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Abstract. This paper addresses the problem of efficiently computing higher-
order variational integrators in simulation and trajectory optimization of mechan-
ical systems as those often found in robotic applications. We develop O(n) al-
gorithms to evaluate the discrete Euler-Lagrange (DEL) equations and compute
the Newton direction for solving the DEL equations, which results in linear-time
variational integrators of arbitrarily high order. To our knowledge, no linear-time
higher-order variational or even implicit integrators have been developed before.
Moreover, anO(n2) algorithm to linearize the DEL equations is presented, which
is useful for trajectory optimization. These proposed algorithms eliminate the bot-
tleneck of implementing higher-order variational integrators in simulation and
trajectory optimization of complex robotic systems. The efficacy of this paper is
validated through comparison with existing methods, and implementation on var-
ious robotic systems—including trajectory optimization of the Spring Flamingo
robot, the LittleDog robot and the Atlas robot. The results illustrate that the same
integrator can be used for simulation and trajectory optimization in robotics, pre-
serving mechanical properties while achieving good scalability and accuracy.

1 Introduction

Variational integrators conserve symplectic form, constraints and energetic quan-
tities [1–6]. As a result, variational integrators generally outperform the other types of
integrators with respect to numerical accuracy and stability, thus permitting large time
steps in simulation and trajectory optimization, which is useful for complex robotic sys-
tems [1–6]. Moreover, variational integrators can also be regularized for collisions and
friction by leveraging the linear complementarity problem (LCP) formulation [7, 8].

The computation of variational integrators is comprised of the discrete Euler-Lagra-
nge equation (DEL) evaluation, the descent direction computation for solving the DEL
equations and the DEL equation linearization. The computation of these three phases
of variational integrators can be accomplished with automatic differentiation and our
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prior methods [2,4], both of which areO(n2) to evaluate the DEL equations andO(n3)
to compute the Newton direction and linearize the DEL equations for an n-degree-of-
freedom mechanical system. Recently, a linear-time second-order variational integrator
was developed in [9], which uses the quasi-Newton method and works for small time
steps and comparatively simple mechanical systems.

Higher-order variational integrators are needed for greater accuracy in predicting
the dynamic motion of robots [10, 11]. However, the computation of higher-order vari-
ational integrators has rarely been addressed. The quasi-Newton method in [9] only
applies to second-order variational integrators, and while automatic differentiation and
our prior methods [2, 4] are implementable for higher-order variational integrators, the
complexity increases superlinearly as the integrator order increases.

In this paper, we address the computation efficiency of higher-order variational in-
tegrators and develop: i) anO(n) method for the evaluation of the DEL equations, ii) an
O(n) method for the computation of the Newton direction, and iii) anO(n2) method for
the linearization of the DEL equations. The proposed characteristics i) – iii) eliminate
the bottleneck of implementing higher-order variational integrators in simulation and
trajectory optimization of complex robotic systems, and to the best of our knowledge,
no similar work has been presented before. In particular, we believe that the resulting
variational integrator from i) and ii) is the first exactly linear-time implicit integrator of
third or higher order for mechanical systems.

The rest of this paper is organized as follows. Section 2 reviews higher-order vari-
ational integrators, the Lie group formulation of rigid body motion and the tree rep-
resentation of mechanical systems. Sections 3 and 4 respectively detail the linear-time
higher-order variational integrator and the quadratic-time linearization, which are the
main contributions of this paper. Section 5 compares our work with existing methods,
and Section 6 presents examples of trajectory optimization for the Spring Flamingo
robot, the LittleDog robot and the Atlas robot. The conclusions are made in Section 7.

2 Preliminaries and Notation

In this section, we review higher-order variational integrators, the Lie group for-
mulation of rigid body motion, and the tree representation of mechanical systems. In
addition, notation used throughout this paper is introduced accordingly.

2.1 Higher-Order Variational Integrators

In this paper, higher-order variational integrators are derived with the methods in
[1, 12, 13].

A trajectory (q(t), q̇(t)) where 0 ≤ t ≤ T of a forced mechanical system should
satisfy the Lagrange-d’Alembert principle:

δS = δ

∫ T

0

L(q, q̇)dt+

∫ T

0

F(t) · δqdt = 0 (1)

in which L(q, q̇) is the system’s Lagrangian and F(t) is the generalized force. Provided
that the time interval [0, T ] is evenly divided intoN sub-intervals with∆t = T/N , and
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each q(t) over [k∆t, (k+1)∆t] is interpolated with s+1 control points qk,α = q(tk,α)
in which α = 0, 1, · · · , s and k∆t = tk,0 < tk,1 < · · · < tk,s = (k + 1)∆t, then
there are coefficients bαβ (0 ≤ α, β ≤ s) such that

q̇(tk,α) ≈ q̇k,α =
1

∆t

s∑
β=0

bαβqk,β . (2)

In this paper, we assume that the quadrature points of the quadrature rule are also tk,α

though our algorithms in Sections 3 and 4 can be generalized for any quadrature rules.
Then the Lagrange-d’Alembert principle Eq. (1) is approximated as

δS ≈
N−1∑
k=0

s∑
α=0

wα
[
δL(qk,α, q̇k,α) + F(tk,α) · δqk,α

]
·∆t = 0, (3)

in which wα are weights of the quadrature rule used for integration. In variational inte-
grators, the discrete Lagrangian and the discrete generalized force are defined to be

Ld(qk,0, qk,1, · · · , qk,s) =

s∑
α=0

wαL(qk,α, q̇k,α)∆t (4)

and Fk,αd (tk,α) = wαF(tk,α)∆t, respectively. Note that by definition we have tk,s =
tk+1,0 and qk,s = qk+1,0, and as a result of Eq. (3), we obtain

pk + D1Ld(qk) + Fk,0d = 0, (5a)

Dα+1Ld(qk) + Fk,αd = 0 ∀α = 1, · · · , s− 1, (5b)

pk+1 = Ds+1Ld(qk) + Fk,sd (5c)

in which pk is the discrete momentum, qk stands for the tuple (qk,0, qk,1, · · · , qk,α),
and Dα+1Ld is the derivative with respect to qk,α. Note that Eq. (5) is known as the
discrete Euler-Lagrangian (DEL) equations, which implicitly define an update rule
(qk,0, pk)→ (qk+1,0, pk+1) by solving sn nonlinear equations from Eqs. (5a) and (5b).
In a similar way, for mechanical systems with constraints h(q, q̇) = 0, we have

pk + D1Ld(qk) + Fk,0d +Ak,0(qk,0) · λk,0 = 0, (6a)

Dα+1Ld(qk) + Fk,αd +Ak,α(qk,α) · λk,α = 0 ∀α = 1, · · · , s− 1, (6b)

pk+1 = Ds+1Ld(qk) + Fk,sd , (6c)

hk,α(qk+1,α, q̇k+1,α) = 0 ∀α = 1, · · · , s (6d)

in which Ak,α(qk,α) is the discrete constraint force matrix and λk,α is the discrete
constraint force.

The resulting higher-order variational integrator is referred as the Galerkin integra-
tor [1, 12, 13], the accuracy of which depends on the number of control points as well
as the numerical quadrature of the discrete Lagrangian. If there are s+ 1 control points
and the Lobatto quadrature is employed, then the resulting variational integrator has an
accuracy of order 2s [12, 13]. The Galerkin integrator includes the trapezoidal varia-
tional integrator and the Simpson variational integrator as shown in Examples 1 and 2,
the DEL equations of which are given by Eqs. (5) and (6).
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Example 1. The trapezoidal variational integrator is a second-order integrator with two
control points qk = (qk,0, qk,1) such that qk,0 = q

(
k∆t

)
and qk,1 = q

(
(k + 1)∆t

)
,

q̇k,0 = q̇k,1 = qk,1−qk,0
∆t , and Ld(qk) = ∆t

2

[
L(qk,0, q̇k,0) + L(qk,1, q̇k,1)

]
.

Example 2. The Simpson variational integrator is a fourth-order integrator with three
control points qk = (qk,0, qk,1, qk,2) in which qk,0 = q

(
k∆t

)
, qk,0 = q

(
(k + 1

2 )∆t
)

and qk,2 = q
(
(k + 1)∆t

)
, q̇k,0 = 4qk,1−3qk,0−qk,2

∆t , q̇k,1 = qk,2−qk,0
∆t and q̇k,2 =

qk,0+3qk,2−4qk,1
∆t , and Ld(qk) = ∆t

6

[
L(qk,0, q̇k,0) + 4L(qk,1, q̇k,1) + L(qk,2, q̇k,2)

]
.

2.2 The Lie Group Formulation of Rigid Body Motion

The configuration of a rigid body g = (R, p) ∈ SE(3) can be represented as a 4×4

matrix g =

[
R p
0 1

]
in which R ∈ SO(3) is a rotation matrix and p ∈ R3 is a position

vector. The body velocity of the rigid body v = (ω, vO) ∈ TeSE(3) is an element of the
Lie algebra and can be represented either as a 6×1 vector v = (g−1ġ)∨ =

[
ωT vTO

]
or a

4×4 matrix v̂ = g−1ġ =

[
ω̂ vO
0 0

]
in which ω = (ωx, ωy, ωz) ∈ TeSO(3) is the angular

velocity, vO is the linear velocity, ω̂ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ∈ R3×3, and the hat “∧” and

unhat“∨” are linear operators that relate the vector and matrix representations. The same
representation and operators also apply to the spatial velocity v = (ω, vO) ∈ TeSE(3),
whose 6× 1 vector and 4× 4 matrix representations are respectively v = (ġg−1)∨ and
v̂ = ġg−1.

In the rest of this paper, if not specified, vector representation is used for TeSE(3),
such as v, v, etc., and the adjoint operators Adg and adv : TeSE(3) → TeSE(3) can

be accordingly represented as 6× 6 matrices Adg =

[
R 0
p̂R R

]
and adv =

[
ω̂ 0
v̂O ω̂

]
such

that v = Adgv and adv1v2 = (v̂1v̂2 − v̂2v̂1)∨. For consistence, the dual Lie algebra
T ∗e SE(3) uses the 6 × 1 vector representation as well. As a result, the body wrench
F = (τ, fO) ∈ T ∗e SE(3) is represented as a 6 × 1 vector F =

[
τT fTO

]T
in which

τ ∈ T ∗e SO(3) is the torque and fO is the linear force so that 〈F, v〉 = FT v. Moreover,
we define the linear operator adDF : TeSE(3) → T ∗e SE(3) which is represented as a

6×6 matrix adDF =

[
τ̂ f̂O
f̂O 0

]
so that FT adv1v2 = vT2 adDF v1 = −vT1 adDF v2 for v1, v2∈

TeSE(3). The same representation and operators also apply to the spatial wrench F =
Ad−Tg F = (τ , fO) which is paired with the spatial velocity v = Adgv.

2.3 The Tree Representation of Mechanical Systems

In general, a mechanical system with n inter-connected rigid bodies indexed as
1, 2, · · · , n can be represented through a tree structure so that each rigid body has a
single parent and zero or more children [2, 14], and such a representation is termed
as tree representation. In this paper, the spatial frame is denoted as {0}, which is the
root of the tree representation, and we denote the body frame of rigid body i as {i},
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and the parent, ancestors, children and descendants of rigid body i as par(i), anc(i),
chd(i) and des(i), respectively. Since all joints can be modeled using a combination of
revolute joints and prismatic joints, we assume that each rigid body i is connected to
its parent by a one-degree-of-freedom joint i which is either a revolute or a prismatic
joint and parameterized by a real scalar qi ∈ R. As a result, the tree representation
is parameterized with n generalized coordinates q =

[
q1 q2 · · · qn

]T ∈ Rn. For each
joint i, the joint twist with respect to frame {0} and {i} are respectively denoted as
6 × 1 vectors Si =

[
sTi n

T
i

]T
and Si =

[
sTi n

T
i

]T
in which si, si are 3 × 1 vectors

corresponding to rotation and ni, ni are 3 × 1 vectors corresponding to translation.
Note that Si, si and ni are constant by definition. Moreover, Si and Si are related as
Si = AdgiSi where gi ∈ SE(3) is the configuration of rigid body i, and Ṡi = adviSi,
where vi ∈ TeSE(3) is the spatial velocity of rigid body i.

