent
of the number of targets. However, the proposed trajectory
generation methodology relies on exhaustive search requiring
discretization of the controls space.

Because IM techniques tend to exhibit prohibitive execution
times for moving targets, alternative methods of diverse nature
have been proposed for use in real-world applications. A non-
continuous grid decomposition strategy for planning parame-
terized paths for UAVs is proposed in [60] with the objective
to localize a single target by maximizing the probability of
detection when the target motion is modeled as a Markov
process. Standoff tracking techniques are commonly used to
control the agent to achieve a desired standoff configuration
from the target usually by orbiting around it [26], [61], [62].
A probabilistic planning approach for localizing a group of
targets using vision sensors is detailed in [63]. In [64], a
UAV is used to track a target in constant wind considering
control input constrains, but the planned path is predefined
to converge to a desired circular orbit around the target. A
rule-based guidance strategy for localizing moving targets is
introduced in [65]. In [66], the problem of real-time path
planning for tracking a single target while avoiding obstacles is
addressed through a combination of methodologies. In general,
as opposed to ergodic exploration, the above approaches focus

2While often “localization” refers to static targets and “tracking” is used
for moving targets, here for consistency we will use the term “localization”
to describe estimation of both static and moving targets.

on and are only applicable in special real-world situations and
do not generalize directly to general multiple-target tracking
situations. For a complete and extensive comparison of ergodic
localization to other motion planning approaches, the reader
is referred to [14].

In this paper, we use as an example the problem of bearing-
only localization. Many real-world systems use angle-only
sensors for target localization, such as submarines with passive
sonar, mobile robots with directional radio antenna [67], and
unmanned aerial vehicles (UAVs) using images from an optical
sensor [68]. Bearing-only systems require some amount of
maneuver to measure range with minimum uncertainty [6].
The majority of existing solutions for UAV bearings-only
target motion planning, produce circular trajectories above the
target’s estimated position [23], [69]. However, this solution is
only viable if there is low uncertainty over the target’s position.
In addition, if the target is moving, the operator may not know
what the best vehicle path is. In this paper, this drawback is
overcome by exploring an expected information density that
is updated in real time while the targets are moving based on
the current targets’ estimate.

Cooperative Target Localization: The greatest body of work
in the area of cooperative target localization is comprised
by standoff tracking techniques. Vector fields [26], nonlinear
feedback [70] and nonlinear model predictive control [61] are
some of the control methodologies that have been used for
achieving the desired standoff configuration for a target. The
motion of the robotic agents is coordinated in a geometrical
manner: two robotic agents orbit the target at a nominal stand-
off distance and maintain a specified angular separation; when
more agents are considered, they are controlled to achieve a
uniform angular separation on a circle around the target. A
dynamic programming technique that minimizes geolocation
error covariance is proposed in [71]. However, the solution
is not generalizable to multiple robotic agents and targets.
The robots are controlled to seek informative observations by
moving along the gradient of mutual information in [52]. The
main concern in using these strategies is scalability to multiple
targets, as the robots are separately controlled to fly around
each single target [72]. To overcome this issue, we propose an
algorithm that tracks a non-parameterized information density
across the terrain instead of individual targets independently,
thus being completely decoupled from the estimation process
and the number of targets.

C. Ergodic Control Algorithms

There are a few other algorithms that perform ergodic
control in the sense that they optimize the ergodicity metric
in (5). Mathew and Mezić in [73] derive analytic ergodic
control formulas for simple linear dynamics (single and double
integrator) by minimizing the Hamiltonian [74] in the limit as
the receding time horizon goes to zero. Although closed-form,
their solution is not generalizable to arbitrary nonlinear system
dynamics and it also augments the state vector to include the
coefficients difference so that the final system dimensionality
is nominally infinite. Miller et al. [75] propose an open-loop
trajectory optimization technique using a finite-time horizon.



TABLE I
List of Variables

Symbol Description Symbol Description

x system dynamic states JE receding-horizon ergodic cost

u system inputs terg
0 initial time of ergodic exploration

n number of dynamic states ts algorithm sampling time

m number of system inputs Q weight on ergodic cost

ν number of ergodically explored states (ν ≤ n) R weight on control effort

Li i-th dimension of search domain ρE ergodic costate/adjoint

Φ(·) spatial distribution on the search domain αd desired rate of change

φk Fourier coefficients of Φ(·) unom nominal control

ci
k Parameterized trajectory spatial statistics at time step ti u∗i (t), x∗i (t) open-loop control and state trajectories at time step ti

K highest order of Fourier coefficients udef (t), xdef (t) default control and resulting state trajectory

k set of ν coefficient indices {k1, k2, ..., kν} x̄cl closed-loop state trajectory

Fk k-th Fourier basis function uA, λA, τA magnitude, duration and application time of action A

T open-loop time horizon CE cost contractive constraint

u∗s schedule of candidate infinitesimal actions Merg ergodic memory

N number of agents on the field ζ agents performing exploration

M number of single-target coordinates α single-target parameters to be estimated

z sensor measurement µ number of sensor measured quantities

Υ(·) deterministic sensor measurement model I Fisher Information matrix

Σ covariance of measurement model Φ(·) expected information matrix

F (·) target dynamics

This algorithm is ideal for generating optimal ergodic solutions
with a prescribed time window. However, it exhibits relatively
high computational cost that does not favor real-time algorithm
application in a receding-horizon format. This approach has
been used for offline receding-horizon exploration of unknown
environments [15] and localization of a single static target
[14], [16] in cases where real-time control is not imperative.
De La Torre et al. [76] propose a stochastic differential
dynamic programming algorithm for ergodic exploration in the
presence of stochastic sensor dynamics. The ergodic control
algorithm in this paper differs from these existing approaches
in that it employs hybrid systems theory to perform ergodic
exploration fast, in real time, while adaptively responding to
changes in the information distribution as required for tracking
moving targets.

III. Ergodicity metric

For area coverage and target localization using ergodic
theory, the objective is to control an agent so that the amount
of time spent in any given area of a specified search domain
is proportional to the integral of a spatial distribution over that
same domain. This section describes an ergodicity metric that
satisfies this objective.

Consider a search domain that is a bounded ν-dimensional
workspace Xν ⊂ Rν defined as [0, L1] × [0, L2] × ... × [0, Lν]
with ν ≤ n, where n is the total number of the system
dynamic states. If s ∈ Xν denotes a point in the search domain,
the spatial distribution over the search domain is denoted as
Φ(s) : Xν → R, and it can represent probability of detection
in search area coverage operations, such as search-and-rescue,

surveillance, inspection etc. or expected information density in
target localization tasks as in Section V. The spatial statistics
of a trajectory xν(t) are quantified by the percentage of time
spent in each region of the workspace as

C(s) =
1
T

t0+T∫
t0

δ[s − xν(t)]dt (1)

where δ is the Dirac delta. We use the distance from ergodicity
between the spatial statistics of the time-averaged trajectory
and the terrain spatial distribution as a metric. To drive
the spatial statistics of a trajectory xν(t) to match those of
the distribution Φ(s), we need to choose a norm on the
difference between the distributions Φ(s) and C(s). As in
[14], we quantify the difference between the distributions, i.e.,
the distance from ergodicity, using the sum of the weighted
squared distance between the Fourier coefficients φk of Φ(s),
and the coefficients ck of the distribution C(s) representing the
time-averaged trajectory. In particular, the Fourier coefficients
φk and ck are calculated respectively as

φk =

∫
Xν

Φ(xν)Fk(xν)dxν (2)

and

ck =
1
T

t0+T∫
t0

Fk(xν(t))dt (3)

where Fk is a Fourier basis function, as derived in [73], and
T is the open-loop time horizon. Here, we use the following



choice of basis function:

Fk(s) =
1
hk

ν∏
i=1

cos
(kiπ

Li
si

)
, (4)

where k ∈ K is a set of ν coefficient indices {k1, k2, ..., kν}
with ki ∈ N so that K = {k ∈ Nν : 0 ≤ ki ≤ K}, K ∈ N
is the highest order of coefficients calculated along each of
the ν dimensions, and hk is a normalizing factor [73]. It
should be noted, however, that any set of basis functions that
is differentiable in the state and can be evaluated along the
trajectory can be used in the derivation of the ergodic metric.
Using the above, the ergodic metric on xν ∈ Xν is defined as
in [14], [73], [75]

E(xν(t)) =
∑
k∈K

Λk[ck(xν(t)) − φk]2 (5)

with Λk = 1
(1+||k||2)s and s = ν+1

2 , which places larger weight on
lower frequency information so that when K → ∞ the series
converges.

