
Efficient and Guaranteed Planar Pose Graph Optimization Using the
Complex Number Representation

Taosha Fan Hanlin Wang Michael Rubenstein Todd Murphey

Abstract— In this paper, we present CPL-Sync, a certifiably
correct algorithm to solve planar pose graph optimization
(PGO) using the complex number representation. We formulate
planar PGO as the maximum likelihood estimation (MLE)
on the product of unit complex numbers, and relax this
nonconvex quadratic complex optimization problem to complex
semidefinite programming (SDP). Furthermore, we simplify
the corresponding semidefinite programming to Riemannian
staircase optimization (RSO) on complex oblique manifolds
that can be solved with the Riemannian trust region (RTR)
method. In addition, we prove that the SDP relaxation and
RSO simplification are tight as long as the noise magnitude
is below a certain threshold. The efficacy of this work is
validated through comparisons with existing methods as well
as applications on planar PGO in simultaneous localization
and mapping (SLAM), which indicates that the proposed
algorithm is capable of solving planar PGO certifiably, and
is more efficient in numerical computation and more robust
to measurement noises than existing state-of-the-art methods.
The C++ code for CPL-Sync is available at https://github.
com/fantaosha/CPL-Sync.

I. INTRODUCTION

Pose graph optimization (PGO) estimates poses from their
relative noisy measurements, in which each unknown pose is
associated with a vertex and each measurement is associated
with an edge of the graph. In robotics, PGO has signifi-
cant applications in simultaneous localization and mapping
(SLAM) and has been extensively studied [1]–[3]. In the last
decades, a number of methods have been developed to solve
PGO [4]–[10] and verify the optimality of PGO [9]–[12].

In this paper, we consider the problem of planar PGO
using the complex number representation. Our work is mo-
tivated by the work of Rosen et al. [9] that uses Riemannian
staircase optimization to solve PGO efficiently and certifi-
ably. In [9], PGO is formulated on SE(d) using the matrix
representation and further simplified to quadratic program-
ming on SO(d), then it is relaxed to semidefinite program-
ming and solved with the Riemannian staircase optimization
(RSO) [13]. For planar PGO, we need to estimate poses on
SE(2) that consists of rotation on SO(2) and translation on
R2. Even though it is popular in robotics to represent SO(2)
with a 2×2 real matrix, a unit complex number is sufficient
to capture the geometric structure of SO(2). In a similar
way, a complex number is equivalent to a 2× 1 real vector
on R2. Therefore, it is possible to represent SE(2) using

All the authors are with the McCormick School of Engineering,
Northwestern University, Evanston, IL 60201, USA. E-mail:
{taosha.fan,hanlinwang}@u.northwestern.edu and
{rubenstein,t-murphey}@northwestern.edu.

This material is based upon work supported by the National Science
Foundation under award DCSD-1662233.

complex numbers, and the matrix representation of SE(2)
to formulate planar PGO is redundant in comparison with
the complex number representation. Moreover, the redun-
dancy of representation induces extra computation to planar
PGO and renders the semidefinite relaxation of planar PGO
more sensitive to noises, which affects both the numerical
efficiency and theoretical robustness.

In applied mathematics, it is common to use unit complex
numbers to represent SO(2), and the complex number repre-
sentation has been used to formulate phase synchronization
problems on SO(2) [14], [15]. In robotics, Carlone et al. [12]
use complex numbers to represent SO(2) and SE(2) for the
optimality verification of planar PGO, in which the complex
number representation makes the analysis much easier and
clearer. In contrast to the work of [12], we not only use
the complex number representation to verify the optimality
of planar PGO, but also to solve planar PGO certifiably,
efficiently and robustly.

In this paper, we present, CPL-Sync, a certifiably correct
algorithm to solve planar PGO using the complex number
representation. Similar to SE-Sync in [9], CPL-Sync uses
Riemannian staircase optimization [13] and provides an exact
globally optimal solution to planar PGO as long as the
noise magnitude is below a certain threshold. In contrast
to SE-Sync, CPL-Sync has a relatively simple formulation
and the resulting planar PGO is relaxed to complex oblique
manifolds [16]. Most importantly, the complex number rep-
resentation reduces amounts of computation and results in
a much tighter semidefinite relaxation, and as is shown in
Section VII, CPL-Sync is not only several times faster but
also a lot more robust to measurement noises than SE-Sync
on all the tested 2D SLAM datasets.

The rest of this paper is organized as follows. Section II
introduces notations that are used throughout this paper.
Section III reviews the complex number representation of
SO(2) and SE(2). Section IV formulates planar PGO using
the complex representation and Section V relaxes planar
PGO to complex semidefinite programming. Section VI
presents the CLP-Sync algorithm to solve planar PGO.
Section VII presents and discusses comparisons of CPL-
Sync with existing methods [6], [8], [9] on popular large 2D
SLAM benchmark datasets and simulated 2D City datasets
with high measurement noises. The conclusions are made in
Section VIII.

II. NOTATION

R and C denote the sets of real and complex numbers,
respectively; Rm×n and Cm×n denote the sets of m×n real

https://github.com/fantaosha/CPL-Sync
https://github.com/fantaosha/CPL-Sync

and complex matrices, respectively; Rn and Cn denote the
sets of n× 1 real and complex vectors, respectively. C1 and
Cn1 denote the sets of unit complex numbers and n×1 vectors
over unit complex numbers, respectively. P denotes the group
of (C,+) o (C1, ·) and “o” denotes the semidirect product
of groups. Sn and Hn denote the sets of n×n real symmetric
matrices and complex Hermitian matrices, respectively. The
notation “i” is reserved for the imaginary unit of complex
numbers. The notation | · | denotes the absolute value of
real and complex numbers, and the notation (·) denote the
conjugate of complex numbers. The superscripts (·)T and
(·)H denote the transpose and conjugate transpose of a
matrix, respectively. For a complex matrix W , [W]ij denotes
its (i, j)-th entry; the notations <(W) and =(W) denote real
matrices such that W = <(W)+=(W)i; W < 0 means that
W is Hermitian and positive semidefinite; trace(W) denotes
the trace of W ; diag(W) extracts the diagonal of W into a
vector and ddiag(W) sets all off-diagonal entries of W to
zero; the notations ‖W‖F and ‖W‖2 denote the Frobenius
norm and the induced-2 norm, respectively. The notation 〈·, ·〉
denotes the real inner product of matrices. For a vector v,
the notation [v]i denotes its i-th entry; ‖v‖2 = ‖v‖22 =√∑

i |[v]i|2 =
√
vHv; the notation diag(v) denotes the

diagonal matrix with
[
diag(v)

]
ii

= vi. The notation 1 ∈ Cn
denotes the vector of all-ones. The notation I ∈ Cn×n
denotes the identity matrix. For a hidden parameter x whose
value we wish to infer, the notations x, x̃ and x̂ denote the
true value of x, a noisy observation of x and an estimate of
x, respectively.