It is assumed without loss of generality in this paper that the origin of frame {i} is
the mass center of rigid body i, and j ∈ des(i) only if i < j, or equivalently j ∈ anc(i)
only if i > j.

The rigid body dynamics can be computed through the tree representation. The
configuration gi = (Ri, pi) ∈ SE(3) of rigid body i is gi = gpar(i)gpar(i),i(qi) in
which gpar(i),i(qi) = gpar(i),i(0) exp(Ŝiqi) is the rigid body transformation from frame
{i} to its parent frame {par(i)}, and the spatial velocity vi of rigid body i is vi =
vpar(i) +Si · q̇i. In addition, the spatial inertia matrix M i of rigid body {i} with respect
to frame {0} is M i = Ad−Tgi MiAd−1gi in which Mi = diag{Ii,miI} ∈ R6×6 is the
constant body inertia matrix of rigid body i, Ii ∈ R3×3 is the body rotational inertia
matrix, mi ∈ R is the mass and I ∈ R3×3 is the identity matrix.

In rigid body dynamics, an important notion is the articulated body [14]. In terms
of the tree representation, articulated rigid body i consists of rigid body i and all its
descendants j ∈ des(i), and the interactions with articulated body i can only be made
through rigid body i, which is known as the handle of the articulated body i.

In the last thirty years, a number of algorithms for efficiently computing the rigid
body dynamics have been developed based on tree representations and articulated bod-
ies [14–16], making explicit integrators have O(n) complexity for an n-degree-of-
freed-om mechanical system. Even though the same algorithms might be used for the
evaluation of implicit integrators, none of them can be used for the computation of the
Newton direction for solving implicit integrators. If the residue is rk, the Newton direc-
tion of an implicit integrator is computed as δqk = −J (qk)−1rk; however, the Jacobian
matrix J (qk) is usually asymmetric and indefinite, and has a size greater than n × n
for higher-order implicit integrators, which means that the computation of implicit inte-
grators is distinct from explicit integrators whose computation is simply a combination
of the algorithms in [14–16] with an appropriate integration scheme. Furthermore, the
computation of implicit integrators is much more complicated than the computation of
forward and inverse dynamics and out of the scope of those algorithms in [14–16].

3 The Linear-Time Higher-Order Variational Integrator

In this and next section, we present the propositions and algorithms efficiently com-
puting higher-order variational integrators, whose derivations are omitted due to space
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limitations. Though not required for implementation, we refer the reader to the supple-
mentary appendix of this paper [17] for detailed proofs.1

In the rest of this paper, if not specified, we assume that the mechanical system
has n degrees of freedom and the higher-order variational integrator has s + 1 control
points qk,α = q(tk,α) in which 0 ≤ α ≤ s. Note that the notation (·)k,α is used to
denote quantities (·) associated with qk,α and tk,α, such as qk,αi , gk,αi , vk,αi , etc.

3.1 The DEL Equation Evaluation

To evaluate the DEL equations, the discrete articulated body momentum and dis-
crete articulated body impulse are defined from the perspective of articulated bodies as
follows.

Definition 1. The discrete articulated body momentum µk,αi ∈ R6 for articulated body

i is defined to be µk,αi = M
k,α

i vk,αi +
∑
j∈chd(i) µ

k,α
j in which M

k,α

i and vk,αi are
respectively the spatial inertia matrix and spatial velocity of rigid body i.

Definition 2. Suppose F i(t) ∈ R6 is the sum of all the wrenches directly acting on
rigid body i, which does not include those applied or transmitted through the joints that
are connected to rigid body i. The discrete articulated body impulse Γ

k,α

i ∈ R6 for
articulated body i is defined to be Γ

k,α

i = F
k,α

i +
∑
j∈chd(i) Γ

k,α

j in which F
k,α

i =

ωαF i(t
k,α)∆t ∈ R6 is the discrete impulse acting on rigid body i. Note that F i(t),

F
k,α

i and Γ
k,α

i are expressed in frame {0}.

Remark 1. As for wrenches exerted on rigid body i, in addition to F i(t) which includes
gravity as well as the external wrenches that directly act on rigid body i, there are also
wrenches applied through joints, e.g., from actuators, and wrenches transmitted through
joints, e.g., from the parent and children of rigid body i in the tree representation.

It can be seen in Proposition 1 that µk,αi and Γ
k,α

i make it possible to evaluate the
DEL equations without explicitly calculating Dα+1Ld(qk) andFk,αd in Eqs. (5) and (6).

Proposition 1. If Qi(t) ∈ R is the sum of all joint forces applied to joint i and pk =[
pk1 p

k
2 · · · pkn

]T ∈ Rn is the discrete momentum, the DEL equations Eq. (5) can be
evaluated as

rk,0i = pki + S
k,0

i

T
·Ωk,0i +

s∑
β=0

a0βS
k,β

i

T
· µk,βi +Qk,0i , (7a)

rk,αi = S
k,α

i

T

·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T

· µk,βi +Qk,αi ∀α = 1, · · · , s− 1, (7b)

pk+1
i = S

k,s

i

T
·Ωk,si +

s∑
β=0

asβS
k,β

i

T
· µk,βi +Qk,si (7c)

1 In addition to the proofs, the supplementary appendix [17] also contains the complete O(n)
algorithms to compute the Newton direction for higher-order variational integrators.
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Algorithm 1 Recursive Evaluation of the DEL Equations

1: initialize gk,α0 = I and vk,α0 = 0
2: for i = 1→ n do
3: for α = 0→ s do
4: gk,αi = gk,αpar(i)g

k,α
par(i),i(q

k,α
i )

5: S
k,α
i = Ad

g
k,α
i
Si, M

k,α
i = Ad−T

g
k,α
i

MiAd−1

g
k,α
i

6: q̇k,αi = 1
∆t

s∑
β=0

bαβqk,βi , vk,αi = vk,αpar(i) + S
k,α
i · q̇k,αi

7: end for
8: end for
9: for i = n→ 1 do

10: for α = 0→ s do
11: µk,αi =M

k,α
i vk,αi +

∑
j∈chd(i)

µk,αj , Γ
k,α
i = F

k,α
i +

∑
j∈chd(i)

Γ
k,α
j

12:
13: Ω

k,α
i = wα∆t · adT

v
k,α
i

· µk,αi + Γ
k,α
i

14: end for
15: rk,0i = pki + S

k,0
i

T
Ω
k,0
i +

s∑
β=0

a0βS
k,β
i

T
· µk,βi +Qk,0i

16: for α = 1→ s− 1 do

17: rk,αi = S
k,α
i

T
Ω
k,α
i +

s∑
β=0

aαβS
k,β
i

T
· µk,βi +Qk,αi

18: end for

19: pk+1
i = S

k,s
i

T
Ω
k,s
i +

s∑
β=0

asβS
k,β
i

T
· µk,βi +Qk,si

20: end for

in which rk,αi is the residue of the DEL equations Eqs. (5a) and (5b), aαβ = wβbβα,

Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Γ

k,α

i , and Qk,αi = ωαQi(t
k,α)∆t is the discrete joint

force applied to joint i.

Proof. See [17, Section D.1]

In Eqs. (7a) and (7b), if all rk,αi are equal to zero, a solution to the variational
integrator as well as the DEL equations is obtained.

All the quantities used in Proposition 1 can be recursively computed in the tree rep-
resentation, therefore, we have Algorithm 1 that evaluates the DEL equations, which
essentially consists of s+ 1 forward passes from root to leaf nodes and s+ 1 backward
passes in the reverse order, thus totally takes O(sn) time. In contrast, automatic differ-
entiation and our prior methods [2, 4] take O(sn2) time to evaluate the DEL equations.

3.2 Exact Newton Direction Computation

From Eq. (5), the Newton direction δqk =
[
δqk,1

T
, · · · , δqk,sT

]T
∈ Rsn is com-

puted as δqk = −J k−1(qk)·rk in which J k(qk) ∈ Rsn×sn is the Jacobian of Eqs. (5a)
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and (5b) with respect to control points qk,1, · · · , qk,s, and rk ∈ Rsn is the residue of
evaluating the DEL equations Eqs. (5a) and (5b) by Proposition 1.

In this section, we make the the following assumption on F
k,α

i and Qk,αi , which is
general and applies to a large number of mechanical systems in robotics.

Assumption 1. Let u(t) be the control inputs of the mechanical system, we assume that
the discrete impulse F

k,α

i and discrete joint force Qk,αi can be respectively formulated

as F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α) and Qk,αi = Qk,αi (qk,αi , q̇k,αi , uk,α) in which uk,α =
u(tk,α).

If Assumption 1 holds andJ k−1(qk) exists, it can be shown that [17, Algorithm B.1]
computes the Newton direction for variational integrators in O(s3n) time.

Proposition 2. For higher-order variational integrators of unconstrained mechani-
cal systems, if Assumption 1 holds and J k−1(qk) exists, the Newton direction δqk =

−J k−1(qk) · rk can be computed with [17, Algorithm B.1] in O(s3n) time.

Proof. See [17, Section D.2].

In [17, Algorithm B.1], the forward and backward passes of the tree structure take
O(s2n) time, and the n computations of the s×smatrix inverse takesO(s3n) time, thus
the overall complexity of [17, Algorithm B.1] is O(s3n + s2n). In contrast, automatic
differentiation and our prior methods in [2, 4] take O(s2n3) time to compute J k(qk)

and another O(s3n3) time to compute the sn × sn matrix inverse J k−1(qk), and the
overall complexity is O(s3n3 + s2n3). Though the quasi-Newton method [9] is O(n)
time for second-order variational integrator in which s = 1, it requires small time steps
and can not be used for third- or higher-order variational integrators.

Therefore, both Algorithm 1 and [17, Algorithm B.1] have O(n) complexity for a
given s, which results in a linear-time variational integrator. Furthermore, Algorithm 1
and [17, Algorithm B.1] have no restrictions on the number of control points, which
indicates that the resulting linear-time variational integrator can be arbitrarily high or-
der. To our knowledge, this is the first exactly linear-time third- or higher-order implicit
integrator for mechanical systems.

3.3 Extension to Constrained Mechanical Systems

Thus far all our discussions of linear-time variational integrators have been re-
stricted to unconstrained mechanical systems. However, Algorithm 1 and [17, Algo-
rithm B.1] can be extended to constrained mechanical systems as well.

In terms of the the DEL equation evaluation, the extension to constrained mechan-
ical systems is immediate. From Eq. (6), we only need to add the constraint term
Ak,α(qk,α) · λk,α to the results of using Algorithm 1.

If the variational integrator is second-order and the mechanical system has m con-
straints, it is possible to compute the Newton direction δqk+1 and δλk in O(mn) +
O(m3) time using [17, Algorithm B.1]. In accordance with Eq. (6), δqk+1 and δλk

should satisfy J k(qk) · δqk+1 +Ak(qk) · δλk = −rkq and Dhk(qk+1, q̇k+1) · δqk+1 =
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−rkc in which rkq and rkc are equation residues. Then δqk+1 and δλk can be computed as

follows: i) compute δqk+1
r = −J k−1 · rkq with [17, Algorithm B.1] which takes O(n)

time; ii) compute J k−1 ·Ak by using [17, Algorithm B.1]m times which takesO(mn)

time; iii) compute δλk =
(
Dhk · J k · Ak

)−1
(rkc + Dhk · δqk+1

r ) which takes O(m3)

time; iv) compute δqk+1 = δqk+1
r − J k−1 ·Ak · δλk.

In regard to third- or higher-order variational integrators, if the constraints are of
hki (gk,αi , vk,αi ) = 0 or hki (qk,αi , q̇k,αi ) = 0 or both for each i = 1, 2, · · · , n, [17,
Algorithm B.1] can be used to compute the Newton direction δqk and δλk in a similar
procedure to the second-order variational integrator.

