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Abstract. As robots becomemore capable, they also becomemore complicated—
either in terms of their physical bodies or their control architecture, or both.
An iterative algorithm is introduced to compute feasible control policies that
achieve a desired objective while maintaining a low level of design complexity
(quantified using a measure of graph entropy) and a high level of task em-
bodiment (evaluated by analyzing the Kullback-Leibler divergence between
physical executions of the robot and those of an idealized system). When
the resulting control policy is sufficiently capable, it is projected onto a set
of sensor states. The result is a simple, physically-realizable design that is
representative of both the control policy and the physical body. This method
is demonstrated by computationally optimizing a simulated synthetic cell.

1 Introduction

Many roboticists seek to create robots that are as capable as possible, assuming that
optimal design is achieved when a robot can perfectly perform a task. But as robots
become more capable, they often become more complicated. While there are some
cases where this is acceptable, there are many where complexity is an undesired
consequence of optimization. A conflict exists between equipping a robot with what
is sufficient and what is necessary—what can enable a robot to succeed (and is likely
complex) and what is minimally required for it to achieve its goal (and is necessarily
simple). This is especially evident when designing for embodied computation—robots
without any on-board, CPU-based, traditional computational capabilities.

Robots traditionally require three elements: sensors, computation, and actua-
tors. Some robotic systems employ embodied computation to reduce weight and
energy—for example fully mechanical devices, like passive dynamic walkers [9], [28] or
those used in prosthetic limbs [22]—while others must necessarily resort to embodied
computation because of scale, for example, robots on the micro- or nano-scales [13],
[16], [17]. We focus on the latter case later. So although robot design is traditionally
identifying which sensory, computation, and actuation elements can be combined
to best achieve a goal, here we will examine a framework for designing the sensory
and actuation elements of robots so that no traditional, CPU-based computation is
necessary to accomplish a goal.
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Fig. 1: A simple example of a control policy. Here the state space is a two dimensional
5×5 grid and the desired state is in the upper right of the state space. At each state,
the suitable control is indicated by its assigned color. (a) A simple control policy
with only three different states in the finite state machine. (b) A complex control
policy, with fifteen different states in the finite state machine. Both achieve the task
with different implementations.

We first examine the relationship between control policy design and physical robot
body design. A control policy assigns an action for a system at each time or state.
Symbolic control policies have been useful in robot control and motion planning [3],
[21] for systems with limited computational power [25]. An example is shown in Fig.
1, where the system consists of three possible control modes: move right (blue), move
up (red), and stay still (white) and its goal is to navigate to the upper right corner of
the grid world. A simple robot placed in this environment with one of these policies
in its memory would be able to achieve its task without any traditional computation,
replacing logical operators such as inequalities with physical comparators to relate
sensor states to control actions.

Figure 1 illustrates the difference in complexity between these two policies. The
policy in Fig. 1 (a) requires a combination of sensors that are capable of differentiating
between three different regions of the state space, and the policy in Fig. 1 (b) requires
sensors that are able to discern between fifteen different regions. It is simpler to
physically implement the robot design implied by the control policy in Fig. 1 (a) than
the policy in Fig. 1 (b).

We pose the physical design problem as the projection of a policy onto an
admissible set of physical sensor-actuator interconnections, the complexity of which
must be managed during policy iteration. This complexity is a measure of logical
interconnections between sensor states and control modes (which correspond to arrows
on the graphs in Fig. 1). Methods from switched systems literature are used to organize
these sensor-actuator connections so that they change minimally as a function of state.
This is challenging because [4] shows that optimal solutions for discrete switched
systems will chatter with probability 1, and chattering implies a complex policy. That
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is, when choosing among a finite number of sensor-actuator pairings, optimization
of an objective function will necessarily lead to arbitrarily complex dependencies on
state, and the physical implementation of such a policy would consequently be very
complex (and often not physically realizable). Results from [7] show that solutions
with slow mode switching are “almost” as good as chattering solutions. Properties
from [7] are used here to design control policies with minimal mode switching and
then project them onto a feasible sensor space, as illustrated in Fig. 2, resulting in
a methodology for designing robots with embodied computation.
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Fig. 2: (a) The state space and controls for the synthetic cell example system introduced
in Sec. 3. At any location in the state space, the robot is able to choose one of seven
different control modes: attraction to chemical potentials at the six different sources,
or zero control. (b) A control policy for this system projected onto a feasible set of
sensor states. (These figures will be explained in detail in Sec. 5 and Sec. 6.)