III. THE COMPLEX NUMBER REPRESENTATION OF
SO(2) AND SE(2)

In this section, we give a brief review of SO(2) and
SE(2), and show that SO(2) and SE(2) can be represented
using complex numbers.

It is known that the set of unit complex numbers
C1 , {a1 + a2i ∈ C|a2

1 + a2
2 = 1}

forms a group under complex number multiplication “·” for
which the identity is 1 and the inverse is the conjugate, i.e.,
for x, x′ ∈ C1, we obtain

x · x′ ∈ C1, 1 · x = x · 1 = x, x · x = x · x = 1.

In addition, the group of unit complex numbers (C1, ·)
is diffeomorphic and isomorphic to the matrix Lie group
SO(2):

SO(2) , {
[
a1 −a2

a2 a1

]
∈ R2×2|a2

1 + a2
2 = 1}

, {R ∈ R2×2|RTR = I, det(R) = 1}
under matrix multiplication. As a result, SO(2) can be
represented using unit complex numbers C1. More explicitly,
if R ∈ SO(2) is

R =

[
a1 −a2

a2 a1

]
=

[
cos θ − sin θ
sin θ cos θ

]
, (1)

the corresponding unit complex number representation x ∈
C1 is

x = a1 + a2i = eiθ = cos θ + sin θi (2)

in which eiθ = cos θ + sin θi. Furthermore, if b′ =[
b′1 b′2

]T ∈ R2 is rotated by R ∈ SO(2) in Eq. (1) from
b =

[
b1 b2

]T ∈ R2, i.e.,

b′1 = a1b1 − a2b2 = b1 cos θ − b2 sin θ,

b′2 = a1b2 + a2b1 = b2 cos θ + b1 sin θ,

we obtain

β′ = x · β = a1b1 − a2b2︸ ︷︷ ︸
b′1

+(a1b2 + a2b1︸ ︷︷ ︸
b′2

)i, (3a)

or equivalently,

β′ = x · β = eiθ · β
= b1 cos θ − b2 sin θ︸ ︷︷ ︸

b′1

+(b2 cos θ + b1 sin θ︸ ︷︷ ︸
b′2

)i, (3b)

in which x is a unit complex number as that given in Eq. (2),
and

β = b1 + b2i and β′ = b′1 + b′2i (4)

are the complex number representation of b and b′, respec-
tively. As a result, rotating a vector can also be described
using the complex number representation.

In general, the special Euclidean group SE(2) is the
matrix Lie group

SE(2) , {
[
R p
0 1

]
∈ R3×3|R ∈ SO(2), p ∈ R2}. (5)

From group theory, SE(2) is also the semidirect product of
(R2,+) and SO(2):

SE(2) , (R2,+) o SO(2),

in which “o” denotes the semidirect product of groups,
and for g = (p,R), g′ = (p′, R′) ∈ SE(2), the group
multiplication “◦” and group inverse (·)−1 of SE(2) using
the matrix representation as Eq. (5) are defined to be

g ◦ g′ = (Rp′ + p,RR′) (6)

and
g−1 = (−R>p,R>), (7)

respectively. Following the complex number representation
of SO(2) and R2 with Eqs. (2) and (4), the representation
of SE(2) as Eq. (5) is diffeomorphic and isomorphic to the
semidirect product of (C,+) and (C1, ·):

P , (C,+) o (C1, ·),

and from Eqs. (6) and (7), the associated group multiplication
“�” and group inverse (·)−1 of P are defined to be

q � q′ = (x · ρ′ + ρ, x · x′) ∈ P (8)

and
q−1 = (−x · ρ, x) ∈ P, (9)

in which q = (ρ, x), q′ = (ρ′, x′) ∈ P, and x, x′ ∈ C1

and ρ, ρ′ ∈ C are the complex number representation of
R, R′ ∈ SO(2) and p, p′ ∈ R2, respectively. In addition,
note that the identity of P is (0, 1) ∈ P. As a result, instead

of using the matrix representation, we might represent SE(2)
with a 2-tuple of complex numbers. Furthermore, if b′ ∈ R2

is transformed by g ∈ SE(2) from b ∈ R2, we obtain

β′ = x · β + ρ,

in which q = (ρ, x) ∈ P is the complex number representa-
tion of g ∈ SE(2), and β and β′ are the complex number
representation of b and b′ as given in Eq. (4), respectively.

For notational convenience, in the rest of paper, we will
omit the complex number multiplication “·” if there is no
ambiguity.

An immediate benefit of the complex number representa-
tion over the matrix representation is that only 1

2 and 2
3 of the

storage space is needed for SO(2) and SE(2), respectively.
Furthermore, as shown in the following sections, the complex
number representation greatly simplifies the analysis for pla-
nar PGO, and most importantly, the semidefinite relaxation
and the Riemannian optimization of planar PGO using the
complex number representation is more simple and tighter,
and thus requires less computational efforts and has greater
robustness than those using the matrix representation in [9].

IV. PROBLEM FORMULATION AND SIMPLIFICATION

In this section, we formulate planar PGO as maximum
likelihood estimation, and further simplify it to complex
quadratic programming on the product of unit complex
numbers.

A. Problem Formulation

Planar PGO consists of estimating n unknown poses g1,
g2, · · · , gn ∈ SE(2) with m noisy relative measurements
g̃ij of gij , g−1

i gj ∈ SE(2). Following the matrix rep-
resentation of SE(2), we assume that each g(·) ∈ SE(2)
is described as g(·) = (p(·), R(·)), in which p(·) ∈ R2 and
R(·) ∈ SO(2). According to Section III, the problem is
equivalent to estimating n 2-tuples of complex numbers q1,
q2, · · · , qn ∈ P with m noisy relative measurements q̃ij
of qij , q−1

i � qj ∈ P, in which q(·) = (ρ(·), x(·)) ∈ P,
and ρ(·) ∈ C and x(·) ∈ C1 are the complex number
representation of p(·) ∈ R2 and R(·) ∈ SO(2), respectively.
The n unknown poses and m relative measurements can
be described with a directed graph

−→
G = (V,

−→
E) in which

i ∈ V , {1, · · · , n} is associated with gi or qi, and
(i, j) ∈

−→
E ⊂ V × V if and only if the relative measurement

g̃ij or q̃ij exists. If the orientation of edges in
−→
E is ignored,

we obtain the undirected graph of
−→
G that is denoted as

G = (V, E). In the rest of this paper, we assume that
−→
G

is weakly connected and G is (equivalently) connected. In
addition, we assume that the m noisy relative measurements
q̃ij = (ρ̃ij , x̃ij) are random variables that satisfy