In next section, we will discuss the linearization of higher-order variational integra-
tors in O(n2) time.

4 The Linearization of Higher-Order Variational Integrators

The linearization of discrete time systems is useful for trajectory optimization, sta-
bility analysis, controller design, etc., which are import tools in robotics.

From Eqs. (5) and (6), the linearization of variational integrators is comprised of the
computation of D2Ld(qk), DFk,αd (tk,α) and DAk,α(qk,α). In most cases, DFk,αd (tk,α)
and DAk,α(qk,α) can be efficiently computed inO(n2) time, therefore, the linearization
efficiency is mostly affected by D2Ld(qk).

It is by definition that the Lagrangian of a mechanical system isL(q, q̇) = K(q, q̇)−
V (q) in which K(q, q̇) is the kinetic energy and V (q) is the potential energy, and from
Eq. (4), the computation of D2Ld(qk) is actually to compute ∂K

∂q̇2 , ∂
2K

∂q̇∂q , ∂
2K

∂q∂q̇ , ∂
2K
∂q2 and

∂V
∂q2 , for which we have Proposition 3 and Proposition 4 as follows.

Proposition 3. For the kinetic energy K(q, q̇) of a mechanical system, ∂2K
∂q̇2 , ∂2K

∂q̇∂q ,
∂2K
∂q∂q̇ , ∂

2K
∂q2 can be recursively computed with Algorithm 2 in O(n2) time.

Proof. See [17, Section D.3].

In the matter of potential energy V (q), we only consider the gravitational potential
energy Vg(q), and the other types of potential energy can be computed in a similar way.

Proposition 4. If g ∈ R3 is gravity, then for the gravitational potential energy Vg(q),
∂2Vg

∂q2 can be recursively computed with Algorithm 3 in O(n2) time.

Proof. See [17, Section D.4].

In regard to Proposition 4 and Algorithm 3, we remind the reader of the notation
introduced in Sections 2.2 and 2.3 thatmi ∈ R is the mass of rigid body i, pi ∈ R3 is the
mass center of rigid body i as well as the origin of frame {i}, and Si =

[
sTi n

T
i

]T ∈ R6

is the spatial Jacobian of joint i with respect to frame {0}.
If ∂K

∂q̇2 , ∂2K
∂q̇∂q , ∂2K

∂q∂q̇ , ∂
2K
∂q2 and ∂V

∂q2 are computed in O(n2) time, then according to
Eqs. (2) and (4), the remaining computation of D2Ld(qk,α) is simply the application

9



Algorithm 2 Recursive Computation of ∂
2K
∂q̇2 , ∂

2K
∂q̇∂q , ∂

2K
∂q∂q̇ , ∂

2K
∂q2

1: initialize g0 = I and v0 = 0
2: for i = 1→ n do
3: gi = gpar(i)gpar(i),i(qi)

4: M i = Ad−Tgi MiAd−1
gi , Si = AdgiSi

5: vi = vpar(i) + Si · q̇i, Ṡi = adviSi
6: end for
7: initialize ∂2K

∂q̇2
= 0, ∂2K

∂q̇∂q
= 0, ∂2K

∂q∂q̇
= 0, ∂2K

∂q2
= 0

8: for i = n→ 1 do
9: µi =M ivi +

∑
j∈chd(i)

µj , Mi =M i +
∑

j∈chd(i)
Mj

10: MA
i =MiSi, M

B
i =MiṠi − adDµiSi

11: for j ∈ anc(i) ∪ {i} do
12: ∂2K

∂q̇i∂q̇j
= ∂2K

∂q̇j∂q̇i
= S

T
jM

A
i

13: ∂2K
∂q̇i∂qj

= ∂2K
∂qj∂q̇i

= Ṡ
T

jM
A
i , ∂2K

∂qi∂q̇j
= ∂2K

∂q̇j∂qi
= S

T
jM

B
i

14: ∂2K
∂qi∂qj

= ∂2K
∂qj∂qi

= Ṡ
T

jM
B
i

15: end for
16: end for

Algorithm 3 Recursive Computation of ∂
2Vg

∂q2

1: initialize g0 = I
2: for i = 1→ n do
3: gi = gpar(i)gpar(i),i(qi), Si = AdgiSi

4: end for
5: initialize ∂2Vg

∂q2
= 0

6: for i = n→ 1 do
7: σmi = mi +

∑
j∈chd(i)

σmj , σpi = mipi +
∑

j∈chd(i)
σpj

8: σAi = ĝ
(
σmi · ni − σ̂pi · si

)
9: for j ∈ anc(i) ∪ {i} do

10: ∂2Vg

∂qi∂qj
=

∂2Vg

∂qj∂qi
= sTj · σAi

11: end for
12: end for

of the chain rule. Therefore, if the variational integrator has s + 1 control points, the
complexity of the linearization is O(s2n2). In contrast, automatic differentiation and
our prior methods [2, 4] take O(s2n3) time to linearize the variational integrators.

5 Comparison with Existing Methods

The variational integrators using Algorithms 1 to 3 and [17, Algorithm B.1] are
compared with the linear-time quasi-Newton method [9], automatic differentiation and

10



the Hermite-Simpson direct collocation method, which verifies the accuracy, efficiency
and scalability of our work. All the tests are run in C++ on a 3.1GHz Intel Core Xeon
Thinkpad P51 laptop.

5.1 Comparison with the Linear-Time Quasi-Newton Method

(a) (b) (c)

Fig. 1: The comparison of the O(n) Newton method with the O(n) quasi-Newton
method [9] for the trapezoidal variational integrator of a 32-link pendulum with dif-
ferent time steps. The results of computational time are in (a), number of iterations in
(b) and success rates in (c). Each result is calculated over 1000 initial conditions.

In this subsection, we compare the O(n) Newton method using Algorithm 1 and
[17, Algorithm B.1] with the O(n) quasi-Newton method in [9] on the trapezoidal vari-
ational integrator (Example 1) of a 32-link pendulum with different time steps.

In the comparison, 1000 initial joint angles q0 and joint velocities q̇0 are uniformly
sampled from [−π2 ,

π
2 ] for each of the selected time steps, which are 0.001s, 0.002s,

0.005s, 0.01s, 0.02s, 0.03s, 0.04s, 0.05s and 0.06s, and the Newton and quasi-Newton
methods are used to solve the DEL equations for one time step. The results are in Fig. 1,
in which the computational time and the number of iterations are calculated only over
initial conditions that the DEL equations are successfully solved. It can be seen that
the Newton method using Algorithm 1 and [17, Algorithm B.1] outperforms the quasi-
Newton method in [9] in all aspects, especially for relatively large time steps.

5.2 Comparison with Automatic Differentiation

In this subsection, we compare Algorithms 1 to 3 and [17, Algorithm B.1] with au-
tomatic differentiation for evaluating the DEL equations, computing the Newton direc-
tion and linearizing the DEL equations. The variational integrator used is the Simpson
variational integrator (Example 2).

In the comparison, we use pendulums with different numbers of links as bench-
mark systems. For each pendulum, 100 initial joint angles q0 and joint velocities q̇0

are uniformly sampled from [−π2 ,
π
2 ]. The results are in Fig. 2 and it can be seen that

our recursive algorithms are much more efficient, which is consistent with the fact that
Algorithms 1 to 3 and [17, Algorithm B.1] are O(n) for evaluating the DEL equations,
O(n) for computing the Newton direction, and O(n2) for linearizing the DEL equa-
tions, whereas automatic differentiation are O(n2), O(n3) and O(n3), respectively.

11



(a) (b) (c)

Fig. 2: The comparison of our recursive algorithms with automatic differentiation for
pendulums with different numbers of links. The variational integrator used is the Simp-
son variational integrator. The results of evaluating the DEL equations are in (a), com-
puting the Newton direction in (b) and linearizing the DEL equations in (c). Each result
is calculated over 100 initial conditions.

5.3 Comparison with the Hermite-Simpson Direct Collocation Method

In this subsection, we compare the fourth-order Simpson variational integrator (Ex-
ample 2) with the Hermite-Simpson direct collocation method, which is a third-order
implicit integrator commonly used in robotics for trajectory optimization [10,11].2 Note
that both integrators use three control points for integration.

The strict comparison of the two integrators for trajectory optimization is usually
difficult since it depends on a number of factors, such as the target problem, the opti-
mizers used, the optimality and feasibility tolerances, etc. Therefore, we compare the
Simpson variational integrator and the Hermite-Simpson direct collocation method by
listing the order of accuracy, the number of variables and the number of constraints for
trajectory optimization. In general, the computational loads of optimization depends on
the problem size that is directly related with the number of variables and the the number
of constraints. The higher-order accuracy suggests the possibility of large time steps in
trajectory optimization, which reduces not only the problem size but the computational
loads of optimization as well. The results are in Table 1.3 It can be concluded that the
Simpson variational integrator is more accurate and has less variables and constraints
in trajectory optimization, especially for constrained mechanical systems.

The accuracy comparison in Table 1 of the Simpson variational integrator with the
Hermite-Simpson direct collocation method is further numerically validated on a 12-
link pendulum. In the comparison, different time steps are used to simulate 100 trajec-
tories with the final time T = 10 s, and the initial joint angles q0 are uniformly sam-

2 The Hermite-Simpson direct collocation methods used in [10, 11] are actually implicit inte-
grators that integrate the trajectory as a second-order system in the (q, q̇) space, whereas the
variational integrators integrate the trajectory in the (q, p) space.

3 The explicit and implicit formulations of the Hermite-Simpson direct collocation methods
differ in whether the joint acceleration q̈ is explicitly computed or implicitly involved as extra
variables. Even though the explicit formulation of the Hermite-Simpson direct collocation has
less variables and constraints than the implicit formulation, it is usually more complicated for
the evaluation and linearization, therefore, the implicit formulation is usually more efficient
and more commonly used in trajectory optimization [11].
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integrator accuracy # of variables # of constraints
variational integrator 4th-order (4N + 3)n+ (2N + 1)m 3Nn+ (2N + 1)m

direct collocation (explicit) 3rd-order (6N + 3)n+ (2N + 1)m 4Nn+ (6N + 3)m
direct collocation (implicit) 3rd-order (8N + 4)n+ (2N + 1)m (6N + 1)n+ (6N + 3)m

Table 1: The comparison of the Simpson variational integrator with the Hermite-
Simpson direct collocation method for trajectory optimization. The trajectory optimiza-
tion problem has N stages and the mechanical system has n degrees of freedom, m
holonomic constraints and is fully actuated with n control inputs. Note that both inte-
grators use three control points for integration.

(a) (b) (c)

Fig. 3: The comparison of the Simpson variational integrator with the Hermite-Simpson
direction collocation method on a 12-link pendulum with different time steps. The re-
sults of the integrator error are in (a), the computational time in (b) and the integration
error v.s. computational time in (c). Each result is calculated over 100 initial conditions.

pled from [− π
12 ,

π
12 ] and the initial joint velocities q̇0 are zero. Moreover, the Simpson

variational integrator uses Algorithm 1 and [17, Algorithm B.1] which has O(n) com-
plexity for the integrator evaluation and the Newton direction computation, whereas
the Hermite-Simpson direct collocation method uses [14, 18] which is O(n) for the in-
tegrator evaluation and O(n3) for the Newton direction computation. For each initial
condition, the benchmark solution qd(t) is created from the Hermite-Simpson direct
collocation method with a time step of 5 × 10−4 s and the simulation error in q(t) is
evaluated as 1

T

∫ T
0
‖q(t)−qd(t)‖dt. The running time of the simulation is also recorded.

The results are in Fig. 3, which indicates that the Simpson variational integrator is more
accurate and more efficient in simulation, and more importantly, a better alternative to
the Hermite-Simpson direction collocation method for trajectory optimization.

