
Iterative Sequential Action Control for Stable,
Model-Based Control of Nonlinear Systems

Emmanouil Tzorakoleftherakis, Member, IEEE, and Todd D. Murphey, Member, IEEE

Abstract—This paper presents iterative Sequential Action Con-
trol (iSAC), a receding horizon approach for control of nonlinear
systems. The iSAC method has a closed-form open-loop solution,
which is iteratively updated between time steps by introducing
constant control values applied for short duration. Application
of a contractive constraint on the cost is shown to lead to closed-
loop asymptotic stability under mild assumptions. The effect of
asymptotically decaying disturbances on system trajectories is
also examined. To demonstrate the applicability of iSAC, we
employ a variety of systems and conditions, including a 13-
dimensional quaternion-based quadrotor and NASA’s TRACE
spacecraft. Each system is tested in different scenarios, ranging
from feasible and infeasible trajectory tracking, to setpoint sta-
bilization, with or without the presence of external disturbances.
Finally, limitations of this work are discussed.

I. INTRODUCTION

Model-predictive control (MPC) has been widely used over
the past twenty years for control of linear and nonlinear
systems [1], [2]. The rationale behind MPC is the following:
at each time step, an L2 or alternative variation of the cost
function is locally optimized over time to obtain the open-
loop control as a function of time, only a small portion of
which is actually applied to the system. The time horizon is
then shifted, and the process is repeated based on acquired
state feedback. Using this approach, it is clear that optimizing
with respect to the entire open-loop control, although often
effective, might not be the most efficient way to compute the
control since most of the optimizer is typically discarded.

In view of this observation, our previous work in [3]–
[7] presented Sequential Action Control (SAC), a reced-
ing horizon approach for control of nonlinear systems, that
exploits elements from hybrid systems theory [8], [9]. In
contrast with the aforementioned MPC methods, the open-
loop solution in SAC optimizes the needle variation [10]
of the cost resulting in a single, constant magnitude action
which does not optimize, but rather improves the cost function
value relative to applying only a nominal control signal. Since
only a single action—obtained in closed-form—is computed
at each time step, control calculation is efficient. Our earlier
work in [3]–[7] indicates that SAC can drive benchmark and
challenging systems—including the cart-pendulum, acrobot
and pendubot in [3], hopping and humanoid locomotion in [5]
and rotor vehicles with dynamics on Lie groups in [6]—close
to a desired equilibrium. Nevertheless, it cannot achieve final
stabilization and, as a result, switching to a locally stabilizing

Authors are with the Neuroscience and Robotics Laboratory (N×R)
at the Department of Mechanical Engineering, Northwestern Uni-
versity, Evanston, IL. Email: man7therakis@u.northwestern.edu,
t-murphey@northwestern.edu.

controller is necessary [3], [6]. An illustration of this behavior
is shown in Fig. 1 for the cart-pendulum inversion system.

This paper presents iterative Sequential Action Control
(iSAC), an extension of SAC that addresses one fundamental
question that was left open in our previous work—how can
SAC achieve consistent stabilizing behavior? We provide new
theoretical results that show that our modified method, iSAC,
can achieve closed-loop stability, which was not possible
using SAC in our previous work. We also present side-by-
side the procedural differences between iSAC and SAC and
how the modifications allow us to prove closed-loop stability.
Simulation results show that, with minimal modifications
across examples, iSAC is consistently successful in a variety
of control scenarios, ranging from benchmark inversion prob-
lems [11] to control of quadrotors performing complex three-
dimensional tasks like flips, and constrained maneuvers of
spacecrafts. Some of the examined conditions include feasible
and infeasible trajectory tracking, setpoint stabilization, and
control under external disturbances.

In addition to the aforementioned points, the following
novelties of iSAC distinguish this work from alternative MPC
methods (see, e.g., [1], [2], [12]–[17] and references therein).
In order to solve the open-loop problem, most MPC methods
either employ nonlinear programming solvers (see [18] and
[19] for a review) or solve a matrix Riccati differential
equation as, for example, in [13]–[15]. On the contrary, the
solution of the open-loop problem in iSAC has an analytic
form which requires only forward simulations of the dynamics
and a costate variable, which is computationally efficient
and does not depend on black-box optimization routines.
Moreover, control saturations can be incorporated without
additional computational overhead. Finally, as opposed to
many MPC alternatives that utilize discrete-time dynamics [1],
[2], [15], [16], [20], iSAC uses continuous-time dynamics.
As a result, variable-step integration may be used, which,
combined with the previous points, significantly speeds-up the
solution process.