After reviewing related work in Section 2, this methodology will be explored in
terms of an extended example. The example system, called a synthetic cell, will be
introduced in Section 3. The primary contributions of this work can be summarized
as follows:

1. Quantitative definitions are given for design complexity and task embodiment,
described in Section 4.

2. An iterative algorithm is developed in Section 5, which creates control policies
with low design complexity while increasing task information.

3. A physically realizable robot design is generated by dividing the state space into
regions to create a set of sensor states, illustrated in Section 6, and projecting
the low complexity control policy onto this set.

These are supported by simulations of synthetic cells.

2 Related Work

This work is substantially inspired by [8], which defines design problems as relations
between functionality, resources, and implementation and shows that despite being
non-convex, non-differentiable, and noncontinuous, it is possible to create languages
and optimization tools to define and automatically solve design problems. The optimal
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solution to a design problem is defined as the solution that is minimal in resources
usage, but provides maximum functionality. We apply this definition by proposing a
min-max problem in which the goal is to minimize design complexity (representative
of the amount of sensors and actuators required, i.e., the resources), and maximize
task embodiment (i.e., the functionality of the design).

Robotic primitives are introduced in [23] as independent components that may
involve sensing or motion, or both. These are implemented in this work as actuator
and sensor libraries from which we allow our algorithm to choose components. Our
definition of task embodiment, which is defined in Sec. 4, parallels the dominance
relation proposed in [23] that compares robot systems such that some robots are
stronger than others based on a sensor-centered theory of information spaces.

Similarly, our definition of design complexity (Sec. 4) parallels an existing notion of
conciseness, presented in [24]. The results in [24] are motivated by circumstances with
severe computational limits, specifically addressing the question of how to produce
filters and plans that are maximally concise subject to correctness for a given task. This
is very related to our goal of finding the simplest way to physically organize sensors
and actuators so that a (computationally limited) robot can achieve a given task.

The work presented in [15] produces asymptotically optimal sampling-based meth-
ods and proposes scaling laws to ensure low algorithmic complexity for computational
efficiency. These algorithms were originally developed for path planning, but we apply
similar ideas for generating simple control policies. The methods described in [15]
start with an optimal, infinite complexity solution, and from that develop simpler
plans. Here, we start with a zero complexity policy and move towards more complex,
better performing solutions—while maintaining a level of computational complexity
appropriate for physical implementations of embodied computation.

3 Motivating Example: Synthetic Cells

How can we use control principles to organize sensor components, actuator compo-
nents, and their interconnections to create desired autonomous behavior, without
relying on traditional computation? To answer this question we will consider the
extended example of a synthetic cell—a small robot that only has a finite number
of possible sensor and actuator states and potential pairings between them [19]. The
purpose of this example system is to show a concrete implementation of the methods
in Section 5, and to better illustrate the relationship between control policy design
and physical robot body design.

A synthetic cell is a mechanically designed microscopic device with limited sensing,
control, and computational abilities [19]; it is essentially an engineered cell. A synthetic
cell is in a chemical bath and generates movement by interacting with its environment
using chemical inhibitors, and it contains simple circuits that include minimal sensors
and very limited nonvolatile memory [20]. Such a device is 100µm in size or less, render-
ing classical computation using a CPU impossible. But these simple movement, sensory,
and memory elements can potentially be combined with a series of physically real-
izable logical operators to enable a specific task. How can these discrete structures be
algorithmically organized to combine sensing and control to accomplish an objective?
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4 Design Complexity and Task Embodiment

Graph entropy [1],[10] will be used as a measure of design complexity for comparing
robot designs. The complexity of a control policy is equated with the measure of
entropy of its resulting finite state machine.