IV. Receding-horizon ergodic exploration
A. Algorithm Derivation

We shall consider nonlinear control affine systems with
input constraints such that

ẋ = f (t, x, u) = g(t, x) + h(t, x) u ∀t (6)
with u ∈ U and

U :=
{
u ∈ Rm : umin ≤ u ≤ umax, umin < 0 < umax

}
,

i.e., systems that can be nonlinear with respect to the state
vector, x : R→ X, but are assumed to be linear (or linearized)
with respect to the control vector, u : R→U. The state will
sometimes be denoted as t 7→ x

(
t; x(ti), u(·)

)
when we want

to make explicit the dependence on the initial state (and
time), and corresponding control signal. Using the metric (5),
receding-horizon ergodic control must optimally improve the
following cost at each time step ti:

JE = Q
∑
k∈K

Λk

[ 1
ti + T − terg

0

ti+T∫
terg
0

Fk(x(t))dt

︸                            ︷︷                            ︸
ci

k

−φk

]2
(7)

where terg
0 is the user-defined initial time of ergodic explo-

ration, x ∈ Xν and Q ∈ R weights the ergodic cost against
control effort weighted by R in (13). Henceforth, for brevity
we refer to the trajectory of the set of states to be ergodically
explored as x(t) instead of xν(t), although it should be clear
that the ergodically explored states might or might not be all
the states of the system dynamics (i.e., ν ≤ n).

To understand the challenges of optimizing (7), we distin-
guish between the dynamic states of the controlled system,
x ∈ Rn—e.g., the 12 states denoting position and heading, and
their velocities, in quadrotor dynamics—and the information
states ck(x(·)) in (3), i.e., the parameterized time-averaged
statistics of the followed trajectory over a finite time duration.
The main difficulty in optimizing ergodicity is that the ergodic
cost functional in (7) is non-quadratic and does not follow

the Bolza form—consisting of a running and terminal cost
[77]—with respect to the dynamic states. To address this,
infinite-dimensional trajectory optimization methods that are
independent of the cost functional form have been employed
[14] to optimize ergodicity. However, the computational cost
of such iterative methods is prohibitive for real-time control in
a receding-horizon approach. Another method involves change
of coordinates so that the cost functional is rendered quadratic
with respect to the information states parameterized by Fourier
coefficients. This allows the use of traditional optimal control
approaches e.g., LQR, DDP, SQP etc. (see for example [76]).
However, this approach entails optimization over an extended
set of states (the number of parameterized information states
is usually significantly larger than the dynamic states) which
inhibits real-time execution. In addition, and perhaps more
importantly, defining a running cost on the information states
results in unnecessarily repetitive integration of the dynamic
state trajectories. To avoid this, an option would be to optimize
a terminal cost only, but this proves problematic in establishing
stability of Model Predictive Control (MPC) algorithms (see
[78]).

To overcome the aforementioned issues, we seek to for-
mulate an algorithm that a) computes control actions that
guarantee contraction of the ergodic cost at each time step
b) naturally uses current sensor feedback to compute controls
fast, in real time. For these reasons, we choose to frame
the control problem as a hybrid control problem, similarly to
Sequential Action Control (SAC) in [79], [80]. By doing this,
we are able to formulate an ergodic control algorithm that is
rendered fast enough for real time operation—as opposed to
traditional model predictive control algorithms that are usually
computationally expensive [81]—for two main reasons: a) a
single control action is calculated at every time step using
a closed-form algebraic expression and b) this control action
aims to optimally improve ergodicity (instead of optimizing it)
by an amount that guarantees stability with respect to x and
ci.

An overview of the algorithm is given in Algorithm 1.
Once the Fourier coefficients φk of the spatial distribution
Φ(x) have been calculated, the algorithm follows a receding-
horizon approach; controls are obtained by repeatedly solving
online an open-loop ergodic control problem PE every ts

seconds (with sampling frequency 1/ts), every time using the
current measure of the system dynamic state x. The following
definitions are necessary before introducing the open-loop
problem.

Definition 1: An action A is defined by the triplet consisting
of a control’s value, uA ∈ U, application duration, λA ∈ R

+ and
application time, τA ∈ R, such that A := {uA, λA, τA}.

Definition 2: Nominal control unom : R → U, provides
a nominal trajectory around which the algorithm provides
feedback. When applying ergodic control as a standalone
controller, unom(·) is either zero or constant. Alternatively,
unom(·) may be an optimized feedforward or state-feedback
controller.

The open-loop problem PE that is solved in each iteration of



Algorithm 1 Receding-horizon ergodic exploration (RHEE)

Inputs: initial time t0, initial state x0, terrain spatial distribu-
tion Φ(x), ergodic initial time terg

0 , final time t f

Output: closed-loop ergodic trajectory x̄cl : [t0, t f ]→ X

Define ergodic cost weight Q, highest order of coefficients K,
control weight R, search domain bounds {L1, ..., Lν}, sampling
time ts, desired rate of change αd, time horizon T .

Initialize nominal control unom, step i = 0.
� Calculate φk using (2).
� While ti < t f

� Solve open-loop problem PE(ti, xi,T ) to get u∗i :
1) Simulate system (6) for t ∈ [ti, ti + T ] under ude f

i to
get x(t).

2) Simulate (12) for t ∈ [ti, ti + T ].
3) Compute u∗s using (14).
4) Determine action application time tA and value uA by

minimizing (15).
5) Determine action duration λA using the line search

process in Section IV-A4 and the condition in (9)
with CE in (19).

� Apply u∗i to (6) for t ∈ [ti, ti + ts] to get x̄cl∀t ∈ [ti, ti + ts].
� Define ti+1 = ti + ts, xi+1 = x̄cl(ti+1).
� i← i + 1
end while

System

Feedback Open-loopPredict
problem

Compute optimal
action schedule

Determine 
and

Determine action
duration

Fig. 1. An overview of the ergodic control process. One major difference be-
tween the proposed ergodic control algorithm and traditional MPC approaches
is that the open-loop problem can be solved without employing nonlinear
programming solvers [82] by using hybrid systems theory. In order to solve
(8), the algorithm follows four steps as illustrated above.

the receding horizon strategy can now be defined as follows3.

PE(ti, xi,T ) : (8)
Find action A such that

JE
(
x(t; xi, u∗i (·))

)
− JE

(
x(t; xi, u

def
i (·))

)
< CE (9)

subject to

u∗i (t) =

uA τA ≤ t ≤ τA + λA

udef
i (t) else

,

and (6) with t ∈ [ti, ti + T ] and x(ti) = xi.

where CE is a quantity that guarantees stability (see Sec-
tion IV-B) and ude f

i and xde f
i are defined below.

Definition 3: Default control udef
i : [ti, ti + T ]→U, is de-

3From now on, subscript i will denote the i-th time step, starting from i = 0.

fined as

udef
i (t) =

u∗i−1(t) ti ≤ t ≤ ti + T − ts

unom
i (t) ti + T − ts < t ≤ ti + T

, (10)

with ude f
0 (·) ≡ unom

0 (·), u∗i−1 : [ti−1, ti−1 + T ] → U the out-
put of PE(ti−1, xi−1,T ) from the previous time step i − 1—
corresponding to x∗i−1(·)—and ts = ti− ti−1 the sampling period
(Fig. 1). The system trajectory corresponding to application of
default control will be denoted as x

(
t; x(ti), udef (·)

)
or xdef (·)

for brevity.
The structure of u∗i (t) in (8) is a design choice that allows

us to compute a single control action A, since udef
i (t) is known

at each time step ti. As pointed out in the second paragraph
of Section IV-A, this single-action control problem renders
the algorithm fast enough for real-time execution. Moreover,
the structure of default control udef

i (t) in (10) indicates that
the algorithm stores actions calculated in the previous time
steps (included in u∗i−1(t)). By defining default control this way,
and thus storing past actions, we are able to rewrite (9) as a
constraint on sequential open-loop costs, as in (20), in order
to show stability.

The following proposition is necessary before going though
the steps for solving PE.