ρ̃ij = ρij + ρεij ρεij ∼ N(0, τ−1
ij), (10a)

x̃ij = xijx
ε
ij x̃εij ∼ vMF(1, κij), (10b)

for all (i, j) ∈
−→
E . In Eq. (10), qij = (ρij , xij) is the true

(latent) value of qij , N(µ,Σ) denotes the complex normal
distribution with mean µ ∈ C and covariance Σ < 0, and
vMF(x0, κ) denotes the von Mises-Fisher distribution on C1

with mode x0 ∈ C1, concentration number κ ≥ 0 and the
probability density function of vMF(x0, κ) is [17]

f(x;x0, κ) =
1

cd(κ)
exp

(
−κ

2
|x− x0|2

)
,

in which cd(κ) is a function of κ.
If ρ̃ij and x̃ij are independent, from Eqs. (3), (8) and (9),

a straightforward algebraic manipulation indicates that the
maximum likelihood estimation (MLE) is a least square
problem as follows

min
xi∈C1,
ρi∈C

∑
(i,j)∈

−→
E

[
κij |xix̃ij − xj |2+

τij |ρj − ρi − xiρ̃ij |2
]

(MLE)

in which κij and τij are as given in Eqs. (10a) and (10b).
From Eqs. (1) and (2), it should be noted that |xix̃ij−xj |2 =
1

2
‖RiR̃ij−Rj‖2F and |ρj−ρi−xiρ̃ij |2 = ‖pj−pi−Rip̃ij‖2F ,

and as a result, (MLE) is equivalent to

min
Ri∈SO(2),

pi∈R2

∑
(i,j)∈

−→
E

[κij
2
‖RiR̃ij −Rj‖2F+

τij‖pj − pi −Rip̃ij‖2F
]
,

which is almost the same as the formulation using the matrix
representation in [9] except the weight factors.

In the next subsection, we will simplify (MLE) to
quadratic programming on the product of unit complex
numbers Cn1 .

B. Problem Simplification

The simplification of (MLE) is similar to that of [9,
Appendix B], the difference of which is that we use the
complex number representation while Rosen et al. in [9] use
the matrix representation to formulate planar PGO.

For notational convenience, we define xji = xij , κji =
κij and τji = τij , and (MLE) can be reformulated as

min
q∈Cn×Cn

1

qH

[
L(W ρ) Ṽ

Ṽ H L(G̃x) + Σ̃

]
q (P)

in which q ,
[
ρ1 · · · ρn x1 · · · xn

]T ∈ Cn×Cn1 . In
(P), we define L(W ρ) ∈ Rn×n, Ṽ ∈ Cn×n, L(G̃x) ∈ Cn×n
and Σ̃ ∈ Rn×n to be

[L(W ρ)]ij ,

∑

(i,k)∈E
τik, i = j,

−τij , (i, j) ∈ E ,
0 otherwise,

[Ṽ]ij ,

∑

(i,k)∈
−→
E
τikρ̃ik, i = j,

−τij ρ̃ji, (j, i) ∈
−→
E ,

0 otherwise,

[L(G̃x)]ij ,

∑

(i,k)∈E
κik, i = j,

−κij x̃ji, (i, j) ∈ E ,
0 otherwise,

and Σ̃ , diag{Σ̃1, · · · , Σ̃n} with Σ̃i =
∑

(i,k)∈
−→
E
τik|ρ̃ik|2,

respectively.
If rotational states x ,

[
x1 · · · xn

]T ∈ Cn1 are known,
(P) is reduced to unconstrained complex quadratic program-
ming on translational states ρ ,

[
ρ1 · · · ρn

]T ∈ Cn:

min
ρ∈Cn

ρHL(W ρ)ρ+2〈ρ, Ṽ x〉+xHL(G̃x)x+ xHΣ̃x︸ ︷︷ ︸
constant

. (11)

By definition, L(W ρ) � 0, and according to [18, Proposition
4.2] 1, the solution to Eq. (11) is

ρ = −L(W ρ)†Ṽ x. (12)

Substituting Eq. (12) into (P) and simplifying the resulting
equation, we obtain complex quadratic programming on the
product of unit complex numbers Cn1 as follows

min
x∈Cn

1

xHQ̃x, (13)

in which Q̃ , L(G̃x) + Σ̃− Ṽ HL(W ρ)†Ṽ � 0.
Furthermore, if we define Ω , diag{τe1 , · · · , τem} ∈

Rm×m to be the diagonal matrix whose diagonal elements
are indexed by the directed edges e ∈

−→
E and in which τe ∈

R is the precision of translational observations as given in
Eq. (10a), and T̃ ∈ Cm×n to be the matrix indexed by e ∈

−→
E

and k ∈ V whose (e, k)-element is given by

[
T̃
]
ek

,

{
−ρ̃ik, e = (i, k) ∈

−→
E ,

0, otherwise,
(14)

and A(
−→
G) ∈ Rn×m to be the matrix indexed by k ∈ V and

e ∈
−→
E whose (k, e)-element is given by

[
A(
−→
G)
]
ke

,

1, e = (i, k) ∈

−→
E ,

−1, e = (k, j) ∈
−→
E ,

0, otherwise,

(15)

then Q̃ = L(G̃x) + Σ̃− Ṽ HL(W ρ)†Ṽ can be rewritten as

Q̃ = L(G̃x) + T̃HΩ
1
2 ΠΩ

1
2 T̃ (16)

in which Π ∈ Rm×m is the matrix of the orthogonal
projection operator π : Cm → ker(A(

−→
G)Ω

1
2) onto the kernel

of A(
−→
G)Ω

1
2 . As a result, Eq. (13) is equivalent to

min
x∈Cn

1

trace(Q̃xxH),

Q̃ = L(G̃x) + T̃HΩ
1
2 ΠΩ

1
2 T̃ .

(QP)

For the detailed derivation of (QP), interested readers can
refer to the full paper [19, Appendix A].

In the next section, we will relax (QP) to complex semidef-
inite programming and show that the semidefinite relaxation
is tight as long as the noise magnitude is below a certain
threshold.

1It should be noted that [18, Proposition 4.2] was originally derived for
real matrices, however, the results can be generalized to complex matrices.

V. THE SEMIDEFINITE RELAXATION

In a similar way to [12], [14], [15], it is straightforward
to relax (QP) to

min
X∈Hn

〈Q̃,X〉

s.t. X � 0, diag(X) = 1.
(SDP)

It should be noted that if X̂ ∈ Hn has rank one and solves
(SDP), then a solution x̂ ∈ Cn1 to (QP) can be exactly
recovered from X̂ through singular value decomposition with
which X̂ = x̂x̂H .

In the rest of section, we will analyze and derive the
conditions for the optimality of (QP) and (SDP), and the
conditions for the tight relaxation of (SDP), all the proofs of
which can be found in [19].