A finite state machine consists of a finite set of states (nodes), a finite set of inputs
(edges), and a transition function that defines which combinations of nodes and edges
lead to which subsequent nodes [26]. The finite set of nodes that the system switches
between are the control modes, and the edges—inputs to the system which cause the
control modes to change—are the state observations (Fig. 1(a)).

Finite state machines and their corresponding adjacency matrices are generated
numerically, by simulating a synthetic cell forward for one time step, and recording
control modes assigned at the first and second states. These control mode transitions
are counted and normalized into probabilities, and the resulting adjacency matrix
A is used in the entropy calculation,

h=−
∑
i

A(i)log(A(i)) (1)

which results in a complexity measure h for each robot design. This measure of
complexity is more informative than other metrics (e.g., simply counting states)
because it is a function of the interconnections between states—which is what we
want to minimize in the physical design.

We define task embodiment as the amount of information about a task encoded
in a robot’s motion (not to be confused with embodiment found in human-robot
interaction [14], [29]). The focus is on how much information a body encodes about
a task, so that the design update can be characterized in terms of moving task in-
formation from the centralized computations in the control calculations to embedded
computation in the physical body. This can be evaluated using the K-L divergence
(2) between a distribution representing the task, P , and a distribution representing
trajectories of the robot design, Q [5],

DKL(P‖Q)=−
∑
i

P(i)log

(
Q(i)

P(i)

)
. (2)

To define the goal task distribution P , a model predictive controller (MPC) is used
to simulate the task execution of an idealized robot (e.g., with a computer on board
and perfect state measurements). The same method is used to generate a distribution
Q that represents the robot design—this time implementing the generated control
policy in place of the optimal controller. We use (2) to compare these two distributions:
a low measure of K-L divergence indicates that the distributions are similar, and
implies a high level of task embodiment, and therefore a better robot design.

In other words, if a task is well-embodied by a robot, only a simple control policy
is necessary to execute it. Otherwise, more information, in the form of a more complex
control policy, is required.
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5 Control Modes Based on State

We split the design synthesis problem into two stages. First, in this section, the control
policy is optimized as a function of state, keeping the number of transitions between
control modes low. Then, in the next section, those control modes are projected
onto sensor states to generate a design. The min-max optimization of minimizing
implementation complexity while maximizing task embodiment is challenging, with
many reasonable approaches. We use techniques from hybrid optimal control because
of properties described next.

It was proven in [4] that optimal control of switched systems will result in a chatter-
ing solution with probability 1. Chattering is equivalent to switching control modes very
quickly in time. In the case of these control policies, this translates to switching between
control modes very quickly in state. As a result, an implementation of the optimal
control policy would be highly complex. Instead of an optimal solution, we are looking
for a “good enough,” near optimal solution that results in a minimal amount of mode
switching. It was shown in [7] that the mode insertion gradient (MIG), which will be dis-
cussed in Section 5.2, has useful properties in this regard, including that when the MIG
is negative at a point, it is also negative for a region surrounding that point, and that a
solution that switches modes slowly can be nearly as optimal as a chattering solution.

This section will first review the topics of switched systems [4], [7], [12], [30] and
the use of needle variations for optimization [11], [27], [30], then develop an algorithm
for building low complexity control policies. The algorithm creates a simple control
policy under the assumption that the system has perfect knowledge of its state.
Mapping this policy to physically realizable sensors is the subject of Section 6.

5.1 Switched Systems

A switched-mode dynamical system is typically described by state equations of the
form

ẋ(t)={fσ(x(t))}σ∈Σ (3)

with n states x :R→X⊆Rn, m control modes1 σ :R→Σ⊂ [0,m], and contin-
uously differentiable functions {fσ :Rn+m→Rn}σ∈Σ [11]. Such a system will switch
between modes a finite number of times N in the time interval [0,T ]. The control
policy for this type of switched system often consists of a mode schedule containing a
sequence of the switching control modes S={σ1,...,σN} and a sequence of increasing
switching times T ={τ1,...,τN} [12], [30].