This paper is structured as follows: Section II provides a
description of our previous work on SAC; Section III describes
iSAC and the features that differentiate the proposed method
from SAC. In Section IV we discuss the global stability
properties of iSAC. Section V demonstrates applicability of
iSAC to a variety of systems and control scenarios while
conclusive remarks are given in Section VI. Finally, all proofs
are presented in the Appendix.

II. PRELIMINARIES - SEQUENTIAL ACTION CONTROL

For convenience, we briefly summarize the work presented
in [3]–[6]. SAC is a receding horizon method that enables real-
time, closed-loop constrained control synthesis by following
the cyclic diagram in Fig. 2. We shall consider nonlinear
systems with input constraints such that

ẋ = f(t, x, u) = g(t, x) + h(t, x)u ∀t (1)
with u ∈ U and

U :=
{
u ∈ Rp : umin ≤ u ≤ umax, umin ≤ 0 ≤ umax

}
,

i.e., systems that can be nonlinear with respect to the state
vector, x : R→ X , but are assumed to be linear with respect
to the control vector, u : R→ U . State constraints may be
added in the form of penalty terms in the cost. The state will
sometimes be denoted as t 7→ x

(
t;x(ti), u(·)

)
when we want

to make explicit the dependence on the initial state (and time),
and corresponding control signal.

The SAC method uses objectives of the form

J
(
x(·)

)
=

∫ ti+T

ti

l
(
t, x(t)

)
dt+m

(
ti + T, x(ti + T)

)
, (2)

with incremental cost l
(
t, x(t)

)
, terminal cost

m
(
ti + T, x(ti + T)

)
and time horizon T . Although (2)

lacks a norm on control effort, this norm is included in one of
the subsequent steps as shown in (6). The following definition
is necessary before introducing the open-loop problem solved
in SAC.

Definition 1: An action A is defined by the triplet con-
sisting of a constant control value, uA ∈ U , application
duration, λA ∈ R+ and application time, τA ∈ R, such that
A := {uA, λA, τA}.

The open-loop problem in SAC calculates controls that
improve (not optimize) the objective (2) relative to applying
only a nominal control signal. Specifically, the open-loop
problem P in SAC is defined as follows

P(ti, xi) : (3)
Find action A such that

J
(
x(t;xi, u

∗
i (·))

)
< J

(
x(t;xi, u

nom
i (·))

)
(4)

subject to

u∗i (t) =

{
uA τA ≤ t ≤ τA + λA

unom
i (t) else

,

τA >= ti, τA + λA <= ti + T ,
and (1) with t ∈ [ti, ti + T] and x(ti) = xi

where unom
i is a nominal control signal (see Remark 1). The

subscript i denotes the i-th time step, starting from i = 0 and
will be used for the remainder of the paper in the same way.

The solution u∗i (t) of problem P includes a switch to
the calculated action A for t ∈ [τA, τA + λA] ⊆ [ti, ti + T]
(Fig. 4a) and thus, it is piecewise continuous in t. When
applied to (1), u∗i (t) generates a (discontinuous) switch of
the same duration λA in the dynamics from f

(
t, x, unom

i (·)
)

to f(t, x, uA). The condition in (4) highlights a key feature
of SAC, e.g., rather than optimize the objective (2), SAC

-30

-25

-20

-15

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16 18 20
time (s)

Cart-pendulum inversion with SAC

Fig. 1. Cart-pendulum inversion with SAC. While SAC can drive the system
close to the upward equilibrium, it does not achieve final stabilization.

System

Feedback Open-loopPredict

SAC process

problem

Compute optimal
action schedule

Determine
and

Determine action
duration

Fig. 2. An overview of the SAC control process. In order to solve (3), the
SAC method follows the four steps shown above.

actions improve (2) relative to only applying nominal control
(see Remark 1). As the receding horizon strategy progresses,
P(ti, xi) is solved from the current time ti using the measured
state xi, and the calculated control u∗i (t)—corresponding to
x∗i (t)—is applied for ts seconds (sampling time) to drive
the system from xi to x

(
ti + ts; ti, xi, u

∗
i (·)
)
. The process is

then repeated at the next sampling instance, i.e., ti ← ti + ts
and i← i+ 1. The final result of the closed-loop receding
horizon strategy is a sequence of actions, forming a piecewise
continuous control signal ucl(t) with state response xcl(t).