In regard to the integrator evaluation and linearization, for unconstrained mechani-
cal systems, experiments (not shown) suggest that the Simpson variational integrator
using Algorithms 1 to 3 is usually faster than the Hermite-Simpson direct colloca-
tion method using [14, 18] even though theoretically both integrators have the same
order of complexity. However, for constrained mechanical systems, if there are m holo-
nomic constraints, the Simpson variational integrator is O(mn) for the evaluation and
O(mn2) for the linearization while the Hermite-Simpson direct collocation method
in [10, 11] is respectively O(mn2) and O(mn3), the difference of which results from
that the Hermite-Simpson direct collocation method is more complicated to model the
constrained dynamics.
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6 Implementation for Trajectory Optimization

In this section, we implement the fourth-order Simpson variational integrator (Ex-
ample 2) with Algorithms 1 to 3 on the Spring Flamingo robot [19], the LittleDog
robot [20] and the Atlas robot [21] for trajectory optimization, the results of which
are included in our supplementary videos. It should be noted that the variational inte-
grators used in [2–4, 6, 8] for trajectory optimization are second order. In Sections 6.1
and 6.2, a LCP formulation similar to [8] is used to model the discontinuous frictional
contacts with which no contact mode needs to be prespecified. These examples indicate
that higher-order variational integrators are good alternatives to the direct collocation
methods [10, 11]. The trajectory optimization problems are solved with SNOPT [22].

6.1 Spring Flamingo

(a) t = 0 s (b) t = 0.13 s (c) t = 0.33 s (d) t = 0.44 s

(e) t = 0.57 s (f) t = 0.68 s (g) t = 0.88 s (h) t = 1.1 s

Fig. 4: The Spring Flamingo robot jumps over a obstacle of 0.16 meters high.

The Spring Flamingo robot is a 9-DoF flat-footed biped robot with actuated hips and
knees and passive springs at ankles [19]. In this example, the Spring Flamingo robot is
commanded to jump over an obstacle that is 0.16 m high while walking horizontally
from one position to another. The results are in Fig. 4, in which the initial walking
velocity is 0.26 m/s and the average walking velocity is around 0.9 m/s.

6.2 LittleDog

The LittleDog robot is 18-DoF quadruped robot used in research of robot walking
[20]. In this example, the LittleDog robot is required to walk over terrain with two gaps.
The results are in Fig. 5, in which the average walking velocity is 0.25 m/s.

6.3 Atlas

The Atlas robot is a 30-DoF humanoid robot used in the DARPA Robotics Chal-
lenge [21]. In this example, the Atlas robot is required to pick a red ball with its left
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(a) t = 0 s (b) t = 0.48 s (c) t = 0.56 s (d) t = 1.04 s

(e) t = 1.84 s (f) t = 2.16 s (g) t = 2.72 s (h) t = 3.2 s

Fig. 5: The LittleDog robot walks over terrain with gaps.

(a) t = 0s (b) t = 0.4 s (c) t = 0.6 s (d) t = 1.3 s

Fig. 6: The Atlas robot picks a red ball while keeping balanced with a single foot.

hand while keeping balanced only with its right foot. Moreover, the contact wrenches
applied to the supporting foot should satisfy contact constraints of a flat foot [11]. The
results are in Fig. 6 and it takes around 1.3 s for the Atlas robot to pick the ball.

7 Conclusion

In this paper, we present O(n) algorithms for the linear-time higher-order varia-
tional integrators and O(n2) algorithms to linearize the DEL equations for use in tra-
jectory optimization. The proposed algorithms are validated through comparison with
existing methods and implementation on robotic systems for trajectory optimization.
The results illustrate that the same integrator can be used for simulation and trajec-
tory optimization in robotics, preserving mechanical properties while achieving good
scalability and accuracy. Furthermore, thought not presented in this paper, these O(n)
algorithms can be regularized for parallel computation, which results in O(log(n)) al-
gorithms with enough processors.
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Abstract. This appendix provides the completeO(n) algorithms to compute the
Newton direction for higher-order variational integrators and the proofs of the
propositions in the paper “Efficient Computation of Higher-Order Variational In-
tegrators in Robotic Simulation and Trajectory Optimization” [1], accepted to
the 13th International Workshop on the Algorithmic Foundations of Robotics
(WAFR’18). It is assumed that the reader has read the original paper and knows
the problem statements and the notation used. The numbering of the equations,
algorithms, propositions, etc., is consistent with the numbering used in the origi-
nal paper.

A Introduction

In the paper “Efficient Computation of Higher-Order Variational Integrators in Rob-
otic Simulation and Trajectory Optimization” [1], we present O(n) algorithms to eval-
uate the discrete Euler-Lagrange (DEL) equations and compute the Newton direction
for solving the DEL equations, and O(n2) algorithms to linearize the DEL equations.
As an appendix to [1], this document provides the complete O(n) algorithms to com-
pute the Newton direction for higher-order variational integrators and the proofs of the
propositions in [1], which are not covered in the original paper due to space limitations.

In this appendix, we begin with the completeO(n) algorithms to compute the New-
ton direction in Section B. In Section C, we give an overview of preliminaries used in
the algorithms and proofs. Propositions 1 to 4 in [1, Sections 3 and 4] to compute the
higher-order variational integrators are proved in Section D.

For implementation only, the reader only needs to read Algorithms B.1 and B.2 in
Section B as well as Algorithms 1 to 3 in [1, Sections 3 and 4]. Sections C and D are
not required to read as they present the proofs of the propositions in [1] that do not
necessarily aid in implementation.

Even though most of the important content in [1] is reiterated, we still advise the
reader to read the original paper to know the problem statements and the notation used.
Moreover, as mentioned in the abstract, the numbering of the equations, algorithms,
propositions, etc., is consistent with the numbering used in [1]. Therefore, the original
paper will not be explicitly cited in the rest of this appendix when we make references
to anything in it.



B The O(n) Algorithms to Compute the Newton Direction

In this section, we present Algorithms B.1 and B.2 to compute the Newton direc-
tion for higher-order variational integrators. The algorithms are self-contained and we
refer the reader to Section C.3 for differentiation on Lie groups that is used to compute
D1F

k,α

i in Eq. (B.3b) of Algorithm B.2. The correctness and the O(n) complexity of
Algorithms B.1 and B.2 are proved in Section D.2, however, this is not required to read
for implementation. We remind the reader that δqk,γi is the Newton direction for qk,γi ,
and rk,%i is the residue of the DEL equations Eqs. (7a) and (7b). Moreover, from Proposi-
tion 2, Algorithms B.1 and B.2 assume that the inverse of the Jacobian J−1(qk) exists,
and F

k,α

i and Qk,αi can be respectively formulated as F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α)

and Qk,αi = Qk,αi (qk,αi , q̇k,αi , uk,α).
There are a number of quantities, such as Dk,αρ

i , Φk,αγi , ζk,αi , Hk,γ
i , etc., which are

recursively introduced in Algorithm B.2 to compute the Newton direction. Since there
is no influence on the implementation of the algorithms as long as these quantities are
correctly computed, we leave the explanation of their meaning to Section D.2. Similarly,
the detailed explanation of ηk,νi and δvk,ρi in Algorithm B.1 is left to Sections C.1
and C.2, respectively. For purposes of implementation, the reader only needs to know
that these quantities are recursively computed through Algorithms B.1 and B.2.

Algorithm B.1 Recursive Computation of the Newton Direction

1: initialize gk,α0 = I and vk,α0 = 0
2: for i = 1→ n do
3: for α = 0→ s do
4: gk,αi = gk,αpar(i)g

k,α
par(i),i(q

k,α
i )

5: S
k,α

i = Adgk,αi
Si, M

k,α

i = Ad−T
gk,αi

MiAd−1
gk,αi

6: q̇k,αi = 1
∆t

s∑
β=0

bαβqk,βi , vk,αi = vk,αpar(i) + S
k,α

i · q̇k,αi

7: Ṡ
k,α

i = advk,αi
S
k,α

i

8: end for
9: end for

10: for i = n→ 1 do
11: use Algorithm B.2 to evaluate

a) Dk,αρ
i , Gk,ανi , lk,αi and µk,αi

b) Πk,αρ
i , Ψk,ανi , ζk,αi and Γ

k,α

i

c) Hk,α
i and Φk,αi

d) Xk,αρ
i , Y k,ανi and yk,αi

12: end for
13: initialize ηk,ν0 = 0 and δvk,ρ0 = 0

14: for i = 1→ n do
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15: for γ = 1→ s do

16: δqk,γi =
s∑
ρ=0

Xk,γρ
i · δvk,ρpar(i) +

s∑
ν=1

Y k,γνi · ηk,νpar(i) + yk,γi

17: end for
18: for ν = 1→ s do
19: ηk,νi = ηk,νpar(i) + S

k,ν

i · δqk,νi
20: end for
21: for ρ = 0→ s do

22: δq̇k,ρi = 1
∆t

s∑
γ=1

bργ · δqk,γi

23: δvk,ρi = δvk,ρpar(i) + Ṡ
k,ρ

i · δq
k,ρ
i + S

k,ρ

i · δq̇
k,ρ
i

24: end for
25: end for

Algorithm B.2 Recursive Computation of the Newton Direction – Backward Pass

1: ∀α = 0, 1, · · · , s, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Dk,αρ
i = σαρM

k,α

i +
∑

j∈chd(i)

(
Dk,αρ
j +

s∑
γ=1

Hk,αγ
j Xk,γρ

j −

σα0adD
µk,αj

S
k,α

j Xk,αρ
j

)
, (B.1a)

Gk,ανi =
∑

j∈chd(i)

(
Gk,ανj +

s∑
γ=1

Hk,αγ
j Y k,γνj − σα0adD

µk,αj
S
k,α

j Y k,ανj

)
, (B.1b)

lk,αi =
∑

j∈chd(i)

(
lk,αj +

s∑
γ=1

Hk,αγ
j yk,γj − σα0adD

µk,αj
S
k,α

j yk,αj

)
, (B.1c)

µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i)

µk,αj

in which

σαρ =

{
1 α = ρ,

0 α 6= ρ
and σα0 =

{
1 α 6= 0,

0 α = 0
(B.2)

2: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Πk,αρ
i = σαρD2F

k,α

i +
∑

j∈chd(i)

(
Πk,αρ
j +

s∑
γ=1

Φk,αγj Xk,γρ
j −

σα0adD
Γ
k,α
j

S
k,α

j Xk,αρ
j

)
, (B.3a)
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Ψk,ανi = σαν
(
D1F

k,α

i + adD
F
k,α
i

− D2F
k,α

i advk,αi

)
+∑

j∈chd(i)

(
Ψk,ανj +

s∑
γ=1

Φk,αγj Y k,γνj − σα0adD
Γ
k,α
j

S
k,α

j Y k,ανj

)
, (B.3b)

ζk,αi =
∑

j∈chd(i)

(
ζk,αj +

s∑
γ=1

Φk,αγj yk,γj − σα0adD
Γ
k,α
j

S
k,α

j yk,αj

)
, (B.3c)

Γ
k,α

i = F
k,α

i +
∑

j∈chd(i)

Γ
k,α

j

3: ∀α = 0, 1, · · · , s and ∀γ = 1, 2, · · · , s,

Hk,αγ
i = Dk,αγ

i Ṡ
k,γ

i +Gk,αγi S
k,γ

i +
1

∆t

s∑
ρ=0

bργDk,αρ
i S

k,ρ

i .

4: ∀α = 0, 1, · · · , s− 1 and ∀γ = 1, 2, · · · , s,

Φk,αγi = Πk,αγ
i Ṡ

k,γ

i + Ψk,αγi S
k,γ

i +
1

∆t

s∑
ρ=0

bργΠk,αρ
i S

k,ρ

i .

5: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Θk,αρi = wα∆t ·
(
Ṡ
k,α

i

T

Dk,αρ
i + σαρS

k,α

i

T

adD
µk,αi

)
+ S

k,α

i

T

Πk,αρ
i ,

Ξk,ανi = wα∆t · Ṡk,αi
T

Gk,ανi + S
k,α

i

T

Ψk,ανi .