In this paper, we will consider a similar switched-mode system in that the system
has n states x=[x1,x2,...,xn]T ∈Rn and m control modes σ=[σ1,σ2,...,σm]T ∈Rm,
but instead of implementing an algorithm to optimize transition times between
modes, we optimize transition states, such that a robot can directly map sensory
measurements of state to one of a finite number of control outputs.

1 Typically u is denoted as a control variable, but in this case the control value u could be
anything in the greater context of the control mode σ. The control mode may, in fact,
consist of many different values of u, which is why u does not appear in a significant way
in the posing of this problem.
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5.2 Hybrid Optimal Control

Let L :Rn→R be a continuously differentiable cost function, and consider the total
cost J, defined by

J=

∫ T

0

L(x(t))dt. (4)

We use the Mode Insertion Gradient (MIG) [11], [27], [30] to optimize over the
choice of control mode at every state. The MIG measures the first-order sensitivity
of the cost function (4) to the application of a control mode σi for an infinitesimal
duration λ→0+. The MIG d(x) is evaluated using

d(x)=
dJ

dλ+

∣∣∣∣
t

=ρ(t)T (fσi(x(t))−fσ0(x(t))), (5)

where the adjoint variable ρ is the sensitivity of the cost function

ρ̇=−(
∂fσ0
∂x

(x(t)))Tρ−(
∂L

∂x
(x(t)))T , ρ(T)=0. (6)

The derivation of these equations is discussed in [11], [27], [30], but the key point
is that d(x) measures how much inserting a mode σi locally impacts the cost J. When
d(x)< 0, inserting a mode at state x will decrease the cost throughout a volume
around x, meaning a descent direction has been found for that state. The MIG can be
calculated for each mode so that d(x) is a vector of m mode insertion gradients: d(x)=
[d1(x),...,dm(x)]T . Therefore the best actuation mode (i.e., the mode with the direction
of maximum descent) for each state x has the most negative value in the vector d(x).

As long as the dynamics f(x(t)) are real, bounded, differentiable with respect
to state, and continuous in control and time and the incremental cost, L(x(t)), is
real, bounded, and differentiable with respect to state, the MIG is continuous [7].
Sufficient descent of the mode insertion gradient is proven in [7], where the second
derivative of the mode insertion gradient is shown to be Lipschitz continuous under
assumptions guaranteeing the existence and uniqueness of both x, the solution to the
state equation Eq. (3), and ρ, the solution of the adjoint equation Eq. (6). Combining
this with the results of [15], one can conclude that any sufficiently dense finite packing
will also satisfy the descent direction throughout the volume of packing. As a result,
although chattering policies may be the actual optimizers, finite coverings will generate
descent throughout the state space, resulting in a non-optimal but “good enough”
solution. This property provides the required guarantee that we can locally control the
complexity of the policy as a function of state. This will be discussed further in Sec. 5.3.

Figure 3 illustrates differences in complexity as a result of optimizing using the
mode insertion gradient. The magnitude of the curves is the default control (the control
we are comparing to) minus the step size (a scaling factor, and also the line search
parameter) multiplied by the MIG. Therefore the magnitude of these plots correspond
to the amount of reduction in cost that can be achieved by locally employing each
control mode at the state x. The complex policy illustrated in Fig. 3 (c), occurs in
simulation in the chattering policy of Fig. 4. This happens when there is similar
utility in employing more than one mode in a region—there is only marginal benefit
in choosing one control mode over another, which results in increased complexity.
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Fig. 3: The curves show σk+1=σk−γdk for three different control modes σ1 (blue),
σ2 (green), and σ3 (red), where γ is the line search parameter and the background
colors indicate which mode is assigned to state x in the control policy. As step size γ
increases from left to right, the magnitude of γdk(x) surpasses that of the default
control σk(x) (here the default control is σ1 =0). (a) Minimum Complexity: Only
one control mode is assigned throughout the entire state space. (b) Low Complexity:
A few control modes are employed, indicating that the cost function can be reduced
by including these extra control modes. (c) High Complexity: The control mode
switches often but the magnitudes of the values are very similar, indicating that there
is no significant decrease in cost between these modes—despite the large increase in
complexity (i.e., chattering).

5.3 Iterative Algorithm

An algorithm is introduced that can reduce the complexity of a control policy in as
little as one iteration, based on the work in [6], [7].