Proposition 1: Consider the case where the system (6)
evolves according to default control dynamics f

(
t, x(t), udef

i (t)
)
,

and action uA is applied at time τ (dynamics switch to
f
(
t, x(t), uA)) for an infinitesimal duration λ → 0 before

switching back to default control. In this case, the ergodic
mode insertion gradient ∂JE

∂λ
evaluated at t = τ measures the

first-order sensitivity of the ergodic cost (7) to infinitesimal
application of control action uA and is calculated as

∂JE
∂λ

∣∣∣∣∣
τ

= ρE(τ)
[
f (τ, xdef

i (τ), uA) − f (τ, xdef
i (τ), ude f

i (τ))
]

(11)

with

ρ̇E = −`(t, xdef
i )T − Dx f

(
t, xdef

i , udef
i

)T
· ρE (12)

subject to ρE(ti + T ) = 0

and `(t, x) =
2Q

ti + T − terg
0

∑
k∈K

{
Λk

[
ci

k − φk
]∂Fk(x(t))

∂x(t)

}
.

Proof The proof is provided in Appendix A.

Note that the open loop problem PE in (8) only requires that
the cost JE is decreased by a specific amount CE (at minimum),
instead of maximizing the cost contraction. This allows us
to quickly compute a solution, while still achieving stability,
following the steps listed in the following.

1) Predict: In this step, the algorithm evaluates the system
(6) from the current state xi and time ti, with udef

i (t) for
t ∈ [ti, ti + T ]. In addition, it uses the predicted state trajectory
to backward simulate ρE that satisfies (12).

2) Compute optimal action schedule u∗s(·): In this step,
we compute a schedule u∗s : [ti, ti + T ]→ Rm which contains
candidate infinitesimal actions. Specifically, u∗s(·) contains can-
didate action values and their corresponding application times,
but assumes λ → 0+ for all. The final uA and τA will be
selected from these candidates in step three of the solution



process such that uA = u∗s(τA), while a finite duration λA will
be selected in the final step. The optimal action schedule u∗s(·)
is calculated by minimizing

Jus =
1
2

∫ ti+T

ti

[
∂JE
∂λ

(t) − αd

]2
+ ‖us(t)‖2R dt, (13)

∂JE
∂λ

(t) = ρE(t)T
[
f
(
t, xdef

i (t), us(t)
)
− f

(
t, xdef

i (t), udef
i (t)

)]
where the quantity ∂JE

∂λ
(·) (see Proposition 1), called the mode

insertion gradient [83], denotes the rate of change of the cost
with respect to a switch of infinitesimal duration λ in the
dynamics of the system. In this case, dJE

dλ (·) shows how the
cost will change if we introduce a single infinitesimal switch
from f

(
t, xdef

i (t), udef
i (t)

)
to f

(
t, xdef

i (t), us(t)
)

at some point in
the time window [ti, ti + T ]. The parameter αd ∈ R

− is user
specified and allows the designer to influence how aggressively
each action value in the schedule u∗s(t) improves the cost.

Based on the evaluation of the dynamics (6), and (12) com-
pleted in the prediction step (Section IV-A1), minimization
of (13) leads to the following closed-form expression for the
optimal action schedule:

u∗s(t) = (Λ + RT )−1 [Λ udef
i (t) + h

(
t, xdef

i (t)
)T
ρE(t)αd

]
, (14)

where Λ , h
(
t, xdef

i (t)
)T
ρE(t)ρE(t)T h

(
t, xdef

i (t)
)
. The in-

finitesimal action schedule can then be directly saturated
to satisfy any min/max control constraints of the form
umin,k < 0 < umax,k ∀k ∈ {1, . . . ,m} such that u∗s ∈ U without
additional computational overhead (see [79] for proof).

3) Determine application time τA (and thus uA value):
Recall that the curve u∗s(·) provides the values and application
times of possible infinitesimal actions that the algorithm could
take at different times to optimally improve system perfor-
mance from that time. In this step the algorithm chooses one
of these actions to apply, i.e., chooses the application time τA

and thus an action value uA such that uA = u∗s(τA). To do that,
u∗s(·) is searched for a time τA that minimizes

Jt(τ) =
∂JE
∂λ

∣∣∣∣∣
τ
, (15)

∂JE
∂λ

∣∣∣∣∣
τ

= ρE(τ)T
[
f
(
τ, xdef

i (τ), u∗s(τ)
)
− f

(
τ, xdef

i (τ), udef
i (τ)

)]
subject to τ ∈ [ti, ti + T ].

Notice that the cost (15) is actually the ergodic mode insertion
gradient evaluated at the optimal schedule u∗s(·). Thus, mini-
mization of (15) is equivalent to selecting the infinitesimal
action from u∗s(·) that will generate the greatest cost reduction
relative to only applying default control.

4) Determine control duration λA: The final step in syn-
thesizing an ergodic control action is to choose how long to
act, i.e., a finite control duration λA, such that condition (9)
is satisfied. From [83], [84], there is a non-zero neighborhood
around λ→ 0+ where the mode insertion gradient models the
change in cost in (9) to first order, and thus, a finite duration λA

exists that guarantees descent. In particular, for finite durations

λ in this neighborhood we can write

JE
(
x(t; xi, u∗i (·))

)
− JE

(
x(t; xi, unom

i (·))
)

= ∆JE ≈
∂JE
∂λ

∣∣∣∣∣
τA

λ. (16)

Then, a finite action duration λA can be calculated by employ-
ing a line search process [84].

After computing the duration λA, the control action A is
fully specified (it has a value, an application time and a
duration) and thus the solution u∗i (t) of problem PE has been
determined. By iterating on this process (Section IV-A1 until
Section IV-A4), we rapidly synthesize piecewise continuous,
input-constrained ergodic control laws for nonlinear systems.

Algorithm 2 Reactive RHEE for varying Φ(x)

Define ergodic memory Merg, distribution sampling time tφ.
Initialize current time tcurr, current state xcurr.
While tcurr < ∞

1) Receive/compute current Φcurr(x).
2) terg

0 ← tcurr − Merg

3) t f inal ← tcurr + tφ
4) x̄cl = RHEE(tcurr, xcurr, t

erg
0 , t f inal,Φcurr(x))

5) tcurr ← tcurr + tφ
6) xcurr = x̄cl(t f inal)

end while

The Receding-Horizon Ergodic Exploration (RHEE) pro-
cess for a dynamically varying Φ(x) is given in Algorithm 2.
The re-initialization of RHEE when a new Φ(x) is available
serves two purposes: first, it allows for the new coefficients
φk to be calculated4 and second, it allows the update of the
ergodic initial time terg

0 .
The ergodic initial time terg

0 is particularly important for
the algorithm performance because it regulates how far back
in the past the algorithm should look when comparing the
spatial statistics of the trajectory (parameterized by ck) to the
input spatial distribution (parameterized by φk). If the spatial
distribution is regularly changing to incorporate new data (for
example in the case that the distribution represents expected
information density in target localization as we will see in
Section V), it is undesirable for the algorithm to use state
trajectory data all the way since the beginning of exploration.
At the same time, “recently” visited states must be known to
the algorithm so that it avoids visiting them multiple times
during a short time frame. To specify our notion of “recently”
depending on the application, we use the parameter Merg in
Algorithm 2 which we call “ergodic memory” and simply
indicates how many time units in the past the algorithm has
access to, so that it is terg

0 = t0 − Merg every time RHEE is
re-initialized at time t0.

The C++ code for both Algorithms 1 and 2 is available
online at github.com/MurpheyLab.

4This corresponds to the general case when the distribution time evolution
is unknown. If, however, Φ(x) is a time-varying distribution with known
evolution in time, we can pre-calculate the coefficients φk offline to reduce
the computational cost further.



a) Remarks on computing ci
k: The cost JE in (7) depends

on the full state trajectory from a defined initial time t = terg
0 ≤

ti in the past (instead of ti as in common tracking objectives) to
t = ti +T , which could arise concerns with regard to execution
time and computational cost. Here, we show how to compute
ci

k in a way that avoids integration over an infinitely increasing
time duration as ti → ∞. To calculate trajectory coefficients
ci

k at time step ti with k ∈ K , and thus cost JE, notice that:

ci
k =

1
ti + T − terg

0

ti+T∫
terg
0

Fk(x(t))dt = (17)

=
1

ti + T − terg
0

ti∫
terg
0

Fk(x(t))dt

︸                           ︷︷                           ︸
c̄(i)

k

+
1

ti + T − terg
0

ti+T∫
ti

Fk(x(t))dt

where recursively

c̄(i)
k =

ti−1 + T − terg
0

ti + T − terg
0

c̄(i−1)
k +

1
ti + T − terg

0

ti∫
ti−1

Fk(x(t))dt

∀ i ≥ 1, k ∈ K with c̄(0)
k = 0.