Unlike alternative MPC methods [1], [2], [16], [17], [21],
[22], the open-loop problem in SAC can be solved in closed
form without employing nonlinear programming solvers (see
[18] and [19] for a review). In order to solve (3), the SAC
method follows four steps as illustrated in Fig. 2. Beginning
with prediction, the steps of the SAC process are described in
the following subsections.

Remark 1: Nominal control unom : R → U is piecewise
continuous in t, and is used as a basis when calculating the
open-loop solution. It is often unom(·) ≡ 0 so that problem P
outputs the optimal action relative to doing nothing (allowing
the system to drift). Alternatively, unom(·) may be an optimized
feedforward or state-feedback controller, e.g., regulating an
unstable equilibrium. For purposes of evaluation, the nominal
control throughout this paper is considered constant or zero.
The system trajectory corresponding to application of nominal
control will be denoted as x

(
t;x(ti), u

nom(·)
)

or xnom(·) for
brevity.

Steps for solving the open-loop problem P
The solution process assumes the following:
Assumption 1: The control objective is to steer the state to

the origin. This is not a restrictive assumption as most control

scenarios (including trajectory tracking) can satisfy it with a
change of coordinates.

Assumption 2: The dynamics f in (1) are continuous in u,
piecewise continuous in t and continuously differentiable in
x. Also, f is compact, and thus bounded, on compact sets X
and U . Finally, the system is assumed to be controllable and
f(·, 0, 0) = 0.

Assumption 3: The terminal cost m is positive definite
and continuously differentiable. The incremental cost l(t, x)
is continuous in t and continuously differentiable in x and
l(·, 0) = 0. Also, there exists a continuous positive defi-
nite, radially unbounded function M : X → R+ such that
l(t, x) ≥M(x) ∀t.

Assumption 4: The trajectory x∗i (t) ∈ X corresponding to
the solution u∗i (t) ∈ U of P(ti, xi) is absolutely continuous,
and thus bounded, in [ti, ti + T].
The open-loop problem P can then be solved by following
the four steps presented below.

1) Predict: The SAC process begins by predicting the evo-
lution of a system model from current state feedback. In this
step, the system (1) is simulated from the current state xi and
time ti, under unom

i (t) for t ∈ [ti, ti + T]. The sensitivity of
(2) to the state variations along the predicted trajectory xnom

i (·)
is provided by an adjoint variable, ρi : [ti, ti + T]→ Rn, also
simulated during the prediction step. The adjoint satisfies

ρ̇i = −D2l
(
t, xnom

i

)T −D2f
(
t, xnom

i , unom
i

)T
ρi (5)

subject to ρi(ti + T) = D2m
(
ti + T, xnom

i (ti + T)
)T

,

where Di denotes derivative with respect to i-th argument.
The prediction phase completes upon simulation of the state

using (1) and the adjoint system (5) under unom
i (·) control.

The resulting trajectories xnom
i (·), ρi(·) will be used in the

remaining three steps of the solution process.
2) Compute optimal action schedule u∗s(·): In this step,

we compute a schedule u∗s : [ti, ti + T]→ Rp which contains
candidate action values and their corresponding application
times, assuming λ → 0+ for all (see Fig. 3 for a sample
one-dimensional action schedule). The final uA and τA will
be selected from these candidates in step three of the solution
process such that uA = u∗s(τA), while a finite duration λA will
be selected in step four. The optimal action schedule u∗s(·) is
calculated by minimizing

Jus =
1

2

∫ ti+T

ti

[
dJ

dλ
(t)− αd

]2

+ ‖us(t)− unom
i (t)‖2R dt,

(6)
dJ

dλ
(t) = ρi(t)

T
[
f
(
t, xnom

i (t), us(t)
)
− f

(
t, xnom

i (t), unom
i (t)

)]
where the quantity dJ

dλ (·), called mode insertion gradient (see
[8], [9]), denotes the rate of change of the cost with respect
to a switch of infinitesimal duration λ in the dynamics of the
system. In this case, dJdλ (·) shows how the cost will change if
we introduce infinitesimal switches from f

(
t, xnom

i (t), unom
i (t)

)
to f

(
t, xnom

i (t), us(t)
)

at any time t ∈ [ti, ti + T]. Intuitively,
minimization of (6) is driving dJ

dλ (·) to a negative value
αd ∈ R−. As a result, each switch/action value in u∗s(t) is
the single choice that improves (2) (relative to only applying

nominal control) if applied for λ → 0+ at its corresponding
application time. The design parameter αd determines how
much the cost is improved by each infinitesimal action in the
schedule u∗s(t).