From [20], the necessary conditions for the local opti-
mality of (QP) can be well characterized in terms of the
Riemannian gradients and Hessians.

Lemma 1. If x̂ ∈ Cn1 is a local optimum of (QP), then
there exists a real diagonal matrix Λ̂ , <{ddiag(Q̃x̂x̂H)} ∈
Rn×n such that Ŝ , Q̃ − Λ̂ ∈ Hn satisfies the following
conditions:
(1) Ŝx̂ = 0;
(2) 〈ẋ, Ŝẋ〉 ≥ 0 for all ẋ ∈ Tx̂Cn1 .

If x̂ satisfies (1), it is a first-order critical point, and if x̂
satisfies (1) and (2), it is a second-order critical point.

Proof. See [19, Appendix B.1].

Since (SDP) is convex and the identity matrix I ∈ Cn×n
is strictly feasible, the sufficient and necessary conditions for
the global optimality of (SDP) can be derived in terms of the
Karush-Kuhn-Tucker (KKT) conditions.

Lemma 2. A Hermitian matrix X̂ ∈ Hn is a global optimum
of (SDP) if and only if there exists Ŝ ∈ Hn such that the
following conditions hold:
(1) diag(X̂) = 1;
(2) X̂ � 0;
(3) ŜX̂ = 0;
(4) Q̃− Ŝ is real diagonal;
(5) Ŝ � 0.

Furthermore, if rank(Ŝ) = n− 1, then X̂ has rank one and
is the unique global optimum of (SDP).

Proof. See [19, Appendix B.2].

As a result of Lemmas 1 and 2, we obtain the sufficient
conditions for the exact recovery of (QP) from (SDP).

Lemma 3. If x̂ ∈ Cn1 is a first-order critical point of (QP)
and Ŝ = Q̃− Λ̂ � 0 in which Λ̂ = <{ddiag(Q̃x̂x̂H)}, then
x̂ is a global optimum of (QP) and X̂ = x̂x̂H is a global
optimum of (SDP). Moreover, if rank(Ŝ) = n − 1, then X̂
is the unique optimum of (SDP).

Proof. See [19, Appendix B.3].

Lemma 3 gives sufficient conditions to verify whether
(SDP) is a tight relaxation of (QP). As a matter of fact, if the

noises of measurements are not too large, it is guaranteed that
(SDP) is always a tight relaxation of (QP) as the following
proposition states.

Proposition 1. Let Q ∈ Hn be the data matrix of the form
Eq. (16) that is constructed with the true (latent) relative
measurements qij = (ρij , xij), then there exists a constant
γ = γ(Q) > 0 such that if ‖Q̃ − Q‖2 < γ, then (SDP)
has the unique global optimum X̂ = x̂x̂H ∈ Hn, in which
x̂ ∈ Cn1 is a global optimum of (QP).

Proof. See [19, Appendix B.4].

VI. THE CPL-SYNC ALGORITHM

In general, interior point methods to solve (SDP) take
polynomial time, which is intractable if n is large. Instead of
solving (SDP) directly, Boumal et al. found that (SDP) can
be relaxed to rank-restricted semidefinite programing [13]:

min
Y ∈OB(r,n)

trace(Q̃Y Y H) (r-SDP)

in which OB(r, n) , {Y ∈ Cn×r|diag(Y Y H) = 1} is the
complex oblique manifold [16]. Furthermore, (r-SDP) can
be a tight relaxation of (SDP) if some conditions are met as
stated in Propositions 2 and 3, whose proofs are immediate
from [13, Theorem 2].

Proposition 2. If Ŷ ∈ OB(r, n) is rank-deficient and second-
order critical for (r-SDP), then it is globally optimal for
(r-SDP) and X̂ = Ŷ Ŷ H ∈ Hn is globally optimal for (SDP).

Proposition 3. If r ≥ d
√
n e, then for almost all Q̃ ∈ Cn×n,

every first-order critical Ŷ ∈ OB(r, n) for (r-SDP) is rank-
deficient.

From Propositions 2 and 3, (SDP) is equivalent to suc-
cessively solving (r-SDP) with the Riemannian trust region
(RTR) method [21] for 2 ≤ r1 < r2 < · · · < rk ≤ n+1 until
a rank-deficient second-order critical point is found, and such
a method is referred as the Riemannian staircase optimization
(Algorithm 1) [13], [22]. In addition, it is known that the
RTR method solves (r-SDP) locally in polynomial time [13,
Proposition 3]. In contrast to interior point methods, the
Riemannian staircase optimization is empirically orders of
magnitude faster in solving large-scale semidefinite program-
ming, and has been successfully implemented in [9], [14] to
solve semidefinite relaxations of synchronization problems.

As shown in Algorithm 2, the solution rounding of an
optimum of Y ∗ ∈ OB(r, n) of (r-SDP) is simply to assign
x̂ =

[
x̂1 · · · x̂n

]
∈ Cn to be the left-singular vector of Y ∗

that is associated with the greatest singular value, and then
normalize each x̂i to get x̂ ∈ Cn1 . Moreover, note that the
solution rounding algorithm can recover the global optimum
x̂ ∈ Cn1 from Y ∗ as long as the exactness of (SDP) holds.

From algorithms of Riemannian staircase optimization
(Algorithm 1) and solution rounding (Algorithm 2), the
proposed CPL-Sync algorithm for planar PGO is as shown
in Algorithm 3.

In particular, it should be noted that the n × n complex
positive semidefinite matrix X ∈ Hn in our semidefinite

Algorithm 1 The Riemannian staircase optimization (RSO)

1: Input: Integers 2 ≤ r0 < r1 < · · · < rk ≤ n + 1; an
initial iterate x0 ∈ Cn1

2: Y0 =
[
x̂0 0

]
∈ OB(r0, n)

3: for i = 1→ k do
4: Implement the Riemannian optimization to solve

Y ∗i = arg min
Y ∈OB(ri,n)

trace(Q̃Y Y H)

locally with Yi as an initial guess
5: if rank(Y ∗i) < ri then
6: return Y ∗i ∈ OB(ri, n)
7: else
8: Yi+1 =

[
Ŷi 0

]
∈ OB(ri+1, n)

9: end if
10: end for
11: return Y ∗i ∈ OB(rk, n)

Algorithm 2 The rounding procedure for solutions of
(r-SDP)

1: Input: An optimum Y ∗ ∈ OB(r, n) to (r-SDP)

2: Assign x̂ =
[
x̂1 · · · x̂n

]T ∈ Cn to be the left-
singular vector of Y ∗ that is associated with the greatest
singular value

3: for i = 1→ n do
4: x̂i = x̂i/|x̂i|
5: end for
6: return x̂ ∈ Cn1

Algorithm 3 The CPL-Sync algorithm

1: Input: Integers 2 ≤ r0 < r1 < · · · < rk ≤ n + 1; an
initial iterate x0 ∈ Cn1

2: Compute an optimum Y ∗ ∈ OB(r, n) with Algorithm 1
3: Compute rotational states x̂ ∈ Cn1 with Algorithm 2
4: Compute translational states ρ̂ ∈ Cn with Eq. (12)
5: return x̂ ∈ Cn1 and ρ̂ ∈ Cn

relaxation can be parameterized with n2 − n real numbers,
whereas the semidefinite relaxation in [9] using the matrix
representation needs 2n2− 3n real numbers to parameterize
the 2n×2n real positive semidefinite matrix, which indicates
that our formulation using the complex number represen-
tation results in semidefinite relaxations of smaller size.
Furthermore, in contrast to the matrix representation in [9],
the complex number representation significantly reduces the
computational cost and, more importantly, results in a much
tighter relaxation that is more robust to measurement noises,
about which a detailed discussion is made in Section VII.

