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Here we provide a detailed description of the implementation of our algorithm
including dynamic models used and weight parameters.

1 Shape Estimation Parameters

Dynamics and Equilibrium Policy

In this example, we used cart double pendulum with dynamics given in [1] with
a sampling rate of 500 Hz. An approximate dynamic model is used by linearizing
the nonlinear dynamics about the inverted equilibrium. The stabilizing task Jtask
is given as

Jtask =

∫ tt+T

ti

x>Qx+ u>Rudt (1)

where
Q = diag(0, 50, 50, 50, 700, 700) R = 0.01

are the weights for the state and control respectively, and T = 0.2s is the time
horizon. A linear quadratic regulator (LQR) controller is computed using Q and
R and the approximate dynamics linearized about x0 = 0 ∈ R6 and u0 = 0.

KL-Divergence and Modeling Parameters

A Gaussian process is used with a radial basis function where we solve for the
characteristic lengths by maximizing the log likelihood with respect to the data
set. We fix the data set to have a memory of 100 points which we prune based
on an importance measure. The Σ-approximate time-averaged statistics are cal-
culated using Σ = 0.1 × I ∈ R2 where the search space is the global x − y
position. Here we recall the whole trajectory into the past making tr = 0.2. The
regularization parameter R that bounds µ? to µ(x) is given as R = 20.

2 Quadrotor State-Space Exploration

Dynamics and Equilibrium Policy

In this example we use a 22-degree of freedom quadcopter defined in [2] with
sampling rate of 200 Hz. The states for the quadcopter are given by

x = [g, ω, v]
>
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where g ∈ SE(3) is the transformation matrix and ω, v ∈ R3 are the angular
and linear body velocities. The approximate dynamics are computed using a
linearization about x0 = [I,0,0]

>
, u0 = 0 ∈ R4. A LQR policy is generated

using the objective defined in 1 where

Q = 10× I ∈ R22 R = 0.1× R4

and the elements in Q corresponding to the height is set to 100. We set the
time horizon as T = 0.1s. We specify a decaying weight on the KL-divergence
measure as 100γ where γ = 0.995i+1 where i is the ith iteration of the algorithm.

KL-Divergence and Modeling Parameters

The Gaussian process models the body angular and linear velocity and the in-
teraction with the control input. A radial basis function is used for the Gaus-
sian process with parameters Σ = 0.01 × I ∈ R10 and a fixed data-set size
of 80 points. The Σ-approximate time-averaged statistics are calculated using
Σ = 0.1× I ∈ R22 where the search space is the state-space. Here we recall the
tr = 0.1s in the past trajectory.. The regularization parameter R that bounds
µ? to µ(x) used is R = 104 × I ∈ R4.

3 Half-Cheetah Stable Exploration

Dynamics and Equilibrium Policy

In this example, we use the half-cheetah dynamical system defined in the Ro-
boschool environment [3] with 22 dimensional state and 6 dimensional control
input space. A linear policy is generated using [4] which maintains upright pos-
ture for the half-cheetah robot. We collected the state-action data during training
of the equilibrium policy and created an approximate linear dynamic model us-
ing least squares. The system is sampled at 0.01s intervals and and horizon of
T = 0.1s is used. The task objective is defined as

Jtask =

∫ ti+T

ti

x2height + 0.01x>jointsxjoints + x2pitch + 0.01u>udt

which encourages staying upright.

KL-Divergence and Modeling Parameters

The Gaussian process model used to predict the dynamics of the half-cheetah
used a radial basis function with an empirically determined variance of Σ =
200× I ∈ R28. We fixed the data set to 40 data points which is pruned as more
informative data is collected. The Σ-approximate time-averaged statistics are
calculated using Σ = 0.1×I ∈ R28. The time remembered into the past trajectory
is defined as tr = 0.2s. A weight of 100 is applied to the KL-divergence weight
in the objective. Last, the regularization parameter used to bound µ? is defined
as R = 0.1× I ∈ R6.
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Forward Running

During the testing phase of the learned dynamic model of the half-cheetah
we used model-predictive control to maximize the forward velocity of the half-
cheetah. To achieve this, we minimized the objective

Jtask =

∫ t+T

t

x2height − 2.0xforward vel + 0.01u>u+ x2pitchdt (2)

where T = 0.2s. The objective was minimized using [5] for both the learned
model using motor babble and the learned model using our method for active
exploration. A regularization parameter is set for the control input as R =
1000× I ∈ R6.
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