Remark 2: Equations (5) and the mode insertion gradient in
(6) can alternatively be explained as the adjoint equation and
the variation of the Hamiltonian in Pontryagin’s Maximum
Principle (see, e.g., [23]). However, note that our method uses
the variation of the Hamiltonian away from the optimizer,
which can be verified by observing that (5) depends on
nominal state and control trajectories which are known a priori
at each time step.

Based on the simulation of the dynamics (1), and (5)
completed in the prediction step (Section II-1), minimization
of (6) leads to the following closed-form expression for the
optimal action schedule:

u∗s(t) = unom
i (t) + (Λ +RT)−1 h

(
t, xnom

i (t)
)T
ρi(t)αd, (7)

where Λ , h
(
t, xnom

i (t)
)T
ρi(t)ρi(t)

Th
(
t, xnom

i (t)
)
. Derivation

of (7) is a straightforward extension of the proof of Theorem 1
in [3]. The only difference is that, here, we added the term
unom
i (t) in the control norm in (6), to get a more compact form

for the solution (7).

The infinitesimal action schedule can then be directly
saturated to satisfy any min/max control constraints of the
form umin,k ≤ 0 ≤ umax,k ∀k ∈ {1, . . . ,m} such that u∗s ∈ U
without additional computational overhead (see [3] for proof).
This is possible because the SAC method does not optimize
but rather improves (2), and as such, even if the schedule is
directly saturated, each action in the schedule will still point
to a descent direction of the cost.

The following assumption is used in conjunction with
Proposition 1 to ensure that (7) leads to negative mode
insertion gradient, and thus, decreases the cost (2).

Assumption 5: It is assumed that h
(
t, x(t)

)T
ρ(t) 6= 0p×1

(related to controllability—see [24]). Also, we assume that
unom
i is not an optimizer of (2) in the current time step

(usually selected as constant or zero—see Remark 1), and
that J

(
x∗i (t)

)
6= 0, i.e., system trajectories have not already

converged to the desired equilibrium.

3) Determine application time τA (and thus uA value):
The SAC method optimizes a decision variable not normally
included in control calculations—the choice of when to act.
As opposed to always acting at the current time, i.e., τA = ti,
the application time of an action is allowed to take values in
τA ∈ [ti, ti + T].

Recall that the curve u∗s(·) in the previous step provides the
values and application times of possible infinitesimal actions
that SAC could take at different times to improve (2) from
that time. In this step the SAC method chooses one of these
actions to apply, i.e., chooses the application time τA and thus
an action value uA such that uA = u∗s(τA). To do that, u∗s(·)

1 2 3 4 time (s)

500

1000

-500

Fig. 3. A sample, one-dimensional (m = 1) action schedule u∗s(t) and
the corresponding cost (8) used to calculate the application time τA for the
hypothetical time window [0, 4]s. Every point on u∗s(t) corresponds to an
action of infinitesimal duration, with value and application time as determined
by the curve. Because u∗s(t) is calculated from minimization of (6), all
actions in u∗s(t) would improve (2) relative to only applying nominal control
if applied for λ → 0+. Each point on the mode insertion gradient curve
approximates the change in cost (2) achievable by infinitesimal application
of the corresponding action in u∗s(t). By choosing the application time that
minimizes this curve, we pick the action the generates the greatest cost
reduction in the current time window.

is searched for a time τA that minimizes

Jt(τ) =
dJ

dλ

∣∣∣∣
τ

, (8)

dJ

dλ

∣∣∣∣
τ

= ρi(τ)T
[
f
(
τ, xnom

i (τ), u∗s(τ)
)
− f

(
τ, xnom

i (τ), unom
i (τ)

)]
subject to τ ∈ [ti, ti + T].

Notice that the cost (8) is the mode insertion gradient evaluated
at the optimal schedule u∗s(·). Thus, minimization of (8) is
equivalent to selecting the infinitesimal action from u∗s(·)
that will generate the greatest cost reduction relative to only
applying nominal control. For a sample Jt(τ) see Fig. 3.