6: ∀α = 0, 1, · · · , s− 1, ∀ρ = 0, 1, · · · , s and ∀ν = 0, 1, · · · , s− 1,

Θ
k,αρ

i = Θk,αρi +

s∑
β=0

aαβS
k,β

i

T

Dk,βρ
i ,

Ξ
k,αν

i = Ξk,ανi +

s∑
β=0

aαβS
k,β

i

T

Gk,βνi ,

ξ
k,α

i = wα∆t · Ṡk,αi
T
lk,αi + S

k,α

i

T
ζk,αi +

s∑
β=0

aαβS
k,β

i

T
lk,βi .

7: ∀α = 0, 1, · · · , s− 1 and ∀γ = 1, 2, · · · , s,

Λk,αγi =wα∆t · Ṡk,αi
T
Hk,αγ
i + S

k,α

i

T
Φk,αγi +

s∑
β=0

aαβS
k,β

i

T
Hk,βγ
i +

σαγ
(
D1Q

k,α
i + wα∆t · Sk,αi

T
adD
µk,αi

Ṡ
k,α

i

)
+

1

∆t
bαγ · D2Q

k,α
i

with which Λki =
[
Λk,αγi

]
∈ Rs×s
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8: ∀γ = 1, 2, · · · , s and ∀% = 0, 1, · · · , s − 1, compute Λ
k,γ%

i such that Λki
−1

=[
Λ
k,γ%

i

]
∈ Rs×s

9: ∀γ = 1, 2, · · · , s, ∀ρ = 0, 1, · · · , s and ∀ν = 1, 2, · · · , s

Xk,γρ
i = −

s−1∑
%=0

Λ
k,γ%

i ·Θk,%ρi ,

Y k,γνi = −
s−1∑
%=0

Λ
k,γ%

i ·Ξk,%νi ,

yk,γi = −
s−1∑
%=0

Λ
k,γ%

i

(
rk,%i + ξ

k,%

i

)

C Preliminaries

In this section, we present additional preliminaries used in Algorithms B.1 and B.2
and the proofs of Propositions 1 to 4. In Section C.1, we extend the contents of Sec-
tion 2.3 for the computation of variations and derivatives. In Sections C.2 and C.3, we
respectively introduce the notion of the spatial variation for spatial quantities and the
differentiation on Lie groups, which are mainly used in Algorithms B.1 and B.2 and the
proof of Proposition 2.

C.1 The Tree Representation Revisited

In addition to the computation of rigid body dynamics as those in Section 2.3, the
tree representation can also be used to compute the variations and derivatives.

As is known, in the tree representation, the configuration gi ∈ SE(3) of rigid body
i is

gi = gpar(i)gpar(i),i(qi) (C.1)

in which gpar(i),i(qi) = gpar(i),i(0) exp(Ŝiqi) and Si is the body Jacobian of joint i
with respect to frame {i}. In addition, the spatial Jacobian of joint i with respect to
frame {0} is

Si = AdgiSi (C.2)

in which Si is constant by definition. Using Eqs. (C.1) and (C.2) as well as AdgiSi =(
giŜig

−1
i

)∨
, we obtain ηi = (δgig

−1
i )∨ as

ηi = ηpar(i) + Si · δqi, (C.3)

or equivalently,

ηi = Si · δqi +

n∑
j∈anc(i)

Sj · δqj (C.4)
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and furthermore, (
∂gi
∂qj

g−1i

)∨
=

{
Sj j ∈ anc(i) ∪ {i},
0 otherwise,

(C.5a)

(
∂gj
∂qi

g−1i

)∨
=

{
Si j ∈ des(i) ∪ {i},
0 otherwise.

(C.5b)

In addition, from Eqs. (C.2) and (C.3), δAdgi = adηiAdgi and adSiSi = 0, we obtain

δSi = adηiSi = −adSiηi = adηpar(i)Si = −adSiηpar(i). (C.6)

Moreover, as a result of Eqs. (C.4) to (C.6), we further obtain

∂Si
∂qj

=

{
adSjSi j ∈ anc(i),

0 otherwise,
(C.7a)

∂Sj
∂qi

=

{
adSiSj j ∈ des(i),

0 otherwise.
(C.7b)

Since the spatial velocity vi of rigid body i is

vi = Si · q̇i +
∑

j∈anc(i)

Sj · q̇j

= vpar(i) + Si · q̇i,
(C.8)

we obtain
δvi = δSi · q̇i + Si · δq̇i +

∑
j∈anc(i)

(
δSj · q̇j + Sj · δq̇j

)
= δvpar(i) + δSi · q̇i + Si · δq̇i.

Substitute Eq. (C.6) into the equation above, the result is

δvi = adηiSi · q̇i + Si · δq̇i +
∑

j∈anc(i)

(
adηjSj · q̇j + Sj · δq̇j

)
= δvpar(i) + adηiSi · q̇i + Si · δq̇i.

(C.9)

From Eqs. (C.6) to (C.9), we obtain

∂vi
∂q̇j

=

{
Sj j ∈ anc(i) ∪ {i},
0 otherwise,

(C.10a)

∂vj
∂q̇i

=

{
Si j ∈ des(i) ∪ {i},
0 otherwise,

(C.10b)

and
∂vi
∂qj

=

{
adSj (vi − vj) j ∈ anc(i) ∪ {i},
0 otherwise,

(C.11a)
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∂vj
∂qi

=

{
adSi(vj − vi) j ∈ des(i) ∪ {i},
0 otherwise.

(C.11b)

In addition, from Eqs. (C.2) and (C.8), Adġi = adviAdgi and adSiSi = 0, we obtain

Ṡi = adviSi = −adSivi = advpar(i)Si = −adSivpar(i). (C.12)

As for the spatial inertia matrix M i = Ad−Tgi MiAd−1gi , algebraic manipulation shows
that

δM i = −adTηi ·M i −M i · adηi , (C.13)

and from Eqs. (C.3) to (C.5) and Eq. (C.13), we obtain

∂M i

∂qj
=

{
−adT

Sj
M i −M iadSj j ∈ anc(i) ∪ {i},

0 otherwise,
(C.14a)

∂M j

∂qi
=

{
−adT

Si
M j −M jadSi j ∈ des(i) ∪ {i},

0 otherwise.
(C.14b)

In Sections D.1 to D.4, Eq. (C.3) to (C.14) will be used to prove Propositions 1 to 4.

C.2 The Spatial Variation

In this subsection, we introduce the spatial variation δ (·) that is used in Algo-
rithms B.1 and B.2 and the proof of Proposition 2. Note that the notion of the spatial
variation δ (·) only applies to the spatial quantities (·) of TeSE(3) or T ∗e SE(3) that are
described in the spatial frame.

If a, a ∈ TeSE(3) are related as a = Adga in which g ∈ SE(3), we have

δa = Adgδa+ adηa

in which η = (δgg−1)∨. For numerical simplicity, it is sometimes preferable to have
the variations of a and a still related by Adg . Therefore, we define the spatial variation
δa to be

δa = δa− adηa (C.15)

such that δa = Adgδa as long as a = Adga. In a similar way, if b
∗
, b∗ ∈ T ∗e SE(3) are

related as b
∗

= Ad−Tg b∗, we obtain

δb
∗

= Ad−Tg δb∗ − adTη b
∗
.

Similar to Eq. (C.15), the spatial variation δ b
∗

is defined to be

δ b
∗

= δb
∗

+ adTη b
∗

(C.16)
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such that δ b
∗

= Ad−Tg δb∗ as long as b
∗

= Ad−Tg b∗. In addition, note that δ
(
b∗Ta

)
=

δb∗Ta+ b∗T δa = δ b
∗T
a+ b

∗T
δa and δ(b

∗T
a) = δ(b∗Ta), we have

δ(b
∗T
a) = δ b

∗T
a+ b

∗T
δa. (C.17)

In general, the spatial variations δ (·) are the infinitesimal changes of spatial quanti-
ties in either the Lie algebra TeSE(3) or the dual Lie algebra T ∗e SE(3) after canceling
out the influences of the frame change.

In Section 3, we have a number of spatial quantities that are defined in TeSE(3)
and T ∗e SE(3), whose spatial variations δ (·) can be computed in the tree representation.

Following Eqs. (C.2), (C.6) and (C.15), for S
k,α

i = Adgk,αi
Si, the spatial variation

δS
k,α

i is

δS
k,α

i = 0 (C.18)

though δS
k,α

i = adηk,αi
S
k,α

i is usually not zero. In addition, according to Eqs. (C.9)
and (C.15), we have

δvk,αi = δvk,αpar(i) + adηk,αi
S
k,α

i · q̇k,αi + S
k,α

i · δq̇k,αi − adηk,αi
vk,αi

Substitute Eqs. (C.3) and (C.8) into the equation above to expand adηk,αi
vk,αi and apply

Eqs. (C.6) and (C.12), it can be shown that

δvk,αi = δvk,αpar(i) + Ṡ
k,α

i · δqk,αi + S
k,α

i · δq̇k,α. (C.19)

In terms of µk,αi , Γ
k,α

i andΩ
k,α

i in Eq. (7), which are spatial quantities in T ∗e SE(3),
we can still implement the tree representation to compute the spatial variation. Accord-
ing to Definition 1, we have

δµk,αi = δ(M
k,α

i vk,αi ) +
∑

j∈chd(i)

δµk,αj .

From Eq. (C.16), the spatial variation δµk,αi is

δµk,αi = δ(M
k,α

i vk,αi ) +
∑

j∈chd(i)

δµk,αj + adT
ηk,αi

µk,αi .

Using µk,αi = M
k,α

i vk,αi +
∑
j∈chd(i) µ

k,α
j and ηk,αi = ηk,αj − Sk,αj · δqk,αj , we have

δµk,αi = δ(M
k,α

i vk,αi ) + adT
ηk,αi

(M
k,α

i vk,αi )+∑
j∈chd(i)

(
δµk,αj + adT

ηk,αj
µk,αj − adT

S
k,α
j

µk,αj · δqk,αj
)

(C.20)

8



As a result of Eqs. (C.13) and (C.15), δ(M
k,α

i vk,αi ) + adT
ηk,αi

(M
k,α

i vk,αi ) is

δ(M
k,α

i vk,αi ) + adT
ηk,αi

(M
k,α

i vk,αi ) = M
k,α

i (δvk,αi − adηk,αi
vk,αi )

= M
k,α

i δvk,αi .
(C.21)

From Eqs. (C.16) and (C.21) and adT
S
k,α
j

µk,αj = adD
µk,αj

S
k,α

j , Eq. (C.20) is simpli-

fied to

δµk,αi = M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adT

S
k,α
j

µk,αj · δqk,αj
)

= M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adD

µk,αj
S
k,α

j · δqk,αj
)
.

(C.22)

In a similar way, for the spatial variation δΓ
k,α

i , we obtain

δΓ
k,α

i = δF
k,α

i +
∑

j∈chd(i)

(
δΓ

k,α

j − adT
S
k,α
j

Γ
k,α

j · δqk,αj
)

= δF
k,α

i +
∑

j∈chd(i)

(
δΓ

k,α

j − adD
Γ
k,α
j

S
k,α

j · δqk,αj
)
.

(C.23)

As for Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Γ

k,α

i , from Eqs. (C.15) and (C.16), algebraic
manipulation shows that

δΩ
k,α

i = δΩ
k,α

i + adT
ηk,αi

Ω
k,α

i

= wα∆t ·
(
adT
vk,αi
· δµk,αi + adT

δvk,αi
µk,αi

)
+ δΓ

k,α

i

= wα∆t ·
(
adT
vk,αi
· δµk,αi + adD

µk,αi
δvk,αi

)
+ δΓ

k,α

i .

(C.24)

In Section D.2, Eqs. (C.18), (C.19) and (C.22) to (C.24) will be used to prove Propo-
sition 2.

C.3 Differentiation on Lie Groups

For an analytical function f : Rn → R, the directional derivative at x ∈ Rn in the
direction δx is defined to be

Df(x) · δx =
d

dt
f(x+ t · δx)

∣∣∣∣
t=0

in which Df(x) =
[
∂f
∂x1

∂f
∂x2
· · · ∂f

∂xn

]T
∈ Rn.