Therefore, only the current open-loop trajectory x(t) for all
t ∈ [ti, ti + T ] and a set of (K + 1)ν coefficients c̄(i)

k ∈ R
are needed for calculation of ci

k and thus JE at the ith time
step. Coefficients c̄(i)

k ∈ R can be updated at the end of the ith

time step and stored for use in the next time step at ti+1. This
provides the advantage that although the cost depends on an
integral over time with an increasing upper limit, the amount
of stored data needed for cost calculation does not increase
but remains constant as time progresses.

B. Stability analysis
In this section, we establish the requirements for ergodic

stability of the closed-loop system resulting from the receding-
horizon strategy in Algorithm 1. To achieve closed-loop sta-
bility for Algorithm 1, we apply a contractive constraint [85]–
[88] on the cost. For this reason, we define CE from the open-
loop problem (8) as follows.

Definition 4: Let Q be the set of trajectories x(·) : R → X
in (6) and Qd ⊂ Q the subset that satisfies ck(x(·)) − φk = 0
for all k. Suppose L(x(·), u, t) : Q × Rm × R→ R is defined as
follows:

L(x(·), u, t) :=
2Q

t − terg
0

∑
k

{
Λk

[
ck(x(·), t) − φk

]
·

·

[
Fk(x(t)) − ck(x(·), t) + f (x(t), u, t)T

t∫
terg
0

∂Fk(x(s))
∂x(s)

ds
]}

(18)

where ck(x(·), t) = 1
t−terg

0

∫ t
terg
0

Fk(x(s))ds denote the Fourier-
parameterized spatial statistics of the state trajectory up to
time t. Through simple computation, we can verify that
L(xd(·), 0, ·) = 0 when xd(·) ∈ Qd. Then, the ergodic open-
loop problem improves the ergodic cost at each time step by

an amount specified by the condition (9) with CE defined as

CE =

∫ ti+T

ti−1+T
L
(
xdef

i (·), udef
i (t), t

)
dt. (19)

This choice of CE allows us to rewrite expression (9) of the
open-loop problem, as a contractive constraint used later in the
Proof of Theorem 1. Contractive constraints have been widely
used in the MPC literature to show closed-loop stability as an
alternative to methods relying on a terminal (region) constraint
[81], [89], [90]. Conditions similar to the contractive constraint
used here (see (20)) also appear in terminal region methods
[81], [89], [90], either in continuous or in discrete time, as an
intermediate step used to prove closed-loop stability.

Next, we define stability in the ergodic sense5.
Definition 5: Let Xν ⊂ Rν be the set of states to be

ergodically explored. The closed-loop solution xν(t) : R→ Xν

resulting from an ergodic control strategy applied on (6) is
ergodically stable if the difference C(x) − Φ(x) for all x
with C(x) defined in (1) (see Section III) converges to a
zero density function 0(x). Using Fourier parameterization as
shown in equations (2) and (3), this requirement is equivalent
to ck(xν) − φk(xν)→ 0 for all k as t → ∞.

The following assumptions will be necessary in proving
stability.

Assumption 1: The dynamics f in (6) are continuous in u,
piecewise-continuous in t, and continuously differentiable in x.
Also, f is compact, and thus bounded, on any given compact
sets X and U. Finally, f (·, 0, 0) = 0.

Assumption 2: There is a continuous positive definite—with
respect to the set Qd—and radially unbounded function M :
Q × R→ R+ such that L(x(·), u, t) ≥ M(x(·), t) for all u ∈ Rm.

Assumption 2 is necessary to show that the integral∫ t
terg
0
M(x(·), s)ds is bounded for t → ∞. This result can be

then used in conjunction with a well known lemma in [91]–
[93] to prove convergence in the proof of the stability theorem
that follows.

Theorem 1: Let assumptions 1-2 hold for all time steps
i. Then, the closed-loop system resulting from the receding-
horizon ergodic control strategy is ergodically stable in the
sense that ck(xν) − φk(xν)→ 0 for all k as t → ∞.

Proof Note that the ergodic metric (7) can be written as JE =

B(ti + T, x(·)) with B(t, x(·)) := Q
∑

k∈K Λk

[
ck(x(·), t) − φk

]2

with ck(x(·), t) defined in Definition 4. Using this definition
and converting JE from Mayer to Lagrange form yields JE =∫ ti+T

terg
0

L(x(·), u, t)dt with L(x(·), u, t) = d
dtB(t, x(·)) resulting in

the expression in (18). Going back to Definition 4 and the
ergodic open-loop problem (8) in Section IV-A, we note that
condition (9) with CE in (19) is a contractive constraint applied
in order to generate actions that sufficiently improve the cost
between time steps. To see that this is true, one can rewrite

5Note how this definition differs from the definition of asymptotic stability
about an equilibrium point as we now refer to stability of a motion instead
of stability of a single point.



(9) as

JE
(
x∗i (·)

)
− JE

(
x∗i−1(·)

)
≤ −

ti∫
ti−1

L
(
x∗i−1(·), u∗i−1(t), t

)
dt

≤ −

∫ ti

ti−1

M(x∗i−1(·), s)ds (20)

since from (10), ude f
i (t) ≡ u∗i−1(t) in [ti, ti−1 + T ]. This contrac-

tive constraint directly proves that the integral
∫ t

terg
0
M(x(·), s)ds

is bounded for t → ∞, which, according to Barbalat’s lemma
found, e.g., in [91]–[93], guarantees asymptotic convergence,
i.e., that x(·) → Qd or equivalently that ck(x(·)) − φk → 0 as
t → ∞.

C. Multi-agent ergodic exploration

Assume we have N number of agents ζ = 1, ...,N, each
with its own computation, collectively exploring a terrain
to track an assigned spatial distribution Φ(x). Each agent ζ
performs RHEE as described in Algorithm 1. At the end of
each algorithm iteration i (and thus every ts seconds), each
agent ζ communicates the Fourier-parameterized statistics of
their exploration trajectories ci

k,ζ up to time ti to all the other
agents. By communicating this information, the agents have
knowledge of the collective coverage up to time ti and can use
this to avoid exploring areas that have already been explored
by other agents. This ensures that the exploration process is
coordinated so that the spatial statistics of the combined agent
trajectories collectively match the distribution.

To use this information, each agent ζ updates its trajectory
coefficients ci

k,ζ at time ti to include the received coefficients
ci−1

k, j from the previous algorithm iteration i−1 so that now the
collective agent coefficients ci

k,ζ are defined to be:

ci
k,ζ = ci

k,ζ +
1

N − 1
·

N∑
j=1, j,ζ

ci−1
k, j (21)

where ci
k,ζ are the coefficients of the agent ζ state trajectory at

time step ti calculated as in (17), and ci−1
k, j are the coefficients of

the remaining agents state trajectories at the previous time step
ti−1 also calculated as in (17). So now, agent ζ computes the
ergodic cost (7) at ti based on all the agents’ past trajectories
and Algorithm 1 is guaranteed to compute a control action that
will optimally improve it. Note that expression (21) expands
to:

ci
k,ζ =

1
ti + T − terg

0

ti+T∫
terg
0

Fk(xζ(t))dt+

1
(N − 1)(ti−1 + T − terg

0 )

N∑
j=1, j,ζ

ti−1+T∫
terg
0

Fk(x j(t))dt

(22)

with c0
k,ζ = 1

ti+T−terg
0

∫ t0+T
terg
0

Fk(xζ(t))dt where xζ(t) with ζ =

1, ...,N is the agent ζ state trajectory. Therefore expression
(21) calculates the combined statistics of the current agent’s

HUB

Agent 1

Agent 2

Agent 3

Agent N

(K+1)ν 
d. p. numbers per cycle

(N-1)(K+1)ν 
d.p. numbers per cycle

Fig. 2. Communication network for multi-agent ergodic exploration using a
hub configuration. Agents are equipped with independent computational units
for local control calculation but exchange information that may influence each
other’s subsequent actions. The HUB is simply a network component and has
no computational capacity. Assuming that a double precision (d.p.) number
has 64 bits and an algorithm cycle completes in ts seconds, the transmitting
bit rate of each individual communication channel should be at least (K+1)ν ·64

ts
bits/s and receiving bit rate equal or higher than (N − 1) (K+1)ν ·64

ts
bits/s.

trajectory xζ(t), ∀t ∈ [terg
0 , ti + T ] and of the state trajectories

that all the other agents have executed up to current time ti
and temporarily intend to execute from ti (now) to ti−1 + T
based on their open-loop trajectories at the previous time step
ti−1.