VII. THE RESULTS OF EXPERIMENTS

In this section, we implement CPL-Sync on a suite of large
2D SLAM benchmark datasets [9], [12] and simulated City
datasets with high measurement noises. We also compare
CPL-Sync with the state-of-the-art methods [6], [8], [9].
The chordal initialization [23] is used for initialization in

TABLE I: Results of the 2D SLAM Benchmark datasets

Dataset n m f∗ PDL-GN [6], [8] SE-Sync [9] CPL-Sync [ours]
Total time (s) RTR time (s) Total time (s) RTR time (s) Total time (s)

ais2klinik 15115 16727 1.885× 102 3.2× 100 2.6× 100 2.7× 100 1.0× 100 1.2× 100

city10000 10000 20687 6.386× 102 1.8× 100 8.6× 10−1 1.2× 100 5.2× 10−1 5.4× 10−1

CSAIL 1045 1172 3.170× 101 2.6× 10−2 5.0× 10−3 1.4× 10−2 1.0× 10−3 5.0× 10−3

M3500 3500 5453 1.939× 102 3.3× 10−1 1.5× 10−1 2.2× 10−1 7.4× 10−2 9.8× 10−2

M3500-a 3500 5453 1.598× 103 4.1× 10−1 1.6× 10−1 2.3× 10−1 8.0× 10−2 1.0× 10−1

M3500-b 3500 5453 3.676× 103 1.6× 100 5.3× 10−1 5.9× 10−1 2.6× 10−1 2.8× 10−1

M3500-c 3500 5453 4.574× 103 2.4× 100 7.5× 10−1 8.2× 10−1 3.7× 10−1 4.0× 10−1

manhattan 3500 5453 6.432× 103 1.7× 10−1 4.4× 10−2 1.1× 10−1 1.9× 10−2 4.2× 10−2

intel 1728 2512 5.236× 101 1.3× 10−1 3.8× 10−2 6.1× 10−2 1.7× 10−2 2.6× 10−2

KITTI 00 4541 4677 1.257× 102 2.6× 10−1 7.6× 10−2 1.1× 10−1 2.7× 10−2 3.8× 10−2

KITTI 02 4661 4703 1.084× 102 2.5× 10−1 5.3× 10−2 8.5× 10−2 1.8× 10−2 2.9× 10−2

KITTI 05 2761 2826 2.765× 102 7.4× 10−2 2.3× 10−2 3.2× 10−2 8.0× 10−3 1.5× 10−2

KITTI 06 1101 1150 3.533× 101 2.7× 10−2 5.0× 10−3 1.3× 10−2 1.0× 10−3 4.0× 10−3

KITTI 07 1101 1106 2.393× 101 2.8× 10−2 6.0× 10−3 1.4× 10−2 2.0× 10−3 5.0× 10−3

KITTI 09 1591 1592 6.131× 101 9.5× 10−2 1.8× 10−2 2.9× 10−2 6.0× 10−3 1.0× 10−2

(a) (b)

Fig. 1: The speed-up of CPL-Sync over SE-Sync on 2D SLAM benchmark datasets. The results are (a) speed-up of RTR
time of CP-Sync over SE-Sync and (b) speed-up of total time of CPL-Sync over SE-Sync. CPL-Sync is on average 2.78
and 2.51 times faster than SE-Sync for RTR time and total time, respectively.

all the experiments. The C++ code of CPL-Sync is available
at https://github.com/fantaosha/CPL-Sync.

All the experiments have been performed on a laptop with
an Intel i7-8750H CPU and 32GB of RAM running Ubuntu
18.04 and using g++ 7.8 as C++ compiler. We have done
the computation on a single core of CPU. For all the datasets,
we start with ranks rSE = 3 and rCPL = 2 for SE-Sync
and CPL-Sync, respectively, since we find that rSE = 3 and
rCPL = 2 are usually good enough to solve planar PGO
given the noise levels in robotics applications.

A. 2D SLAM Benchmark Datasets

In this subsection, we test CPL-Sync on a number of
large 2D SLAM benchmark datasets [9], [12] and make
comparisons with Powell’s Dog-Leg method (PDL-GN) [6],
[8] and SE-Sync [9].

All the three methods converge to the globally optimal
solution for all the datasets with chordal initialization. The
results are in Table I, in which n is the number of unknown

poses, m is the number of measurements, f∗ is the globally
optimal objective value, the total time accounts for all the
time taken to solve PGO, and the RTR time only accounts
for the time taken by the RTR method to solve Riemannian
staircase optimization. The speed up of CPL-Sync over SE-
Sync in terms of RTR and total computational time are also
shown in Fig. 1. From Table I and Fig. 1, it can be seen that
CLP-Sync is several times faster than both Powell’s Dog-
Leg and SE-Sync for all datasets. In particular, CPL-Sync
outperforms SE-Sync by a factor of 2.78 on average for the
computation of the RTR method, and by a factor 2.51 on
average for the overall computation of planar PGO.

The globally optimal results of CPL-Sync on some 2D
SLAM benchmark datasets are in Fig. 2. It should be
noted that M3500-a, M3500-b and M3500-c in Fig. 2f to
Fig. 2h respectively have extra Gaussian noises with standard
deviation 0.1rad, 0.2rad and 0.3rad added to the rotational
measurements of M3500 in Fig. 2e [12], which indicates that
CPL-Sync can tolerate noisy measurements that are orders

https://github.com/fantaosha/CPL-Sync

(a) aisk2linik (b) city10000 (c) CSAIL (d) intel

(e) M3500 (f) M3500-a (g) M3500-b (h) M3500-c

Fig. 2: The globally optimal results of CPL-Sync on some 2D SLAM benchmark datasets. It should be noted that CPL-Sync
still obtains global optima on M3500-a, M3500-b and M3500-c in (f)-(h), which has large extra Gaussian noises added to
the rotational measurements of M3500 in (e).

of magnitude greater than real-world SLAM applications.
The greater computational efficiency of CPL-Sync over

SE-Sync [9] in planar PGO can be explained from three
perspectives. First, CPL-Sync is more efficient for the ob-
jective and gradient evaluation, e.g., if the rank is rSE = 3
and rCPL = 2, CPL-Sync only needs 1

2 ∼
2
3 and 1

4 ∼
2
3

operations of SE-Sync to evaluate the objective and gradient,
respectively. Second, CPL-Sync is more efficient for the
projection or retraction onto the manifold – the projection
map of CPL-Sync is just to normalize n vectors, whereas
that of SE-Sync has to compute n singular value decompo-
sitions, which is much more time consuming. Third, CPL-
Sync is more efficient for chordal initialization and solution
rounding. As a result, CPL-Sync should be theoretically more
efficient than SE-Sync, which is further confirmed by the
results of the experiments.