Algorithm 1 Iterative Optimization

k=0
Choose default policy σ0(x)
Calculate initial cost J(σ0(x))
Calculate initial complexity h0

Calculate initial descent direction d0(x)
hk−1=∞
while hk<hk−1+εh

while J(σk(x))<J(σk+1(x))+εJ
Re-simulate σk+1(x)=σk(x)−γdk(x)
Compute new cost J(σk+1(x))
Increment step size γ

end while
Calculate new complexity hk+1

Calculate dk+1(x)
k=k+1

end while

Note that the superscripts in this algorithm are not exponents, but indices of loop increments.

In this line search algorithm σ=[σ1,σ2,...,σm]T is a vector of all control modes
and descent direction d(x)=[d1(x),d2(x),...,dm(x)]T is the gradient of inserting any
mode with respect to a default mode σ0(x) at a particular state. The default control
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may be chosen arbitrarily, but for simplicity we will show an example using a null
default policy (in Fig. 5).

The cost J(σk(x)) of the entire policy is approximated by simulating random
initial conditions forward in time and evaluating the total cost function for time T .
We use cost J rather than task embodiment DKL as the objective function because
the line search in the algorithm is a function of d(x)= dJ

dλ . This way, the algorithm
decreases the objective function (plus tolerance εJ) each iteration. After choosing
a default policy σ0(x) (which can be anything from a constant mode throughout
the state space to a highly complex policy), computing the initial cost J(σ0(x)),
and calculating the initial entropy h0 (using Eq. (1)) the initial descent direction
d0(x) is calculated for the set of points in S, as described in Sec. 5.2. A line search
[2] is performed to find the maximum step size γ that generates a reduction in
cost in the descent direction dk(x), and then the policy σk(x) is updated to the
policy σk+1(x). The new design complexity hk+1 and descent directions dk+1(x) are
calculated, and this is repeated until the cost can no longer be reduced without
increasing the complexity beyond the threshold defined by εh.

The tolerances εh and εJ are design choices based on how much one is willing
to compromise between complexity and performance. In the example illustrated in
Sec. 5.4, the value for εh is significant because it represents the allowable increase
in complexity—how much complexity the designer is willing to accept for improved
task embodiment.

This algorithm enforces low design complexity, meaning it will not result in
chattering outputs. The work in [7] showed that if d(x(τ))< 0 then there exists
an ε > 0 such that d(x(t))< 0 ∀ t∈ [τ−ε,τ+ε]. Since d(x) is continuous in x (as
discussed in Section 5.2), d(x0) < 0 implies that there exists an ε > 0 such that
d(x)<0 ∀ x∈Bε(x0). Note that each point in Bε(x0) does not necessarily have the
same mode of maximum descent, but they do each have a common mode of descent.

x

y

x

y

Fig. 4: A chattering control policy. The
corresponding graph has entropy h=
7.6035.

The MIG serves as a descent direction for
a volume in the state space, rather than just
at a point. This property allows us to assign
one control mode throughout a neighbor-
hood so that instead of choosing the optimal
control mode (the direction of maximum de-
scent) at each point and causing chattering,
we select a good control mode (a direction
of descent) throughout a volume and main-
tain relative simplicity in the policy. Figure
4 shows a control policy that is the result of
assigning the optimal control mode at each
point, which results in chattering.
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5.4 Examples

For this example, the configuration space of the synthetic cell is defined by its position
in two dimensional space (x,y). We define the control authority as the ability to be
attracted toward a specific chemical potential. So at any location (x,y) the robot
may choose a control mode σ∈{σ0,σ1,σ2,σ3,σ4,σ5,σ6}, where σ0 is zero control, and
the other six modes are a potential (with dynamics ẍ= 1

r2n

sn−x
||sn−x|| , where rn is the

distance from the synthetic cell to source n and sn is the location of source n). The
control synthesis problem is to schedule σ in space, based on an objective (in this
case, to approach a point P)2. The state space, desired point, and chemical sources
are all shown in Fig. 2 (a).
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Fig. 5: Control policies for the system in Fig. 2, starting from a null initial policy.
(a) The control policies, mapping state to control for various iterations of the line
search. (b) A finite state machine representation of each policy, representative of the
complexity of the system. (c) The design complexity value calculated from Eq. (1).
(d) 1000 Monte Carlo simulations illustrate the results of random initial conditions
using the associated control policies. (e) The Kullback-Leibler divergence between
the goal task distribution and the distribution generated by the control policy, from
Eq. (2). (f) The average final distance of the final states of (d) from the desired point
P .