In a similar way, we might define the directional derivative on Lie groups using the
Lie algebra and the exponential map as follows.
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Definition C.1. IfG is a n-dimensional smooth Lie group and f : G −→ R is a smooth
function on G, the directional derivative at g ∈ G in the direction η = δgg−1 ∈ TeG
is defined to be

Df(g) · η =
d

dt
f (exp (t · η) g)

∣∣∣∣
t=0

.

Moreover, if e1, e2, · · · , en is a basis for the Lie algebra TeG, then Df(g) can be
explicitly written as

Df(g) =
d

dt

[
f (exp (t · e1) g) f (exp (t · e2) g) · · · f (exp (t · en) g)

]T ∣∣∣∣
t=0

.

In regard to Lie group theory, Rn is also a smooth Lie group for which the binary op-
eration is addition, the Lie algebra is itself and the exponential map is the identity map.
Furthermore, the definition of directional derivatives on Lie groups in Definition C.1
is consistent with the definition of directional derivatives in Rn. Therefore, it is with-
out loss of any generality to interpret all the quantities in this paper as elements of Lie
groups and all the derivatives in this paper as derivatives on Lie groups that are defined
by Definition C.1.

In this paper, following the notation in multivariate calculus, if f : G1×G2×· · ·×
Gd → R is a smooth function in which G1, G2, · · · , Gd are Lie groups, we use Dif to
denote the derivative with respect toGi. In particular, forF

k,α

i = F
k,α

i (gk,αi , vk,αi , uk,αi )
that is used for the computation of the Newton direction in Algorithm B.2, note that
D1F

k,α

i is the derivative with respect to gk,αi and D2F
k,α

i is the derivative with respect
to vk,αi .

D Proof of Propositions

In this section, we review and prove Propositions 1 to 4 in [1] though these proofs
are not necessary for implementation.

D.1 Proof of Proposition 1

In Section 3.1, we define the discrete articulated body momentum and discrete ar-
ticulated body impulse are respectively as follows.

Definition 1. The discrete articulated body momentum µk,αi ∈ R6 for articulated body
i is defined to be

µk,αi = M
k,α

i vk,αi +
∑

j∈chd(i)

µk,αj ∀α = 0, 1, · · · , s (D.1)

in which M
k,α

i and vk,αi are respectively the spatial inertia matrix and spatial velocity
of rigid body i.
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Definition 2. Suppose F i(t) ∈ R6 is the sum of all the wrenches directly acting on
rigid body i, which does not include those applied or transmitted through the joints that
are connected to rigid body i. The discrete articulated body impulse Γ

k,α

i ∈ R6 for
articulated body i is defined to be

Γ
k,α

i = F
k,α

i +
∑

j∈chd(i)

Γ
k,α

j (D.2)

in which F
k,α

i = ωαF i(t
k,α)∆t ∈ R6 is the discrete impulse acting on rigid body i.

Note that F i(t), F
k,α

i and Γ
k,α

i are expressed in frame {0}.

The DEL equations Eq. (5) can be recursively evaluated with µk,αi and F
k,α

i as
Proposition 1 indicates.

Proposition 1. If Qi(t) ∈ R is the sum of all joint forces applied to joint i and pk =[
pk1 p

k
2 · · · pkn

]T ∈ Rn is the discrete momentum, the DEL equations Eq. (5) can be
evaluated as

rk,0i = pki + S
k,0

i

T

·Ωk,0i +

s∑
β=0

a0βS
k,β

i

T

· µk,βi +Qk,0i , (D.3a)

rk,αi = S
k,α

i

T

·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T

· µk,βi +Qk,αi ∀α = 1, · · · , s− 1, (D.3b)

pk+1
i = S

k,s

i

T

·Ωk,si +

s∑
β=0

asβS
k,β

i

T

· µk,βi +Qk,si (D.3c)

in which rk,αi is the residue of the DEL equations Eqs. (5a) and (5b), aαβ = wβbβα,

Ω
k,α

i = wα∆t · adT
vk,αi
· µk,αi + Γ

k,α

i , and Qk,αi = ωαQi(t
k,α)∆t is the discrete joint

force applied to joint i.

Proof. The Lagrangian of a mechanical system is defined to be

L(q, q̇) = K(q, q̇)− V (q) (D.4)

in which K(q, q̇) is the kinetic energy and V (q) is the potential energy. It is by the
definition of F i(t) and Qi(t) that∫ T

0

F(t) · δqdt− δ
∫ T

0

V (q)dt =

∫ T

0

n∑
i=1

F i(t) · ηidt+

∫ T

0

n∑
i=1

Qi(t) · δqidt

in which ηi = (δgig
−1
i )∨. Therefore, the Lagrange-d’Alembert principle Eq. (1) is

equivalent to

δS = δ

∫ T

0

K(q, q̇)dt+

∫ T

0

n∑
i=1

F i(t) · ηidt+

∫ T

0

n∑
i=1

Qi(t) · δqidt = 0. (D.5)
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As a result of Eqs. (3) and (D.5), we have

N−1∑
k=0

s∑
α=0

wα
n∑
i=1

[ 〈
∂K
∂qi

(qk,α, q̇k,α), δqk,αi

〉
+
〈
∂K
∂q̇i

(qk,α, q̇k,α), δq̇k,αi

〉
+

〈F i(tk,α), ηk,αi 〉+ 〈Qi(tk,α), δqk,αi 〉
]
∆t = 0. (D.6)

Note that the kinetic energy K(qk,α, q̇k,α) is

K(qk,α, q̇k,α) =
1

2

n∑
j=1

vk,αj
T
M

k,α

j vk,αj (D.7)

in whichM
k,α

i ∈ R6×6 is the spatial inertia matrix and vk,αi ∈ R6 is the spatial velocity.
Using Eqs. (C.10b), (D.1) and (D.7), we obtain

∂K

∂q̇i
(qk,α, q̇k,α) =

n∑
j=1

∂vk,αj
∂q̇i

T

M
k,α

j vk,αj

=S
k,α

i

T

M
k,α

i vk,αi +
∑

j∈des(i)

S
k,α

i

T

M
k,α

j vk,αj

=S
k,α

i

T

µk,αi .

(D.8)

In a similar way, as a result of Eqs. (C.14b), (C.11b), (C.12), (D.1) and (D.7), a tedious
but straightforward algebraic manipulation results in

∂K

∂qi
(qk,α, q̇k,α) =

∑
j∈des(i)∪{i}

[
ad
S
k,α
i

(vk,αj − vk,αi )− ad
S
k,α
i
vk,αj

]T
M

k,α

j vk,αj

=Sk,αi
T

adTvi · µ
k,α
i

=Ṡ
k,α

i

T

µk,αi .
(D.9)

In addition, using Eqs. (C.4) and (D.2) and F
k,α

i = wαF i(t
k,α)∆t, we obtain

n∑
i=1

〈wαF i(tk,α)∆t, ηk,αi 〉 =

n∑
i=1

〈wαF i(tk,α)∆t, S
k,α

i · δqk,αi +
∑

j∈anc(i)

S
k,α

j · qk,αj 〉

=

n∑
i=1

〈F k,αi +
∑

j∈des(i)

F
k,α

j , S
k,α

i · δqk,αi 〉

=

n∑
i=1

〈Γ k,αi , S
k,α

i · δqk,αi 〉

=

n∑
i=1

〈Sk,αi
T
Γ
k,α

i , δqk,αj 〉.

(D.10)
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From Eq. (2), we obtain

δq̇k,αi =
1

∆t

s∑
β=0

bαβ · δqk,βi . (D.11)

Substituting Eqs. (D.8) to (D.10) into Eq. (D.6) and simplifying the resulting equation
with Eq. (D.11) as well as the chain rule, we obtain

N−1∑
k=0

s∑
α=0

n∑
i=1

〈Sk,αi
T
·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T
· µk,βi +Qk,αi , δqk,αi 〉 = 0

in which aαβ = wβbβα,Ω
k,α

i = wα∆t·adT
vk,αi
·µk,αi +Γ

k,α

i andQk,αi = ωαQi(t
k,α)∆t.

The equation above is equivalent to requiring

pki + S
k,0

i

T

·Ωk,0i +

s∑
β=0

a0βS
k,β

i

T

· µk,βi +Qk,0i = 0,

S
k,α

i

T

·Ωk,αi +

s∑
β=0

aαβS
k,β

i

T

· µk,βi +Qk,αi = 0 ∀α = 1, · · · , s− 1,

pk+1
i = S

k,s

i

T

·Ωk,si +

s∑
β=0

asβS
k,β

i

T

· µk,βi +Qk,si .

This completes the proof.

D.2 Proof of Proposition 2

In Section 3.2, we make the assumption on the discrete impulse F
k,α

i and discrete
joint force Qk,αi as follows.

Assumption 1. Let u(t) be control inputs of the mechanical system, we assume that
the discrete impulse F

k,α

i and discrete joint force Qk,αi can be respectively formulated

as F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α) and Qk,αi = Qk,αi (qk,αi , q̇k,αi , uk,α) in which uk,α =
u(tk,α).

From the notion of the spatial variation in Section C.2, we have the following propo-
sition for the Newton direction computation, which is later used in the proof of Propo-
sition 2.

Proposition D.1. If δqk,αi is the Newton direction for qk,αi , rk,αi is the residue of the
DEL equations Eqs. (7a) and (7b), and Assumption 1 holds, the computation of the
Newton direction δqk,αi is equivalent to requiring

δµk,αi = M
k,α

i δvk,αi +
∑

j∈chd(i)

(
δµk,αj − adD

µk,αj
S
k,α

j · δqk,αj
)

∀α = 0, 1, · · · , s, (D.12a)
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δΓ
k,α

i =
(
D1F

k,α

i + adD
F
k,α
i

− advk,αi

)
· ηk,αi + D2F

k,α

i · δvk,αi +∑
j∈chd(i)

(
δΓ

k,α

j − adD
Γ
k,α
j

S
k,α

j · δqk,αj
)
∀α = 0, 1, · · · , s− 1, (D.12b)

δΩ
k,α

i = ωα∆t ·
(
adT
vk,αi
· δµk,αi + adD

µk,αi
δvk,αi

)
+ δΓ

k,α

i

∀α = 0, 1, · · · , s− 1, (D.12c)

S
k,α

i

T
δΩ

k,α

i +

s∑
β=0

aαβS
k,β

i

T
δµk,βi + D1Q

k,α
i · δqk,αi +

D2Q
k,α
i · δq̇k,αi = −rk,αi ∀α = 0, 1, · · · , s− 1. (D.12d)

in which δvk,αi , δµk,αi , δΓ
k,α

i and δΩ
k,α

i are the spatial variations of vk,αi , µk,αi , Γ
k,α

i

and Ω
k,α

i , respectively. Note that δqk,0i = 0 and ηk,0i = 0 though δvk,0i 6= 0.

Proof. Eqs. (D.12a) and (D.12c) are respectively the same as Eqs. (C.22) and (C.24),
thus we only need to prove Eqs. (D.12b) and (D.12d).

From Assumption 1, we have F
k,α

i = F
k,α

i (gk,αi , vk,αi , uk,α), and since δuk,αi = 0,
we obtain δF

k,α

i as

δF
k,α

i = D1F
k,α

i · ηk,αi + D2F
k,α

i · δvk,αi .

According to Eq. (C.16), the spatial variation δF
k,α

i is

δF
k,α

i = D1F
k,α

i · ηk,αi + D2F
k,α

i · δvk,αi + adT
ηk,αi

F
k,α

i .

Since δvk,αi = δvk,αi +adηk,αi
vk,αi , advk,αi

ηk,αi = −adηk,αi
vk,αi as well as adT

ηk,αi
F
k,α

i =

adD
F
k,α
i

ηk,αi , the equation above is equivalent to

δF
k,α

i =
(
D1F

k,α

i + adD
F
k,α
i

− D2F
k,α

i advk,αi

)
· ηk,αi + D2F

k,α

i · δvk,αi .