B. City Datasets with High Measurement Noises
In this subsection, we evaluate the tightness of CPL-Sync

on a series of simulated City datasets that are similar to
city10000 (Fig. 2b) but with high measurement noises. As
a basis for comparison, we also evaluate the tightness of
SE-Sync using the matrix representation [9]. In general,
CPL-Sync and SE-Sync are said to be tight if the globally
optimal solution is exactly recovered from the semidefinite
relaxation, or equivalently, there is no suboptimality gap
between the rounded solution and the relaxed solution.

In our experiments, each City dataset consists of 25× 25
square grids with side length of 1 m, a robot trajectory of n =
3000 poses along the rectilinear path of the grid, odometric
measurements that are available between sequential poses
along the robot trajectory, and loop-closure measurements
that are available at random between non-sequential poses
with a probability pC = 0.1. The odometric and loop-closure
measurements are generated from noise models of Eq. (10)
with fixed τ = 88.89 that corresponds to an expected

translational root-mean-squared error (RMSE) of 0.15 m and
varying κ that corresponds to different angular RMSEs.

The results of CPL-Sync and SE-Sync on the simulated
City datasets with high measurement noises are in Fig. 3.
For each angular RMSE, we calculate the successful rates
of exact recovery from the semidefinite relaxation (Fig. 3a),
relative suboptimality bounds between rounded and relaxed
solutions (Fig. 3b), and objective values of rounded and
relaxed solutions (Fig. 3c) statistically from 50 randomly
generated City datasets, in which we assume the globally
optimal solution is exactly recovered if the relative sub-
optimality bound is less than 1 × 10−6. From Fig. 3, it
can be seen that when the angular RMSE is small, i.e.,
approximately less than 0.15 rad, both CPL-Sync and SE-
Sync exactly recover the globally optimal solution from
the semidefinite relaxation. As angular RMSE increases and
is greater than 0.15 rad, CPL-Sync and SE-Sync begin
to fail. In spite of this, we find that CPL-Sync has a
much higher successful rate of exact recovery from the
semidefinite relaxation (Fig. 3a) and orders of magnitude
smaller relative suboptimality bounds (Fig. 3b). Furthermore,
for the objective value, CPL-Sync has greater lower bound
from the relaxed solution but lower upper bound from the
rounded solution in scenarios of high measurement noises
(Fig. 3c). All of these results indicate that CPL-Sync has
a tighter semidefinite relaxation using the complex number
representation than SE-Sync using the matrix representation,
and thus, is more robust to measurement noises.

We argue that the improved tightness and robustness of
CPL-Sync over SE-Sync in planar PGO are associated with
the more compact representation of complex numbers over
matrices in the semidefinite relaxation. SE-Sync drops the
determinant-one constraint of SO(2) in the semidefinite re-
laxation using the matrix representation, whereas ours using
the complex number representation still keeps determinant-

(a) (b) (c)

Fig. 3: The comparisons of CPL-Sync and SE-Sync on City datasets with high measurement noises with n = 3000, pC = 0.1,
τ = 88.89 corresponding to translational RMSE = 0.15 m and varying κ corresponding to different angular RMSEs. The
results are (a) successful rates of exact recovery from the semidefinite relaxation, (b) relative suboptimality bounds between
rounded and relaxed solutions, and (c) objective values of rounded and relaxed solutions.

one constraint. Moreover, the semidefinite matrix resulting
from the solution to planar PGO using the matrix represen-
tation should take the form as XR =

[
XRij

]
∈ R2n×2n in

which each (i, j)-th block XRij has the algebraic structure

XRij =

[
a −b
b a

]
∈R2×2, however, SE-Sync drops such an

algebraic structure in the semidefinite relaxation. In compar-
ison, CPL-Sync preserves the algebraic structure of XRij

as
complex numbers in the semidefinite relaxation with no extra
constraints introduced. Therefore, it can be concluded that
the semidefinite relaxation in CPL-Sync using the complex
number representation is tighter than that in SE-Sync using
the matrix representation, which further suggests that CPL-
Sync is more robust to measurement noises than SE-Sync.

VIII. CONCLUSION

In this paper, we present CPL-Sync for planar PGO
using the complex number representation, and prove that
CPL-Sync exactly solves planar PGO as long as the noise
magnitude is below a certain threshold. The proposed CPL-
Sync is compared against Powell’s Dog-Leg [6], [8] and SE-
Sync [9] on 2D SLAM benchmark datasets and simulated 2D
City datasets with high measurement noises. The results of
experiments indicate that CPL-Sync is capable of solving
planar PGO certifiably, and is more efficient in numerical
computation and more robust to measurement noises than
existing state-of-the-art methods.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press,
2005.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, 2016.

[3] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Systems
Magazine, 2010.

[4] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation.

[5] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona, “A fast
and accurate approximation for planar pose graph optimization,” The
International Journal of Robotics Research, 2014.

[6] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[7] L. Carlone and A. Censi, “From angular manifolds to the integer
lattice: Guaranteed orientation estimation with application to pose
graph optimization,” IEEE Transactions on Robotics, 2014.

[8] D. M. Rosen, M. Kaess, and J. J. Leonard, “Rise: An incremental
trust-region method for robust online sparse least-squares estimation,”
IEEE Transactions on Robotics, 2014.

[9] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “SE-Sync:
A certifiably correct algorithm for synchronization over the special
Euclidean group,” arXiv preprint arXiv:1612.07386, 2016.

[10] J. G. Mangelson, J. Liu, R. M. Eustice, and R. Vasudevan, “Guar-
anteed globally optimal planar pose graph and landmark SLAM
via sparse-bounded sums-of-squares programming,” arXiv preprint
arXiv:1809.07744, 2018.

[11] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert,
“Lagrangian duality in 3D SLAM: Verification techniques and optimal
solutions,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015.

[12] L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Dellaert, “Planar
pose graph optimization: Duality, optimal solutions, and verification,”
IEEE Transactions on Robotics, 2016.