2 Point P is slightly off center, to avoid adverse effects of symmetry. This is reflected in the
asymmetry of the resulting control policies (e.g. red and orange not being perfectly even).
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Figure 5 begins with an initial control policy of zero control throughout the state
space, and increases design complexity and task embodiment until the line search
algorithm converges to a new control policy. Monte Carlo simulations were performed
with 1000 random initial conditions, shown in row (d) and the average distance of
the final points from the desired point is shown in row (f). Most interesting are the
trends in rows (c) and (e). These correspond to the min-max problem posed earlier,
in which we attempt to minimize design complexity, computed using graph entropy
(c), and maximize task embodiment, calculated using K-L divergence (e). The graph
entropy in row (c) increases as the K-L divergence in row (e) increases. This shows
the entropy must increase (from 0) to ensure some amount of task embodiment.

Synthetic cells can encode these simplified control policies by physically combining
their movement, sensory, and memory elements with a series of logical operators, as
discussed next in Section 6.

6 Projecting Policies onto Discrete Sensors

Section 5 described synthetic cells with perfect state measurement. In this section,
implementations using discrete sensors will be explored. In some cases, it may be
possible to create sensors that are able to detect exactly where a robot should switch
between control modes (e.g. a sensor that can perfectly sense the boundary between
the green and orange regions of the control policy). It is also possible that a designer
may start with a fixed library of sensors, in which case the state space should first be
divided into sensed regions, and then control modes should be assigned. Probably
the most likely case, and the one we will examine in the section, is that a designer
has a variety of sensors to choose from, and will want to use some subset of them.

For the synthetic cell example, we will assume discrete sensing provided by a
chemical comparator—a device that compares the relative strength of two chemical
concentrations. From a given library of sensors, how should the combination of sensors,
actuators, and logical operators be chosen so that the task is best achieved?

Figure 6 (a) shows five different individual sensors: each comparing the strength
of chemical source 1 to another of the chemical sources in the environment, and how
each of these sensors is able to divide the state space into two distinct regions, while
Fig. 6 (b) illustrates which regions of the state space are able to be discerned using
these 5 sensors combined. Fig. 6 (c) shows all possible combinations of comparators:
all 6 chemical sources compared to each of their 5 counterparts, and therefore the
maximum granularity of sensed regions in the state space using this sensor library3.

The optimal scenario would be that these sensor regions correspond perfectly
to the control regions found using the iterative algorithm in Fig. 5. Since this will
almost never be the case, we must attempt to approximate our control policy using
the library of sensors.

3 Note that some comparators divide the state space in the exact same way, i.e. comparing
chemical sources 1 and 3 results in the same sensed regions as comparing sources 2 and 4
(this is true for three other sets of comparators: 1/2 = 3/4 = 5/6, 1/5 = 2/6, and 3/5 =
4/6).
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Fig. 6: (a) Illustration of five individual chemical comparators, each comparing the
chemical potential of Source 1 with one of the other sources. Each sensor can tell
whether the robot is on one side of an equipotential—the dotted lines—or the other.
(b) Combination of the five sensors. The robot is able to sense which of these 9 regions
it is in. (c) Sensor regions resulting from the combination of all possible synthetic cell
comparators in this environment.

Figures 7 and 8 demonstrate how synthesized control policies combined with a
library of sensors create a physical design. Figure 7 (a) shows two comparators chosen
from the sensor library and how they each divide the state space into sensed regions
and Fig. 7 (b) is the policy that results from projecting the final control policy found
in the algorithm onto the feasible sensor space. This projection is done by dividing
the state space into k different sensed regions R=[R1,...,Ri,...,Rk] and finding the
volumes v=[v1,...,vj,...,vm] occupied by each of the m control modes in the policy.
In the cases of Figures 7 and 8, k is equal to 4 and 32, respectively, and v is the
n-dimensional volume corresponding to each of the 7 control modes. The control
mode σ with the maximum volume in each region Ri is assigned to that region using
Eq. (7).