Substitute the equation above into Eq. (C.23), the result of which is Eq. (D.12b).
As for the proof of Eq. (D.12d), from Eqs. (7a) and (7b), the Newton direction δqk,αi

requires that

δ
(
Sk,αi

T
Ωi
)

+

s∑
β=0

aαβδ
(
Sk,βi

T
µk,βi

)
+ D1Q

k,α
i · δqk,αi +

D2Q
k,α
i · δq̇k,αi = −rk,αi ∀α = 0, 1, · · · , s− 1. (D.13)

As a result of Eqs. (C.17) and (C.18), we have δ
(
S
k,α

i

T
µk,αi

)
= S

k,α

i

T
δµk,αi and

δ
(
S
k,α

i

T
Ω
k,α

i

)
= S

k,α

i

T
δΩ

k,α

i , with which and Eq. (D.13), we obtain Eq. (D.12d).
This completes the proof.
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In Section 3.2, Proposition 2 to compute the Newton direction is stated as follows,
for which note that the higher-order variational integrator has s + 1 control points and
the mechanical system has n degrees of freedom.

Proposition 2. For higher-order variational integrators of unconstrained mechani-
cal systems, if Assumption 1 holds and J k−1(qk) exists, the Newton direction δqk =

−J k−1(qk) · rk can be computed with Algorithm B.1 in O(s3n) time.

Proof. The proof consists of proving the correctness and the O(n) complexity of the
algorithms.

For each j ∈ chd(i), we suppose that there exists Dk,αρ
j , Gk,ανj , lk,αj and Πk,αρ

j ,
Ψk,ανj , ζk,αj such that

δµk,αj =
s∑
ρ=0

Dk,αρ
j · δvk,ρj +

s∑
ν=1

Gk,ανj · ηk,νj + lk,αj

∀α = 0, 1, · · · , s, (D.14)

δΓ
k,α

j =

s∑
ρ=0

Πk,αρ
j · δvk,ρj +

s∑
ν=1

Ψk,ανj · ηk,νj + ζk,αj

∀α = 0, 1, · · · , s− 1. (D.15)

According to Eqs. (C.3), (C.19) and (D.11), δvk,ρj and ηk,νj can be respectively com-
puted as

ηk,νj = ηk,νi + S
k,ν

j · δqk,νj (D.16)

and

δvk,ρj = δvk,ρi + Ṡk,ρj · δq
k,ρ
j +

1

∆t
S
k,ρ

j

s∑
γ=1

bργ · δqk,γj (D.17)

for which note that δqk,0j = 0. Substitute Eqs. (D.16) and (D.17) into Eq. (D.14), alge-
braic manipulation shows that

δµk,αj =

s∑
ρ=0

Dk,αρ
j · δvk,ρi +

s∑
ν=1

Gk,ανj · ηk,νi + lk,αj +

s∑
γ=1

Hk,αγ
j δqk,γj , (D.18)

in which

Hk,αγ
j = Dk,αγ

j Ṡk,γj +Gk,αγj S
k,γ

j +
1

∆t

s∑
ρ=0

bργDk,αρ
j S

k,ρ

j .

In a similar way, using Eqs. (D.15) to (D.17), we also have

δΓ
k,α

j =

s∑
ρ=0

Πk,αρ
j · δvk,ρi +

s∑
ν=1

Ψk,ανj · ηk,νi + ζk,α +

s∑
γ=1

Φk,αγj δqk,γj (D.19)
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in which

Φk,αγj = Πk,αγ
j Ṡk,γj + Ψk,αγj S

k,γ

j +
1

∆t

s∑
ρ=0

bργΠk,αρ
j S

k,ρ

j .

From Eqs. (C.12), (C.24) and (D.17) to (D.19) and

S
k,α

j

T
adT
S
k,α
j

µk,αj = S
k,α

j

T
adD
µk,αj

S
k,α

j = 0,

we obtain

S
k,α

j

T
δΩ

k,α

j =

s∑
ρ=0

Θk,αρj · δvk,ρi +

s∑
ν=1

Ξk,αν · ηk,νi + ξk,αj (D.20)

in which

Θk,αρj = wα∆t ·
(
Ṡ
k,α

j

T

Dk,αρ
j + σαρS

k,α

j

T

adD
µk,αj

)
+ S

k,α

j

T

Πk,αρ
j ,

Ξk,ανj = wα∆t · Ṡk,αj
T

Gk,ανj + S
k,α

j

T

Ψk,ανj ,

ξk,αj = wα∆t · Ṡk,αj
T

lk,αj + S
k,α

j

T

ζk,αj +

s∑
γ=1

[
wα∆t ·

(
Ṡj

k,α
T
Hk,αγ
j +

σαγS
k,α

j

T

adD
µk,αj

Ṡ
k,α

j

)
+ S

k,α

j

T

Φk,αγj

]
δqk,γj ,

and note that σαρ is given in Eq. (B.2) of Algorithm B.2. Substituting Eqs. (D.11),
(D.18) and (D.20) into Eq. (D.12d), we obtain

s∑
ρ=0

Θ
k,αρ

j · δvk,ρi +

s∑
ν=1

Ξ
k,αν

j · ηk,νi + ξ
k,α

j +

s∑
γ=1

Λk,αγj · δqk,γj = −rk,αj

∀α = 0, 1, · · · , s− 1. (D.21)

in which

Θ
k,αρ

j = Θk,αρj +

s∑
β=0

aαβS
k,β

j

T

Dk,βρ
j ,

Ξ
k,αν

j = Ξk,ανj +

s∑
β=0

aαβS
k,β

j

T

Gk,βνj ,

ξ
k,α

j = wα∆t · Ṡk,αj
T
lk,αj + S

k,α

j

T
ζk,αj +

s∑
β=0

aαβS
k,β

j

T
lk,βj ,

Λk,αγj =wα∆t · Ṡk,αj
T

Hk,αγ
j + S

k,α

j

T

Φk,αγj +

s∑
β=0

aαβS
k,β

j

T

Hk,βγ
j +

σαγ
(
D1Q

k,α
j + wα∆t · Sk,αj

T

adD
µk,αj

Ṡ
k,α

j

)
+

1

∆t
bαγ · D2Q

k,α
j .
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For notational convenience, we define ∆k,α
j to be

∆k,α
j =

s∑
ρ=0

Θ
k,αρ

j · δvk,ρi +

s∑
ν=1

Ξ
k,αν

j · ηk,νi + ξ
k,α

j

∀α = 0, 1, · · · , s− 1. (D.22)

such that Eq. (D.21) is rewritten as

s∑
γ=1

Λk,αγj · δqk,γj = −rk,αj −∆k,α
j ∀α = 0, 1, · · · , s− 1. (D.23)

In addition, if we further define Λkj , rkj , ∆k
j and δqkj respectively as

Λkj =
[
Λk,αγj

]
∈ Rs×s,

rkj =
[
rk,0j rk,1j · · · rk,s−1j

]T
∈ Rs,

∆k
j =

[
∆k,0
j ∆k,1

j · · · ∆k,s−1
j

]T
∈ Rs,

δqkj =
[
δqk,1j δqk,2j · · · δqk,sj

]T
∈ Rs,

in which 0 ≤ α ≤ s− 1 and 1 ≤ γ ≤ s, then Eq. (D.23) is equivalent to requiring

Λkj · δqkj = −rkj −∆k
j . (D.24)

in which Λkj is invertible since J k−1(qk) exists. From Eq. (D.24), we obtain

δqkj = −Λkj
−1

(rkj +∆k
j ).

If Λkj
−1 is explicitly written as Λkj

−1
=
[
Λ
k,γ%

j

]
∈ Rs×s in which 1 ≤ γ ≤ s and

0 ≤ % ≤ s− 1, expanding the equation above, we obtain

δqk,γj = −
s−1∑
%=0

Λ
k,γ%

j

(
rk,%j +∆k,%

j

)
∀γ = 1, 2, · · · , s. (D.25)

Substitute Eq. (D.22) into Eq. (D.25), the result is

δqk,γj =

s∑
ρ=0

Xk,γρ
j · δvk,ρi +

s∑
ν=1

Y k,γνj · ηk,νi + yk,γj (D.26)
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in which

Xk,γρ
j = −

s−1∑
%=0

Λ
k,γ%

j ·Θk,%ρj ,

Y k,γνj = −
s−1∑
%=0

Λ
k,γ%

j ·Ξk,%νj ,

yk,γj = −
s−1∑
%=0

Λ
k,γ%

j

(
rk,%j + ξ

k,%

j

)
.

Making use of Eqs. (D.18) and (D.26) and canceling out δqk,γj , we obtain

δµk,αj − adD
µk,αj

S
k,α

j · δqk,αj =

s∑
ρ=0

D
k,ρ

j · δv
k,ρ
i +

s∑
ν=1

G
k,αν

j · ηk,νi + l
k,α

j (D.27)

in which α = 0, 1, · · · , s, and

D
k,ρ

j = Dk,ρ
j +

s∑
γ=1

Hk,αγ
j Xk,γρ

j − σα0adD
µk,αj

S
k,α

j Xk,αρ
j , (D.28a)

G
k,ν

j = Gk,ανj +

s∑
γ=1

Hk,αγ
j Y k,γνj − σα0adD

µk,αj
S
k,α

j Y k,ανj , (D.28b)

l
k,α

j = lk,αj +

s∑
γ=1

Hk,αγ
j yk,γj − σα0adD

µk,αj
S
k,α

j yk,αj , (D.28c)

and note that σα0 is given in Eq. (B.2) of Algorithm B.2. In a similar way, using
Eqs. (D.19) and (D.26), we obtain

δΓ
k,α

j − adD
Γ
k,α
j

S
k,α

j · δqk,αj =

s∑
ρ=0

Π
k,αρ

j · δvk,ρj +

s∑
ν=1

Ψ
k,αν

j · ηk,νj + ζ
k,α

j (D.29)

in which α = 1, 2, · · · , s, and

Π
k,αρ

j = Πk,αρ
j +

s∑
γ=1

Φk,αγj Xk,γρ
j − σα0adD

Γ
k,α
j

S
k,α

j Xk,αρ
j , (D.30a)

Ψ
k,αν

j = Ψk,ανj +

s∑
γ=1

Φk,αγj Y k,γνj − σα0adD
Γ
k,α
j

S
k,α

j Y k,ανj , (D.30b)

ζ
k,α

j = ζk,αj +

s∑
γ=1

Φk,αγj yk,γj − σα0adD
Γ
k,α
j

S
k,α

j yk,αj . (D.30c)

Finally, for each j ∈ chd(i), substituting Eqs. (D.27) and (D.29) respectively into
Eqs. (D.12a) and (D.12b) and applying Eqs. (D.28) and (D.30) to expand D

k,ρ

j , G
k,ν

j ,
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l
k,α

j andΠ
k,αρ

j , Ψ
k,αν

j , ζ
k,α

j , we respectively obtainDk,ρ
i ,Gk,νi , lk,αi andΠk,αρ

i , Ψk,ανi ,
ζk,αi as Eqs. (B.1) and (B.3) of Algorithm B.2 such that

δµk,αi =

s∑
ρ=0

Dk,αρ
i · δvk,ρi +

s∑
ν=1

Gk,ανi · ηk,νi + lk,αi

∀α = 0, 1, · · · , s, (D.31)

δΓ
k,α

i =

s∑
ρ=0

Πk,αρ
i · δvk,ρi +

s∑
ν=1

Ψk,ανi · ηk,νi + ζk,αi

∀α = 0, 1, · · · , s− 1. (D.32)

In particular, note that even if rigid body i is the leaf node of the tree representation
whose chd(i) = Ø, there still exists Dk,ρ

i , Gk,νi , lk,αi and Πk,αρ
i , Ψk,ανi , ζk,αi from

Eqs. (B.1) and (B.3) of Algorithm B.2. Moreover, as long as Dk,ρ
i , Gk,νi , lk,αi and

Πk,αρ
i , Ψk,ανi , ζk,αi are given for each rigid body i, we can further obtainXk,αρ

i , Y k,ανi ,
yk,αi following lines 3 to 9 of Algorithm B.2.