Note that if the states of two or more agents are identical, the
matching agents motion degenerates to a single agent motion
and the multi-ergodic control approach fails to take advantage
of all agents’ control authority.

Computational complexity and communication require-
ments: This multi-agent ergodic control process exhibits time
complexity O(1) (i.e., the amount of time required for one
algorithm cycle does not scale with N) because Algorithm
1 is executed by each agent in parallel in a distributed
manner. Computational complexity also remains constant for
each agent (O(1), i.e., the total number of computer operations
does not scale with N). However, each agent’s computational
unit needs to communicate with a central transmitter/receiver
through a (deterministic) communication channel with re-
ceiving capacity that scales linearly in N (O(N)) and with
constant transmitting capacity (O(1)). In particular, at every
time step ti, each agent needs to receive (K + 1)ν coefficients
corresponding to ci−1

k, j , by each of the remaining N − 1 agents.
In addition, each agent is responsible to transmit their own
(K+1)ν coefficients to the rest of the robot network (see Fig. 2).
Thus, assuming a constant highest order of coefficients K and
number of ergodic variables ν, transmitting capacity of each
agent’s communication channel is constant while its receiving
capacity scales linearly with N. While, in this communication
paradigm, we assumed a star network configuration (Fig. 2),
note that a fully connected network can also be employed. In
any case, the minimum amount of information needed by the
team of agents for coordinated exploration is N sets of (K+1)ν

coefficients per algorithm cycle. Because of this requirement
of collective data exchange between agents at each time step,
multi-agent ergodic exploration can be characterized as semi-



distributed in that each agent executes RHEE (Algorithm 1)
independently but shares information with the other agents
after each algorithm cycle.

V. Receding-horizon ergodic target localization

This section describes the requirements for application of
reactive RHEE (Algorithm 2) in target localization and track-
ing, starting with the formulation of the expected information
density.

A. Expected Information Density

Ergodic control for localization of static or moving targets
is essentially an application of reactive RHEE in Algorithm 2
with the following specifics: 1) the agent takes sensor mea-
surements every tm seconds while exploring the distribution in
Step 4, and 2) belief of targets’ state is updated online and
used for computation of Φ(x) in Step 1.

We focus on the part of calculating Φ(x) (for now on
referred to as Expected Information Density, EID) given
the current targets belief and a known measurement model.
It is important to point out that the following process for
computing the EID depends only on the measurement model;
the methodology for belief state representation and update can
be arbitrary (e.g., Bayesian methods, Kalman filter, particle
filter etc.) and does not alter the ergodic target localization
process. The objective is to estimate the unknown parameters
α ∈ RM describing the M coordinates of a target. We assume
that a measurement z ∈ Rµ is made according to a known
measurement model

z = Υ(α, x) + δ, (23)

where Υ(·) is a function of sensor configuration and pa-
rameters, and δ represents zero mean Gaussian noise with
covariance Σ, i.e., δ ∼ N(0,Σ).

As in [14], we will use the Fisher Information Matrix
(FIM) [94], [95] to calculate the EID. Often used in maximum
likelihood estimation, Fisher information I(x,α) is the amount
of information a measurement provides at location x for a
given estimate of α. It quantifies the ability of a set of random
variables, in our case measurements, to estimate the unknown
parameters. For estimation of parameters α ∈ RM , the Fisher
information is represented as a M × M matrix. Assuming
Gaussian noise, the (i, j)th FIM element is calculated as

Ii, j(x,α) =
∂Υ(α, x)
∂αi

T

Σ−1 ∂Υ(α, x)
∂α j

(24)

where Υ(α, x) : RM×Rn → Rµ is the measurement model with
Gaussian noise of covariance Σ ∈ Rµ. Since the estimate of
the target position α is represented as a probability distribution
function p(α), we take the expected value of each element of
I(x,α) with respect to the joint distribution p(α) to calculate
the expected information matrix, Φi, j(x). The (i, j)th element
of Φi, j(x) is then

Φi, j(x) =

∫
α

Ii, j(x,α)p(α) dα. (25)

To reduce computational cost, this integration is performed
numerically by discretization of the estimated parameters on
a grid and a double nested summation. Note that target belief
p(α) might incorporate estimates of multiple targets depending
on the application. For that reason, this EID derivation process
is independent of the number of targets and method of targets
belief update.

In order to build a density map using the information matrix
(25), we need a metric so that each state x is assigned a single
information value. We will use the following mapping:

Φ(x) = detΦ(x). (26)

The FIM determinant (D-optimality) is widely used in the
literature, as it is invariant under re-parameterization and linear
transformation [96]. A drawback of D-optimality is that it
might result in local minima and maxima in the objective
function, which makes optimization difficult when maximizing
information. In our case though, local maxima do not pose an
issue as our purpose is to approximate the expected informa-
tion density using ergodic trajectories instead of maximizing
it.

B. Remarks on Localization with Limited Sensor Range

The efficiency of planning sensor trajectories by maximizing
information metrics like the Fisher Information Matrix in
(24) is highly dependent on the true target location [96]: if
the true target location is known, the optimized trajectories
are guaranteed to acquire the most useful measurements for
estimation; if not, the estimation and optimization problems
must be solved simultaneously and there is no guarantee that
useful measurements will be acquired especially when the
sensor exhibits limited range.

A limited sensor range serves as an occlusion during lo-
calization, in that large regions are naturally occluded while
taking measurements. Because of this, how we plan the motion
of the agent according to the current target estimate is critical;
if, at one point, the current target belief largely deviates
from the true target position, the sensor might completely
miss the actual target (out of range), never acquiring new
measurements in order to update the target’s estimate. This
would be a possible outcome if we controlled the agent to
move towards maximum information (IM). In this section,
we explain how receding-horizon ergodic target localization
(Algorithm 2) with limited sensor range can overcome this
drawback under a single assumption.

Assumption 3: Let r ∈ R+ be the radius defining sensor
range so that a sensor positioned at xs ∈ Xν can only take
measurements of targets whose true target location αtrue ∈ R

ν

satisfies ‖xs − αtrue‖ν < r. An occlusion O is defined as
the region where no sensing occurs i.e., O = {xs ∈ Xν :
‖xs − αtrue‖ν > r}. At all times tcurr < ∞ in Algorithm 2,
there is xq ∈ Xν that simultaneously satisfies ‖xq − αtrue‖ν < r
and Φcurr(xq) > 0, where Φcurr(x)∀x ∈ Xν is the expected
information density computed as in (26) at time tcurr.

Proposition 2: Let Assumption 3 hold. Also, let xν(·) :
[tcurr,∞) → Xν denote the exploration trajectory of an agent
performing ergodic target localization (Algorithms 1 and 2)



with expected information density Φcurr(x)∀x ∈ Xν, equipped
with a sensor of range r ∈ R. Then, there will be time
ts ∈ [tcurr,∞) where the agent’s state satisfies xν(ts) ∈ Xν\O, so
that new measurements are acquired and Φcurr(x) is updated.

Proof Due to Assumption 3, at time tcurr there is xq ∈ Xν \ O

that satisfies Φcurr(xq) > 0. According to Theorem 2 and
Definition 5, it is C(x) − Φcurr(x) → 0 for all x ∈ Xν
as t → ∞. Therefore, at some time t ∈ [tcurr,∞), we
know that C(xq) = Φcurr(xq) > 0 that is equivalent to

1
t−tcurr

∫ t
tcurr

δ[xq − xν(τ)]dτ > 0 from Eq. (1). This leads to the
conclusion that xq ∈ xν(·) which directly proves the proposi-
tion.

Assumption 4—stating that information density is always
non-zero in an arbitrarily small region around the true target—
can be satisfied in various ways. For example, we can adjust
the parameters of the estimation filter to achieve a sufficiently
low convergence rate. Alternatively, in cases of high noise and
variability, we can artificially introduce nonzero information
values across the terrain so as to promote exploration as in the
simulation and experimental examples.