σRi
=argmax

j
(vj∩Ri) (7)

Logical operators can be combined with sensory observations to represent the
state space with more fidelity than sensors alone (e.g. a single sensor in Fig. 6(a))—so
that actions can be associated with combinations of sensory observations (e.g. Fig.
6(b)). Figure 7 (c) illustrates the logical diagram that would be physically encoded in
circuitry onto a synthetic cell so that the policy in Fig. 7 (b) could be executed.

Figure 8 is similar to Fig. 7, but illustrates the physical design corresponding to
the highest fidelity control policy from the library of comparator sensors. Fig. 8 (a)
shows each of the sensors in the library, including the ones that repeat sensed regions
due to the symmetry in this environment. The projected control policy is shown in
Fig. 8 (b) and Fig. 8 (c) illustrates the logic of the physical circuitry.

It is notable that the designs in Figures 7 and 8 are quite dissimilar. Figure 9
shows how each of the physically feasible designs compare to each other, to another
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diagram for this system. (d) Circuit diagram for physical synthetic cell design.

physically feasible design, and to the control policy with perfect knowledge of state.
The high-fidelity design in the middle of Fig. 9 captures much of the structure of the
sensor-agnostic policy, and the results are evident in the relatively low K-L divergence.
The medium-fidelity design uses fewer sensors than the high-fidelity one and therefore
does not embody the task quite as well. The low-fidelity design has a higher K-L
divergence than even the null policy in Fig. 5. This is because during the projection,
the control mode assigned to each sensor region corresponded to a chemical potential
that was inside that same region, ensuring that no simulated synthetic cell was ever
able to escape its quadrant. The fact that all three of these designs were projected
from the same original control policy demonstrates that, as expected, the success of
the resulting robot design is highly sensitive to choice of sensors.



14 Pervan and Murphey

Control 
Policy

(a)

(d)

Monte Carlo 
Simulations

initial
final

(e)

(f)

Finite State
Machine

(b)

Graph 
Entropy

(c)

Kullback-Leibler
Divergence

Average 
Final Distance 

x

y

x

y

0.0202

1.1438

0.0471

1

2

3

4

5

6 7

8

9

10

x

y

1 2

3 4

1.4193

x

y

0.6311

0.0379

y

x

x

y

0.2940

0.6153

0.3087

1 2 3

4

5

6

7

8

9

y

x

0.3454

x

y

0.2657

0.5682

1

2

3
4

5

6

7

8

9

10
11

Fig. 9: Left: The policy generated when perfect knowledge of state was assumed.
Right: A high-fidelity design using all of the (10 distinct) sensors in the sensor library,
as shown in Fig. 8. A medium-fidelity design, using five sensors. A low-fidelity design,
using only two of the sensors from the sensor library, as shown in Fig. 7.

7 Discussion

In this work we addressed the question of designing robots while minimizing complexity
and maximizing task embodiment. We demonstrated our method of solving this
min-max problem, which included an iterative algorithm resulting in a control policy
assuming perfect sensing, and then projecting that policy onto a discrete space of
sensed regions resulting from a library of sensors. This is not necessarily an optimal
design pipeline for all robot design problems. In some cases it may be possible to
find a simple control policy assuming perfect sensing, and then create sensors that
best align with that policy. Conversely, there may be some instances where there is
a fixed library of sensors, in which case one would first divide the state space into
discrete regions and then find the optimal control mode in each of those regions.

In future work, this algorithm will be implemented for a wider range of dynamical
systems, specifically higher order systems. The algorithm will be tested with different
modifications, including using DKL in the objective function so that task embodiment
is the actual object of the optimization, rather than a correlated consequence. Finally,
this methodology will be validated by using control policies computed by this method
to design and create actual, physical synthetic cells.
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