In summary, for each rigid body i, we have shown that Xk,αρ
i , Y k,ανi , yk,αi as well

as Dk,ρ
i , Gk,νi , lk,αi and Πk,αρ

i , Ψk,ανi , ζk,αi are computable through the backward pass
by Algorithm B.2, and δqk,αi as well as ηk,αi and δvk,αi are computable through the
forward pass by lines 4 to 15 of Algorithm B.1, which proves the correctness of the
algorithms.

In regard to the complexity, Algorithm B.2 has O(s2) + O(s3) complexity since

there are O(s2) quantities and the computation of Λk,αi
−1

takes O(s3) time, and thus
the backward pass by lines 1 to 3 of Algorithm B.1 totally takes O(s3n + s2n) time.
Moreover, in lines 4 to 15 of Algorithm B.1, the forward pass takes O(s2n) time. As a
result, the overall complexity of Algorithm B.1 isO(s3n), which proves the complexity
of the algorithms.

D.3 Proof of Proposition 3

Proposition 3. For the kinetic energy K(q, q̇) of a mechanical system, ∂2K
∂q̇2 , ∂2K

∂q̇∂q ,
∂2K
∂q∂q̇ , ∂

2K
∂q2 can be recursively computed with Algorithm 2 in O(n2) time.

Proof. According to Eqs. (D.1), (D.8) and (D.9), we have

∂K

∂q̇i
= S

T

i

(
M ivi +

∑
i′∈des(i)

M i′vi′
)

(D.33)

and
∂K

∂qi
= Ṡ

T

i

(
M ivi +

∑
i′∈des(i)

M i′vi′
)
. (D.34)
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Since M ivi, Si and Ṡi only depend on qj and q̇j for j ∈ anc(i) ∪ {i}, it is straightfor-
ward to show from Eqs. (D.33) and (D.34) that the derivatives ∂2K

∂q̇i∂q̇j
, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

can be respectively computed as

∂2K

∂q̇i∂q̇j
=


∂
∂q̇j

(
∂K
∂q̇i

)
j ∈ anc(i) ∪ {i},

∂2K
∂q̇j∂q̇i

j ∈ des(i),

0 otherwise,

(D.35)

∂2K

∂q̇i∂qj
=


∂
∂qj

(
∂K
∂q̇i

)
j ∈ anc(i) ∪ {i},

∂2K
∂qj∂q̇i

j ∈ des(i),

0 otherwise,

(D.36)

∂2K

∂qi∂q̇j
=


∂
∂q̇j

(
∂K
∂qi

)
j ∈ anc(i) ∪ {i},

∂2K
∂q̇j∂qi

j ∈ des(i),

0 otherwise,

(D.37)

∂2K

∂qi∂qj
=


∂
∂qj

(
∂K
∂qi

)
j ∈ anc(i) ∪ {i},

∂2K
∂qj∂qi

j ∈ des(i),

0 otherwise.

(D.38)

Therefore, we only need to consider the derivatives for j ∈ anc(i) ∪ {i}, whereas the
derivatives for j /∈ anc(i) ∪ {i} are computed from Eqs. (D.35) to (D.38). In addition,
if j ∈ anc(i) ∪ {i}, using Eqs. (C.14a), (C.10a), (C.11) and (C.12), we obtain

∂M ivi
∂q̇j

= M iSj , (D.39)

∂M ivi
∂qj

= −adT
Sj
M ivi −M iadSjvi +M iadSj (vi − vj)

= M iṠj − adT
Sj
M ivi (D.40)

∂Ṡi
∂q̇j

= adSjSi, (D.41)

∂Ṡi
∂qj

= adviadSjSi + adadSj
(vi−vj)Si. (D.42)

For notational clarity, we define µi,Mi,M
A

i andMB

i as

µi = M ivi +
∑

j∈des(i)

M jvj = M ivi +
∑

j∈chd(i)

µj , (D.43)
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Mi = M i +
∑

j∈des(i)

M j = M i +
∑

j∈chd(i)

Mj , (D.44)

MA

i =MiSi, (D.45)

MB

i =MiṠi − adDµiSi (D.46)

which will be used in the derivation of ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

.

1) ∂2K
∂q̇i∂q̇j

If j ∈ anc(i) ∪ {i}, from Eqs. (D.33), (D.39), (D.44) and (D.45), it is simple to
show that

∂2K

∂q̇i∂q̇j
=

∂

∂q̇j

(
∂K

∂q̇i

)
= S

T

i

(
M iSj +

∑
i′∈des(i)

M i′Sj

)
= S

T

i

(
M i +

∑
i′∈des(i)

M i′

)
Sj

= S
T

jMiSi

= S
T

jM
A

i .

(D.47)

2) ∂2K
∂q̇i∂qj

If j ∈ anc(i)∪ {i}, using Eqs. (C.7a), (D.33), (D.40), (D.44) and (D.45), we obtain

∂2K

∂q̇i∂qj
=

∂

∂qj

(
∂K

∂q̇i

)
=

∑
i′∈des(i)∪{i}

(
S
T

i M i′ Ṡj − S
T

i adT
Sj
M i′vi′ + S

T

i adT
Sj
M i′vi′

)
= S

T

i

(
M i +

∑
i′∈des(i)

M i′

)
Ṡj

= Ṡ
T

jMiSi

= Ṡ
T

jM
A

i .

(D.48)

3) ∂2K
∂q̇i∂qj
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If j ∈ anc(i)∪{i}, using Eqs. (D.34), (D.39), (D.41), (D.43) and (D.44), we obtain

∂2K

∂qi∂q̇j
=

∂

∂q̇j

(
∂K

∂qi

)
=

∑
i′∈des(i)∪{i}

(
Ṡ
T

i M i′Sj + S
T

i adT
Sj
M i′vi′

)
= S

T

j

(
M i +

∑
i′∈des(i)

M i′

)
Ṡi +

(
M ivi +

∑
i′∈des(i)

M i′vi′
)T

adSjSi

= S
T

jMiṠi + µTi adSjSi.

Then simplify the equation above with µTi adSjSi = −STj adDµiSi and Eq. (D.46), the
result is

∂2K

∂qi∂q̇j
= S

T

j

(
MiṠi − adDµiSi

)
= S

T

jM
B

i . (D.49)

4) ∂2K
∂qi∂qj

If j ∈ anc(i) ∪ {i}, using Eqs. (C.12), (D.34), (D.39), (D.40) and (D.42) to (D.44)
and adadviSj

= adviadSj − adSjadvi , we obtain

∂2K

∂qi∂qj
=

∂

∂qj

(
∂K

∂qi

)
=

∑
i′∈des(i)∪{i}

[ (
M i′vi′

)T (
adviadSjSi − adSjadviSi+

adadSj
(vi−vj)Si

)
+ Ṡ

T

j M i′ Ṡi

]
= Ṡ

T

j

(
M i +

∑
i′∈des(i)

M i′

)
Ṡi +

(
M ivi +

∑
i′∈des(i)

M i′vi′
)T

ad
Ṡj
Si

= Ṡ
T

jMiṠi + µTi ad
Ṡj
Si.

Similar to ∂2K
∂q̇i∂qj

, using µTi ad
Ṡj
Si = −ṠTj adDµiSi and Eq. (D.46), we obtain

∂2K

∂qi∂qj
= Ṡ

T

j

(
MiṠi − adDµiSi

)
= Ṡ

T

jM
B

i . (D.50)

Thus far, we have proved that ∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

can be computed

using Eqs. (D.35) to (D.38) and (D.47) to (D.50) with which we further have ∂2K
∂q̇2 ,

∂2K
∂q̇∂q , ∂

2K
∂q∂q̇ and ∂2K

∂q2 computed.
As for the complexity of Algorithm 2, it takes O(n) time to pass the tree repre-

sentation forward to compute gi, Mi, Si, vi, Ṡi and another O(n) time to pass the
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tree representation backward to compute µi,Mi,M
A

i andMB

i . In the backward pass,
∂2K
∂q̇i∂q̇j

, ∂2K
∂q̇i∂qj

, ∂2K
∂qi∂q̇j

and ∂2K
∂qi∂qj

are computed for each i using Eqs. (D.35) to (D.38)
and (D.47) to (D.50) which totally takes at most O(n2) time. Therefore, the complexity
of Algorithm 2 is O(n2). This completes the proof.

D.4 Proof of Proposition 4

Proposition 4. If g ∈ R3 is gravity, then for the gravitational potential energy Vg(q),
∂2Vg

∂q2 can be recursively computed with Algorithm 3 in O(n2) time.

Proof. It is known that the gravitational potential energy Vg(q) is

Vg(q) = −
n∑
i=1

mi · gT pi. (D.51)

in which mi ∈ R is the mass of rigid body i and pi ∈ R3 is the mass center of rigid
body i as well as the origin of frame {i}. In addition, from Eqs. (C.5a) and (C.5b), we
have

∂pi
∂qj

=

{
ŝjpi + nj j ∈ anc(i) ∪ {i},
0 otherwise,

(D.52a)

and
∂pj
∂qi

=

{
ŝipj + ni j ∈ des(i) ∪ {i},
0 otherwise,

(D.52b)

in which si, ni ∈ R3 and Si =
[
sTi n

T
i

]T ∈ R6 is the spatial Jacobian of joint i. From
Eqs. (D.52b) and (D.51), algebraic manipulation gives

∂Vg
∂qi

= −STi
(
mi

[
p̂ig
g

]
+

∑
i′∈des(i)

mi′

[
p̂i′g
g

])
. (D.53)

Moreover, observe that Si and pi only depends on qj for j ∈ anc(i) ∪ {i}, we obtain
from Eq. (D.53) that

∂2Vg
∂qi∂qj

=


∂
∂qj

(
∂Vg

∂qi

)
j ∈ anc(i) ∪ {i},

∂2Vg

∂qj∂qi
j ∈ des(i),

0 otherwise,

(D.54)

which means that only ∂2Vg

∂qi∂qj
for j ∈ anc(i) ∪ {i} needs to be explicitly computed. If

j ∈ anc(i)∪{i}, using Eqs. (C.7a), (D.52a) and (D.53) as well as the equality âb = −b̂a
for any a, b ∈ R3, we obtain

∂2Vg
∂qi∂qj

=
∂

∂qj

(
∂Vg
∂qi

)
=

∑
i′∈des(i)∪{i}

mi′
[
sTi
(
ĝŝjpi′ + ŝj p̂i′g

)
− nTi ĝsj

]
.

23



In addition, since p̂i′ ĝsj = −ĝŝjpi′ − ŝj p̂i′g and âT = −â for any a ∈ R3, the
equation above is equivalent to

∂2Vg
∂qi∂qj

= sTj ĝ

[(
mi +

∑
i′∈des(i)

mi′
)
ni −

(
mip̂i +

∑
i′∈des(i)

mi′ p̂i′
)
si

]
(D.55)

If we define
σmi = mi +

∑
j∈des(i)

mj = mi +
∑

j∈chd(i)

σmj ,

σpi = mipi +
∑

j∈des(i)

mjpj = mipi +
∑

j∈chd(i)

σpj ,

σAi = ĝ
(
σmi · ni − σ̂pi · si

)
,

then Eq. (D.55) is further simplified to

∂2Vg
∂qi∂qj

= sTj ĝ
(
σmini − σ̂pisi

)
= sTj σ

A
i . (D.56)

As a result, ∂
2Vg

∂q2 can be computed from Eqs. (D.54) and (D.56).
The O(n2) complexity of Algorithm 3 is as follows: the forward pass to compute

gi and Si and the backward pass to compute σmi , σpi and σAi take O(n) time, respec-

tively; and the computation of ∂2Vg

∂qi∂qj
=

∂2Vg

∂qj∂qi
= sTj σ

A
i totally takes O(n2) time.

Therefore, it can be concluded that Algorithm 3 has O(n2) complexity. This completes
the proof.
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