VI. Simulation Results

A. Ergodic Exploration and Coverage

1) Motivating example - Uniform area coverage with occlu-
sions: In this first example, we control an agent to explore an
occluded environment in order to achieve a uniform probability
of detection across a square terrain, using Algorithm 1. The
shaded regions (occlusions) O comprise a circle and a rect-
angle in Fig. 3 and they exhibit zero probability of detection
i.e., Φ(x) = 0∀x ∈ O. Such situations can arise in vision-based
UAV exploration with occlusions corresponding to shaded
areas that limit visibility, or in surveillance by mobile sensors
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Fig. 3. Ergodic area coverage in an occluded environment (Algorithm 1 with
time horizon T = 0.1s and sampling time ts = 0.02s). White regions in
Φ(x) (top row) indicate low to no probability of detection (occlusions), for
example due to sensor failure or physical entities obscuring visibility. Note
that occlusions are not obstacles that should be completely avoided. Bottom
row shows the spatial statistics Φi

x(x) of the followed trajectory from t = 0
to t = ti calculated as Φi

x(x) =
∑

k∈K
{
Λkci

kFk(x)
}

with ν = 2 and K = 20.
By the end of the simulation at t = 60, the trajectory spatial statistics Φ60

x (x)
closely match the initial terrain spatial distribution Φ(x), accomplishing the
objective of ergodicity as expected. The ergodic cost (7) is shown to decrease
on logarithmic scale over time. Small cost fluctuations result from numerical
errors.

where the shaded regions can be thought of as areas where
no sensor measurements can be made due to foliage. It is
assumed that the agent has second-order dynamics with n = 4
states x = [x1, x2, x3, x4], m = 2 inputs u = [u1, u2], and
f (x, u) = [x2, u1, x4, u2] in (6). Forcing saturation levels are
set as umin = −50 and umax = 50.

Snapshots of the agent exploration trajectory is shown in
Fig. 3. As time progresses from t = 0 to t = 60 the spacing
between the trajectory lines is decreasing, meaning that the
agent successfully and completely covers the square terrain by
the end of the simulation. This is also reflected in the spatial
statistics of the performed trajectory that eventually closely
match the desired probability of detection. A similar example
was used by Mathew and Mezić in [73] for evaluation of their
ergodic control method that was specific to double integrator
systems. Our results serve as proof of concept, showing that
Algorithm 1—although designed to control complex nonlin-
ear systems—can still handle simple systems efficiently and
achieve full area coverage, as expected.

2) Multi-agent aerial exploration: The previous example
showed how RHEE can perform area coverage using the
simple double-integrator dynamic model. Here and for the
rest of this section, we will utilize a 12-dimensional quadrotor
model to demonstrate the algorithm’s efficiency in planning
trajectories for agents governed by higher-dimensional non-
linear dynamics. The search domain is two-dimensional with
ν = 2. The quadrotor model [97]–[99] has 12 states (n = 12 in
system (6)), consisting of the position [xq, yq, zq] and velocity
[ẋq, ẏq, żq] of its center of mass in the inertial frame, and the
roll, pitch, yaw angles [φq, θq, ψq] and corresponding angular
velocities [φ̇q, θ̇q, ψ̇q] in the body frame. Each of the 4 motors
produces the force ui, i = 1, ..., 4 (m = 4 in (6)), which
is proportional to the square of the angular speed, that is,
ui = kω2. Saturation levels are set as umin = 0 and umax = 12
in (6). Nominal control unom

i from equation (10) in Algorithm 1
is a PD (proportional-derivative) controller that regulates the
agent’s height to maintain a constant value.

We use five aerial vehicles to collectively explore a terrain
based on a constant distribution of information. The result-
ing agent trajectories and corresponding spatial statistics are
shown in Fig. 4. It is important to notice here that each agent
is not separately assigned to explore a single distribution peak
(as a heuristic approach would entail) but rather all agents are
provided with the same spatial distribution as a whole and their
motion is planned simultaneously in real time to achieve best
exploration on the areas with highest probability of detection.

This simulation example was coded in C++ and executed at
a Linux-based laptop with an Intel Core i7 chipset. Assuming
that each quadrotor executes Algorithm 1 in parallel, the
execution time of the 120s simulation is approximately ∼ 70s
per quadrotor, running about two times faster than real time.

B. Ergodic Coverage and Target Localization

In the following examples, we will use the 12-dimensional
nonlinear quadrotor model from the previous section to per-
form motion planning for vision-based static and moving target
localization with bearing-only sensing through a gimbaled
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∑
k{Λk[ 1

t−terg
0

∫ t
terg
0

Fk(xζ (s))ds − φk]2} for the ergodic trajectories xζ (t) with

ζ = 1, ...,N. Total ergodicity of the collective trajectories is calculated as
∑

k{Λk[ 1
t−terg

0

∫ t
terg
0

∑N
j=1 Fk(x j(s))ds− φk]2}. A video representation of this exploration

process is available in the supporting multimedia files.
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Fig. 5. Bearing-only localization of a moving target. Top: Top-view snapshots of the UAV trajectory (red curve) where the true target position (blue X-mark)
and path (blue curve), and the estimated target position (green X-mark) are also illustrated. The quadrotor can acquire vision-based measurements with a
limited range of view that is illustrated as a light red circle around the current UAV position. No prior behavior model of the target motion is available for
estimation using EKF. The limited sensor range serves as an occlusion as it naturally occludes large regions while taking measurements. The highest order
of coefficients is K = 10. The quadrotor explores the areas with highest information to acquire useful measurements. Although the geometry of the paths is
not predefined, the resulting trajectories follow a cyclic, swirling pattern around the true target position, as one would naturally expect — like in standoff
tracking solutions for example [26]. Bottom: The target estimate (solid blue curve) is compared to the real target position (dashed blue curve) along with an
illustration of the belief covariance (light blue area around estimated position) over time. The target belief converges to a normal spatial distribution with the
mean at the true target position and low covariance. A video representation of this exploration process is available in the supporting multimedia files.

camera that always faces in the direction of gravity. Represent-
ing the estimate of target’s position as a Gaussian probability
distribution function, we use an Extended Kalman Filter (EKF)
[100], [101] to update the targets’ position belief based on the
sensor measurements. We use EKF because it is fast, easy
to implement and regularly used in real-world applications

but any other estimator (e.g., the Bayesian approaches in
[102]) can be used instead with no change to the process
of Algorithm 2. Note for example that reliable bearings-
only estimation with EKF cannot be guaranteed as previous
results indicate [103], so it might be desirable to use a more
specialized estimator.
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It is assumed that the camera uses image processing
techniques (e.g., [104]) to take bearing-only measurements,
measuring the azimuth and elevation angles from current UAV
position [xq, yq, zq] to the detected target’s position [xτ, yτ, zτ].
The corresponding measurement model is z in (23) with

Υ([xτ, yτ, zτ], [xq, yq, zq]) =

 tan−1
( xq−xτ

yq−yτ

)
tan−1

( zq−zτ√
(xq−xτ)2+(yq−yτ)2

)  . (27)

The measurement noise covariance is Σ = diag{[0.1, 0.1]} in
radians. As in the previous examples, a PD controller serves
as nominal control, regulating UAV height zq. The target
transition model for EKF is expressed as αi = F (αi−1) + ε
with ε representing zero mean Gaussian noise with covariance
C, i.e., ε ∼ N(0,C). We assume that no prior behavior model
of the target motion is available and thus the transition model
is F (αi−1) ≡ αi−1. Importantly, the camera sensor has limited
range of view, completely disregarding targets that are outside
of a circle centered at the UAV position with constant radius
(as depicted in Fig. 5).

1) Bearing-only localization of a moving target with lim-
ited sensor range: Here, we demonstrate an example where
a quadrotor is ergodically controlled to localize a moving
target, with frequency of measurements fm = 20Hz and
frequency of EID update at fφ = 10Hz. The 3D target position
[xτ, yτ, zτ] is localized so that M = 3. We assume that no
prior behavior model of the target motion is available and
thus the transition model is F(αk−1) ≡ αk−1 with covariance
C = diag{[0.001, 0.001, 0.001]} (i.e modeled as a diffusion
process). Top-view snapshots of the UAV motion are shown
in Fig. 5. The agent detects the target without prior knowledge
of its position, whereafter it closely tracks the target by
applying Algorithm 2 to adaptively explore a varying expected
information density Φ(x). Although the geometry of the paths
is not predefined, the resulting trajectories follow a cyclic,
swirling pattern around the true target position, as one might
expect.