[13] N. Boumal, V. Voroninski, and A. Bandeira, “The non-convex Burer-
Monteiro approach works on smooth semidefinite programs,” in Ad-
vances in Neural Information Processing Systems, 2016.

[14] A. S. Bandeira, N. Boumal, and A. Singer, “Tightness of the maxi-
mum likelihood semidefinite relaxation for angular synchronization,”
Mathematical Programming, vol. 163, no. 1-2, pp. 145–167, 2017.

[15] N. Boumal, “Nonconvex phase synchronization,” SIAM Journal on
Optimization, vol. 26, no. 4, pp. 2355–2377, 2016.

[16] P.-A. Absil and K. Gallivan, “Joint diagonalization on the oblique
manifold for independent component analysis,” in IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings,
2006.

[17] C. Khatri and K. Mardia, “The von Mises-Fisher matrix distribution in
orientation statistics,” Journal of the Royal Statistical Society. Series
B (Methodological), pp. 95–106, 1977.

[18] J. Gallier, “The Schur complement and symmetric positive semidefinite
(and definite) matrices,” Penn Engineering, 2010.

[19] T. Fan, H. Wang, M. Rubenstein, and T. Murphey, “CPL-Sync:
Efficient and guaranteed planar pose graph optimization using
the complex number representation,” 2019. [Online]. Available:
https://northwestern.box.com/s/eb7w389ajypdx7p60bdjugcx8alg4i7h

[20] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[21] P.-A. Absil, C. Baker, and K. Gallivan, “Trust-region methods on
Riemannian manifolds,” Foundations of Computational Mathematics,
2007.

[22] N. Boumal, “A Riemannian low-rank method for optimization over
semidefinite matrices with block-diagonal constraints,” arXiv preprint
arXiv:1506.00575, 2015.

[23] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization
techniques for 3D SLAM: a survey on rotation estimation and its
use in pose graph optimization,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015.

https://northwestern.box.com/s/eb7w389ajypdx7p60bdjugcx8alg4i7h

[24] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM,
2000, vol. 71.

[25] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, “Complementar-
ity and nondegeneracy in semidefinite programming,” Mathematical
programming, 1997.

APPENDIX A. THE DERIVATION OF (QP)

In this section, we derive (QP) following a similar proce-
dure of [9, Appendix B] even though ours uses the complex
number representation.

It is straightforward to rewrite (MLE) as

min
x∈Cn

1 , ρ∈C
n

∥∥∥∥B [ρx
]∥∥∥∥2

2

(17)

in which

B ,

[
B1 B2

0 B3

]
∈ C2m×2n.

Here B1 ∈ Rm×n, B2 ∈ Cm×n and B3 ∈ Cm×n are
respectively given by

[B1]ek =

−√τkj , e = (k, j) ∈

−→
E ,

√
τik, e = (i, k) ∈

−→
E ,

0, otherwise,

(18a)

[B2]ek =

{
−√τkj ρ̃kj , e = (k, j) ∈

−→
E ,

0, otherwise,
(18b)

and

[B3]ek =

−√κkj x̃kj , e = (k, j) ∈

−→
E ,

√
κik, e = (i, k) ∈

−→
E ,

0, otherwise.

(18c)

Since (P) is also equivalent to (MLE), it can be concluded
that

BH1 B1 = L(W ρ), (19a)

BH1 B2 = Ṽ , (19b)

BH2 B2 = Σ̃, (19c)

BH3 B3 = L(G̃x) (19d)

in which L(W ρ), Ṽ , Σ̃ and L(G̃x) are as defined in (P).
If we let Q̃σ , Σ̃ − Ṽ HL(W ρ)†Ṽ , then from Eqs. (19a)
to (19d), we obtain

Q̃σ = BH2 B2 −BH2 B1(BH1 B1)†BH1 B2

= BH2
(
I−B1(BH1 B1)†BH1

)
B2,

(20)

in which B1, B2 and B3 are defined as Eqs. (18a) to (18c).
It should be noted that we might rewrite B1 and B2 as

B1 = Ω
1
2AT , B2 = Ω

1
2 T̃ , (21)

in which A , A(
−→
G) and T̃ are given by Eq. (15) and

Eq. (14), respectively. Substituting Eq. (21) into Eq. (20),
we obtain

Q̃σ = BH2
(
I−B1(BH1 B1)†BH1

)
B2

= T̃HΩ
1
2 ΠΩ

1
2 T̃ ,

(22)

in which Π = I−Ω
1
2AT

(
AΩAT

)†
AΩ

1
2 ∈ Rm×m. It should

be noted that XT (XXT)† = X† for any matrix X , then we
further obtain

Π = I− Ω
1
2AT

(
AΩAT

)†
AΩ

1
2

= I−
(
AΩ

1
2

)†
AΩ

1
2 ,

(23)

which according to [24, Chapter 5.13] is the matrix of
orthogonal projection operator π : Cm → ker(A(

−→
G)Ω

1
2)

onto the kernel space of AΩ
1
2 . Moreover, it is possible to

decompose Π in terms of sparse matrices and their inverse for
efficient computation, which is similar to that in [9, Appendix
B.4].

APPENDIX B. PROOFS OF THE LEMMAS AND
PROPOSITIONS IN SECTION V

In this section, we present proofs of the lemmas and
propositions in Section V. These proofs draw heavily on [20]
and are similar to that of [9, Appendix C] and [14, Section
4.3].

B.1. Proof of Lemma 1

It is known that the unconstrained Euclidean gradient of
F , xHQ̃x is ∇F (x) = 2Q̃x, and thus, if we let S(x) ,
Q−<{ddiag(QxxH)}, the Riemannian gradient is

gradF (x) = projx(∇F (x))

= 2(Q−<{ddiag(QxxH)})x
= 2S(x)x.

In addition, the Riemannian Hessian is

HessF (x)[ẋ] = projxD gradF (x)[ẋ] = projx2S(x)ẋ,

from which we obtain

〈HessF (x)[ẋ], ẋ〉 = 2〈S(x)ẋ, ẋ〉.

Moreover, according to [20, Chapter 5], if expx : TxCn1 →
Cn1 is the exponential map at x ∈ Cn1 , we obtain

d
dt
F ◦ expx(tẋ)

∣∣∣∣
t=0

= 〈gradF (x), ẋ〉

and

d2

dt2
F ◦ expx(tẋ)

∣∣∣∣
t=0

= 〈HessF (x)[ẋ], ẋ〉.

Therefore, if x̂ ∈ Cn1 is a local optimum for Eq. (QP) and
Ŝ = S(x̂), it is required that Ŝx̂ = 0 and 〈ẋ, Ŝẋ〉 ≥ 0 for
all ẋ ∈ TxCn1 , which completes the proof.