This simulation example was coded in C++ and executed at
a Linux-based laptop with an Intel Core i7 chipset. The execu-
tion time of the 45s simulation is approximately ∼ 25s. This

result is representative of the algorithm’s computational cost
and execution time, because it involves a high-dimensional,
nonlinear system. Localization is slower than pure exploration,
mainly because it requires calculation of the expected infor-
mation density every tφ seconds using the expressions (24),
(25) and (26).

2) Multi-agent simultaneous terrain exploration and tar-
get localization: This simulation example is designed to
demonstrate search for undetected targets (exploration) and
localization of detected moving targets simultaneously, using
two agents. A random number of targets must be detected
(exploration) and tracked (target localization) by two UAVs.
Note that here we do not address the issue of cooperative
sensing filters [105] for multiple sensor platforms: instead, we
use a centralized Extended Kalman Filter for simplicity but
any filter that provides an estimate of the target’s state can be
employed instead.

Top-view snapshots of the multi-agent exploration trajec-
tories are given in Fig. 6. At t = 0 when 3 targets are
present in the terrain but none of them have been detected
by the agents, the EID is a uniform distribution across the
workspace. Information density is set at Φ(x) = 0.5 for all
x (gray coloring). By t = 5 all present (three) targets have
been detected and the EID map is computed based on Fisher
Information using expressions (24), (25) and (26). Information
density is still set at a middle level (instead of zero) in areas
where information of target measurements is zero. This serves
to promote exploration in addition to localization. In this
special case, the terrain spatial distribution Φ(x) is defined
to encode both probability of detection (for the undetected
targets) and expected information density (for the detected
targets). At t = 7 two more targets appear and by t = 14
five targets have been detected. Here, we assume that no more
than five targets are to be detected and thus, after the fifth
target detection, the spatial distribution only encodes expected
information density (note that Φ(x) = 0 for all x where
information from measurements is zero).

This simulation example was coded in C++ and executed at
a Linux-based laptop with an Intel Core i7 chipset. Assuming
that each quadrotor executes Algorithm 1 in parallel, the



Fig. 7. (a) The sphero SPRK robot is shown in the experimental setup. The
internal mechanism shifts the center of mass by rolling and rotating within the
spherical enclosure. RGB LEDs on the top of the sphero SPRK are utilized to
track the odometry of the robot through a webcam using OpenCV for motion
capture. The Robot Operating System (ROS, available online [106]) is used
to transmit and collect data at 20 Hz. A projection (b) is used to project the
targets onto the experimental floor shown in (c).
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Fig. 8. Twenty trials of localizing 2 random targets using the sphero SPRK
robot at a 1m×1m terrain with simulated limited sensor range of 0.2m.
a) Top-view snapshots of the robot trajectories (black) across trials. The
algorithm robustly localizes random pairs of static targets (shown in red)
by performing cyclic trajectories around the targets (as required for useful
bearing-only measurements), without path specification—the behavior results
naturally from the objective of improving ergodicity with respect to the
expected information density. b) The distance of the mean target estimate
from true target position over time across all trials that were complete by the
first 50 seconds. Distance remains constant for as long as the target is outside
of the sensor range or it has not be detected yet. c) Bar graphs showing time
to localization of first target (top), of second target (center) and relative time
that the second target was localized after the first target (bottom), across trials.
The localization of a target is defined to be successful when the `2-norm of
the difference between the target’s position belief and the real target position
falls below 0.05, i.e., ‖αbelie f − αtrue‖2 < 0.05. In 100% of the trials, the first
target is localized within 40 seconds. In 80% of the trials, both targets are
localized by the first 40 seconds. In 75% of the trials, the waiting time between
localizing the first and second target is less than 20 seconds. Even when target
detection is delayed or the EKF fails to converge in a few iterations, the robot
is successful in localizing all the targets by 100 seconds.

execution time is approximately ∼ 30s per quadrotor.
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Fig. 9. The sphero SPRK robot robustly localizes increasing number of mov-
ing targets with bearing-only measurements. The targets’ belief—represented
as a black-and-white spatial distribution—remains close to the actual targets’
location for all 280 seconds. The robot trajectories of a 40-second time
window are also shown in red.

VII. Experimental Results

We perform two bearing-only target localization experi-
ments using a sphero SPRK robot [17] in order to verify real-
time execution of Algorithm 1 and showcase the robustness
of the algorithm in bearing-only localization. In addition
to the robot, the experimental setup involves an overhead
projector and a camera, and is further explained in Fig. 7.
The overhead camera is used to acquire sensor measurements
of current robot and target positions that are subsequently
transformed to bearing-only measurements as in (27). We
additionally simulate a limited sensor range as a circle of 0.2
m radius around the current robot position. As in the quadrotor
simulation examples, we use an Extended Kalman Filter for
bearing-only estimation. In all the following experiments, the
ergodic controller runs at approaximately 10Hz frequency, i.e.,
ts = 0.1s in Algorithm 1.

A. Experiment 1

In this Monte Carlo experiment, we perform twenty trials
of localizing two static targets randomly positioned in the
terrain. For each trial, we consider the localization of a target
successful when the `2-norm of the difference between the
target’s position belief and the real target position falls below
0.05, i.e., ‖αbelie f−αtrue‖2 < 0.05. To promote variability, initial
mean estimates of target positions are also randomly selected
for each trial. Initial distribution Φ(x) is uniform inside the
terrain boundaries.

The robot simultaneously explores the terrain for undetected
targets and localizes detected targets. As in the simulation
example of Section VI-B2, we achieve simultaneous explo-
ration and localization by setting the probability of detection
(i.e., distribution Φ(x)) across the terrain at a nonzero value.
For most trials, targets are successfully localized in less than
60 seconds. We see that even in the few cases when target
detection is delayed due to limited sensor range or when the
EKF fails to converge (as expected for bearing-only models
[103]) (see trials with time to second-target localization higher
than 60s in Fig. 8c), the robot manages to eventually localize
both targets by fully exploring the EID instead of moving
towards the EID maximum as in information maximization
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Fig. 10. Localization of 3 moving targets using the sphero SPRK robot. The target estimates (solid curves) are compared to the real target locations (dashed
curves) along with an illustration of the belief covariance (shaded area around estimated position) over time. Because the targets are constantly moving and
the sensor range is limited, the standard deviation of the targets belief fluctuates as time progresses. The agent localizes each target alternately; once variance
on one target estimate is sufficiently low, the agent moves to the next target. Importantly, this behavior is completely autonomous, resulting naturally from the
objective of improving ergodicity. Note that we can only decompose the targets belief into separate target estimates because of our choice to use EKF where
each target’s belief is modeled as a normal distribution. This would not be necessarily true, had we used a different estimation filter (e.g., particle filter).
Bottom row shows top-view snapshots of the robot and target’s motion. A video of this experiment is available in the supporting multimedia files.

techniques. This result validates Proposition 2 that provides
convergence guarantees even with poor target estimates and
limited sensor range.

B. Experiment 2

With this experiment, we aim to demonstrate the robustness
of the algorithm in localizing increasing number of moving
targets. The resulting robot trajectories for localizing 1, 2 and
3 targets are shown in Fig. 9, while Fig. 10 shows the results
for localizing 3 targets moving at a different pattern. As in the
simulation examples, the motion of each target is modeled
as a diffusion process. Note that because the targets are
constantly moving and the sensor range is limited, the standard
deviation of the targets belief fluctuates as time progresses
(see Fig. 10). The agent localizes each target alternately;
once variance on one target estimate is sufficiently low, the
agent moves to the next target. Importantly, this behavior is
completely autonomous, resulting naturally from the objective
of improving ergodicity.

VIII. Discussion

A. Number of Fourier coefficients

In this subsection, we briefly discuss the effect of K, the
highest order of coefficients φk in (2) and ck in (3), on
the algorithm’s performance. First, note that, because both
the trajectory statistics and the desired search density are
parameterized by the same number of Fourier coefficients K,

all choices of K lead to stability as defined in Definition 5.
However, since convergence only concerns the trajectory
statistics, i.e., ck(xν) − φk(xν)→ 0, and not the trajectory itself,
different choices of K can affect the computed trajectories.