B.2. Proof of Lemma 2

It should be noted that (1) to (5) in Lemma 2 are KKT
conditions of (SDP), which proves the necessity. Since the
identity matrix I ∈ Cn×n is strictly feasible to Lemma 2, the
Slater’s condition is satisfied, which proves the sufficiency.
In addition, it should be noted that the Slater’s condition also
holds for the dual of (SDP). If rank(Ŝ) = n− 1, according
to [25, Theorem 6], Ŝ is dual nondegenerate. Moreover, by
complementary slackness, Ŝ is also optimal for the dual of

(SDP), which, as a result of [25, Theorem 10], implies that
X̂ is unique. Since ŜX̂ = 0, it can be concluded that X̂ has
rank one.

B.3. Proof of Lemma 3

Since x̂ ∈ Cn1 is a first-order critical point and Ŝ � 0,
we conclude that x̂ is a second-order critical point from
Lemma 1. Also it can be checked that X̂ = x̂H x̂ ∈ Hn
satisfies (1) to (5) in Lemma 2, thus, x̂ solves (QP), and X̂
solves (SDP) and is the unique global optimum for (SDP) if
rank(Ŝ) = n− 1.

B.4. Proof of Proposition 1

In order to prove Proposition 1, we need Propositions 4
and 5 as follows.

Proposition 4. If Q ∈ Hn is data matrix of the form
Eq. (16) that is constructed with the true (latent) relative
measurements, and x ∈ Cn1 is the true (latent) value of
rotational states x, then Qx = 0 and λ2(Q) > 0.

Proof. For consistency, we assume that (P) and (QP) are
formulated with the true (latent) relative measurements. Let
ρ ∈ Cn be the true (latent) value of translational states ρ,
then q =

[
ρT xT

]T ∈ Cn×Cn1 solves (P), and the optimal
objective value is 0. Since (QP) is equivalent to (P), it can be
concluded that x ∈ Cn1 solves (QP), and the optimal objective
value of (QP) is 0 as well. Furthermore, since Q � 0, we
obtain Qx = 0. Let Θ , diag{x1, · · · , xn} ∈ Cn×n and
L(W x) ∈ Rn×n be the Laplacian such that

[L(W x)]ij ,

∑

(i,k)∈E
κik, i = j,

−κij , (i, j) ∈ E ,
0 otherwise,

we obtain L(Gx) = ΘL(W x)ΘH . It should be noted that G
is assumed to be connected, as a result, λ2(L(Gx)) > 0 and
L(Gx)x = 0. In addition, by definition, we have

Q = L(Gx) +Qσ,

in which Qσ = Σ − V HL(W ρ)†V , and from Eqs. (19a)
to (19c) and (20), it can be concluded that Qσ is the Schur
complement of[

BH1 B1 BH1 B2

BH2 B1 BH2 B2

]
=

[
BH1
BH2

] [
B1 B2

]
� 0,

which suggests that Qσ � 0 and λ1(Qσ) ≥ 0. As a result,
we obtain

λ2(Q) ≥ λ2(L(Gx)) + λ1(Qσ) > 0,

which completes the proof.

Proposition 5. If x ∈ Cn1 is the true (latent) value of x ∈ Cn1 ,
and x̂ solves (QP), and d(x, x̂) , min

θ∈R
‖x̂− eiθx‖, then we

obtain

d(x, x̂) ≤ 2

√√√√n‖Q̃−Q‖2
λ2(Q)

(24)

Proof. If we define ∆Q , Q̃−Q ∈ Hn to be the perturbation
matrix, then

xHQ̃x = xHQx+ xH∆Qx = xH∆Qx ≤ n‖∆Q‖2, (25)

in which, according to Proposition 4, xHQx = 0. In addition,
it should be noted that

xHQ̃x ≥ x̂HQ̃x̂ (26)

and

x̂HQ̃x̂ = x̂HQx̂+ x̂H∆Qx̂ ≥ x̂HQx̂− n‖∆Q‖2. (27)

From Eqs. (25) to (27), we obtain

2n‖∆Q‖2 ≥ x̂HQx̂ (28)

As a result of Proposition 4, we obtain Qx = 0 and λ2(Q) >
0, and furthermore,

x̂HQx̂ ≥ (x̂− 1

n
xH x̂x)HQ(x̂− 1

n
xH x̂x)

≥ 1

n
λ2(Q)(n2 − |xHx|2)

≥ λ2(Q)(n− |xHx|)

(29)

Substituting Eq. (29) into Eq. (28) and simplifying the
resulting equation, we obtain

n− |xHx| ≤ 2n‖∆Q‖2
λ2(Q)

. (30)

In addition, it is straightforward to show d(x, x̂) =√
2n− 2|x̂Hx|, and then from Eq. (30), we complete the

proof.

To prove Proposition 1, we first decompose Ŝ = Q̃ −
<(ddiag(Q̃x̂H x̂)) as follows.

Ŝ =Q̃−<(ddiag(Q̃x̂H x̂))

=Q+ ∆Q−
<
{

ddiag
(
(Q+ ∆Q)(x+ ∆x)(x+ ∆x)H

)}
=Q+ ∆Q−<

{
ddiag(Q∆xxH +Q∆x∆xH+

∆Q(x+ ∆x)(x+ ∆x)H)
}︸ ︷︷ ︸

∆S

,

in which x ∈ Cn1 is the true (latent) value of x ∈ Cn1 such
that Qx = 0, x̂ solves (QP), and ∆x , x̂−x. In addition, we
assume ‖x̂− x‖ = d(x̂, x) , min

θ∈R
‖x̂− eiθx‖. It is obvious

that ‖∆S‖2 → 0 as long as ‖∆Q‖2 → 0 and ‖∆x‖ →
0, and by Proposition 5, we obtain ‖∆x‖ → 0 as long as
‖∆Q‖2 → 0. As a result, from continuity, there exists some
γ > 0 such that ‖∆S‖2 < λ2(Q) as long as ‖∆Q‖2 < γ.
Then we obtain

λi(Ŝ) ≥ λi(Q)− ‖∆S‖2 > λi(Q)− λ2(Q) ≥ 0

for all i ≥ 2, which implies that Ŝ has at least n−1 positive
eigenvalues. In addition, by Lemma 1, we obtain Ŝx̂ = 0,
from which it can be concluded that Ŝ � 0 and rank(Ŝ) =
n − 1. Furthermore, Lemma 3 guarantees that X̂ = x̂x̂H ∈
Hn is the optimum of (SDP) since Ŝ � 0 and rank(Ŝ) =
n− 1.

	Introduction
	Notation
	The Complex Number Representation of SO(2) and SE(2)
	Problem Formulation and Simplification
	Problem Formulation
	Problem Simplification

	The Semidefinite Relaxation
	The CPL-Sync Algorithm
	The Results of Experiments
	2D SLAM Benchmark Datasets
	City Datasets with High Measurement Noises

	Conclusion
	References