Figure 11 shows the spatial statistics of a semi-circular
trajectory with constant velocity, represented with an increas-
ing number of Fourier coefficients. The representation of
the agent’s trajectory becomes more diffuse, as K decreases.
If the search density has fine-scale details, small K might
mean that the agent will disregard the details despite meeting
the ergodicity requirement. In addition, as expected, there
is a diminishing returns property: the rate of change in the
algorithm output decreases as K is increased (because the
coefficients in the ergodic metric become small as K becomes
large). We can see this in Fig. 11 where the trajectory spatial
statistics for K = 30 have nearly converged to the original
agent trajectory shape.

Agent 
trajectory Trajectory spatial statistics

K=3 K=5 K=10 K=30

Fig. 11. The Fourier-parameterized spatial statistics of the semi-circular
trajectory shown on the left, calculated for different values of the highest
order of coefficients K. Yellow indicates high statistical coverage and blue is
low to no coverage.



To sum up, our choice of K depends on how refined the
given search density is. In the simulation and experimental
results presented here, we found that a minimum K = 5 is
sufficient in completing the assigned tasks.

B. Convergence Rate

Note from the stability analysis in Section IV-B that Al-
gorithm 1 is formulated so that an upper bound on the
convergence rate is satisfied in equation (20), determined
by M(x(·), t). Although M is state-dependent, we may as-
sume an additional constraint D(t) in Assumption 2 so that
L(x(·), u, t) ≥ M(x(·), t) ≥ D(t). This imposes a time-
dependent convergence rate of the form JE

(
x∗i (·)

)
−JE

(
x∗i−1(·)

)
≤

−
∫ ti

ti−1
D(t) dt in (20). An upper-bound on convergence rate is

then the highest rate, determined by D(t), for which there
always exists a single control action of finite duration that
satisfies the constraint requirement, so that open-loop problem
(8) attains a solution at each time step.

One way to satisfy this requirement is by manipulating the
sampling time tS . Our theoretic results in [93] show that—
at least, for Bolza form control objectives—as long as the
contractive constraint depends on ts, there exists ts as ts → 0
that guarantees that there is always a finite-duration single
control action to satisfy the constraint requirement.

IX. Conclusions

In this paper, we exploited the advantages of hybrid sys-
tems theory to formulate a receding-horizon ergodic control
algorithm that can perform real-time coverage and target
localization, adaptively using sensor feedback to update the
expected information density. In target localization, this er-
godic motion planning strategy controls the robots to track
a non-parameterized information distribution across the ter-
rain instead of individual targets independently, thus being
completely decoupled from the estimation process and the
number of targets. We demonstrated—in simulation with a 12-
dimensional UAV model and in experiment using the sphero
SPRK robot—that ergodically controlled robotic agents can
reliably track moving targets in real time based on bearing-
only measurements even when the number of targets is not
known a priori and the targets’ motion is only modeled as
a diffusion process. Finally, the simulation and experiment
examples served to highlight the importance of and to verify
stability of the ergodic controls with respect to the expected
information density, as proved in our theoretical results.

Appendix A
Proof

The proof of Proposition 1 is as follows. To make
explicit the dependence on action A, we write inputs
u : R × R+ × R × U → U of the form of u∗i (t) in (8) as

u(t; λA, τA, uA) =

uA τA ≤ t ≤ τA + λA

ude f
i else.

When λA = 0, it is u(t; 0, ·, ·) ≡ ude f
i , i.e., no ac-

tion is applied. Accordingly, we define J̄E(λA, τA, uA) :=

JE(x(t; t0, x0, u(t; λA, τA, uA))) so that the performance cost de-
pends directly on the application parameters of an action A.

Assuming terg
0 = t0 and defining β := 1

ti+T−t0

ti+T∫
t0

Fk(x(t))dt−φk,

it is

∂JE
∂λ

=
∂JE
∂β

∂β

∂λ
(28)

where

∂JE
∂β

= 2Q
∑
k∈K

Λk

[ 1
ti + T − t0

ti+T∫
t0

Fk(x(σ))dσ

︸                             ︷︷                             ︸
ci

k

−φk

]
(29)

and
∂β

∂λ
=

1
ti + T − t0

ti+T∫
τ

∂Fk(x(t))
∂x(t)

∂x(t)
∂λ

dt (30)

where the integral boundary changed from t0 to τ because the
derivative of x(t) with respect to λ is zero when t < τ. Then,
expression (28) can be rearranged, pulling ∂JE

∂β
into the integral

over t, and switching the order of the integral and summation,
to the following:

∂JE
∂λ

=

ti+T∫
τ

2Q
ti + T − t0

∑
k∈K

{
Λk

[
ci

k − φk
]∂Fk(x(t))

∂x(t)

}
︸                                             ︷︷                                             ︸

`(t,x)

∂x(t)
∂λ

dt

(31)
with6

∂x(t)
∂λ

= Φ(t, τ)
[
f (τ, x(τ), uA) − f (τ, x(τ), ude f

i (τ))
]

(32)

where Φ(t, τ) is the state transition matrix of the linearized
system dynamics (6) with A = Dx f . Therefore,

∂JE
∂λ

=

ti+T∫
τ

`(t, x) ·Φ(t, τ)dt ·
[
f (τ, x(τ), uA)− f (τ, x(τ), ude f

i (τ))
]
.

(33)

Finally, notice that
ti+T∫
τ

`(t, x) · Φ(t, τ)dt is the convolution

equation for the system

ρ̇E = −`(t, x)T − Dx f
(
t, x, ude f

i

)T
ρE (34)

subject to ρE(ti + T ) = 0

where ` is defined in (31). Therefore, we end up with the
expression for the mode insertion gradient of the ergodic cost
at time τ:

∂JE
∂λ

∣∣∣∣∣
τ

= ρE(τ)
[
f (τ, x(τ), uA) − f (τ, x(τ), ude f

i (τ))
]
.s (35)
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[62] R. Anderson and D. Milutinović, “A stochastic approach to Dubins
feedback control for target tracking,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2011, pp. 3917–3922.

[63] J. R. Spletzer and C. J. Taylor, “Dynamic sensor planning and control
for optimally tracking targets,” The International Journal of Robotics
Research, vol. 22, no. 1, pp. 7–20, 2003.

[64] S. Zhu, D. Wang, and C. B. Low, “Ground target tracking using
UAV with input constraints,” Journal of Intelligent & Robotic Systems,
vol. 69, no. 1-4, pp. 417–429, 2013.

[65] U. Zengin and A. Dogan, “Real-time target tracking for autonomous
UAVs in adversarial environments: A gradient search algorithm,” IEEE
Transactions on Robotics, vol. 23, no. 2, pp. 294–307, 2007.

[66] P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned
aerial vehicle for target tracking and obstacle avoidance in complex
dynamic environment,” Aerospace Science and Technology, vol. 47,
pp. 269–279, 2015.

[67] P. Tokekar, J. Vander Hook, and V. Isler, “Active target localization for
bearing based robotic telemetry,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011, pp. 488–493.

[68] S. M. Ross, R. G. Cobb, and W. P. Baker, “Stochastic real-time optimal
control for bearing-only trajectory planning,” International Journal of
Micro Air Vehicles, vol. 6, no. 1, pp. 1–27, 2014.

[69] D. B. Barber, J. D. Redding, T. W. McLain, R. W. Beard, and C. N.
Taylor, “Vision-based target geo-location using a fixed-wing miniature
air vehicle,” Journal of Intelligent and Robotic Systems, vol. 47, no. 4,
pp. 361–382, 2006.

[70] L. Ma and N. Hovakimyan, “Cooperative target tracking in balanced
circular formation: Multiple UAVs tracking a ground vehicle,” in
American Control Conference, 2013, pp. 5386–5391.

[71] S. A. Quintero, M. Ludkovski, and J. P. Hespanha, “Stochastic optimal
coordination of small UAVs for target tracking using regression-based
dynamic programming,” Journal of Intelligent & Robotic Systems,
vol. 82, no. 1, pp. 135–162, 2016.

[72] G. Gu, P. Chandler, C. Schumacher, A. Sparks, and M. Pachter, “Op-
timal cooperative sensing using a team of UAVs,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 42, no. 4, pp. 1446–1458,
2006.
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