4) Determine control duration λA: So far, τA and uA (see
Definition 1) have been selected from a schedule of possible
infinitesimal actions, u∗s(·). The final step in synthesizing
a SAC action is to choose how long to act, i.e., a finite
control duration λA, such that the condition in (4) is satisfied.
The following assumption and proposition will facilitate the
analysis in the sequel.

Proposition 1: For a choice of αd < 0 in (6), an infinitesimal
control action u∗s(τ) that is selected according to Assumption 5
will result in dJ

dλ (·) < 0.
Proof: See Appendix.

Proposition 1 proves that if αd < 0, then the infinitesimal
u∗s(τA) will lead to a negative dJ

dλ (·). From [9], [25], there
is a non-zero neighborhood around λ → 0+ where the mode
insertion gradient models the change in cost in (4) to first
order, and thus, a finite duration λA exists that satisfies (4). In
particular, for finite durations λ in this neighborhood we can
write

J
(
x(t;xi, u

∗
i (·))

)
− J

(
x(t;xi, u

nom
i (·))

)
= ∆J ≈ dJ

dλ

∣∣∣∣
τA

λ. (9)

Thus, from Proposition 1 and (9), the condition in (4) is
feasible. Then, a finite action duration λA can be calculated by

employing a line search process [25]. Starting with an initial
duration λ0 we simulate the effect of the control action using
(1) and (2). If the simulated action satisfies (4), the duration
is selected. If this is not the case, the duration is reduced and
the process is repeated. By continuity, the final duration will
produce a change in cost within tolerance of that predicted
from (9).

After computing the duration λA, the control action A
is fully specified (it has a value, an application time and
a duration) and thus the solution u∗i (t) of problem P has
been determined. By iterating on this process (Section II-1
until Section II-4), SAC synthesizes piecewise continuous,
constrained control laws for nonlinear systems. For more
information about SAC, the reader is encouraged to consult
[3], [5], [6].

III. FROM SAC TO ISAC

In this section we will describe the differences between
SAC and iSAC, and reformulate the open-loop problem that
is being solved. We will focus on the two key modifications
introduced in iSAC, i.e., a) the iterative update of the open-
loop solution u∗i (t) across time steps, and b) the application
of a contractive constraint on the cost. These two features
are illustrated in Fig. 4 and are discussed in more detail in
the following paragraphs. For convenience, the corresponding
SAC behavior is also shown in the same figure.

A. Iterative update of u∗i (t)

Figure 4a illustrates how the iSAC method stores actions
calculated at previous time steps and modifies u∗i (t) by intro-
ducing a new action at every time step. On the contrary, SAC
only keeps a single action in u∗i (t), regardless of whether that
action lies in the current application window [ti, ti + ts] or
not. In light of this, the following definition is necessary to
distinguish between the nominal control (zero or constant in
this paper) from the open-loop problem P in SAC, and the
default control that iSAC uses to calculate actions.

Definition 2: Default control udef
i : [ti, ti + T]→ U , is

piecewise continuous in t and is defined as

udef
i (t) =

{
u∗i−1(t) ti ≤ t ≤ ti + T − ts
unom
i (t) ti + T − ts < t ≤ ti + T

, (10)

with udef0 (·) ≡ unom
0 (·). In expression (10), u∗i−1 : [ti−1, ti−1+

T]→ U is the output of P(ti−1, xi−1) from the previous time
step i− 1, and ts = ti − ti−1 is the sampling period.

As a result, actions calculated in iSAC improve the cost (2)
with respect to applying default control udef

i (·). Specifically,
as shown in Fig. 4d, iSAC actions establish a decreasing
behavior1 for (2) from time step to time step. As will be
explained in the following paragraph, this is accomplished
by applying a contractive constraint on the cost, while the
iterative nature of u∗i (t) has a major role in the formulation
of this constraint.

1In Section IV we make use of this fact and consider (2) as a candidate
Lyapunov function.

a b

c d

SAC iSAC
Sequence of

Cost behavior

Fig. 4. Summary of differences between SAC and iSAC. Panels a and b underline the fact that iSAC stores previously calculated actions and iteratively
improves the open-loop solution u∗i (t) (assuming zero nominal control). As a result, a contractive constraint can be employed in iSAC to establish a sufficient
decrease condition for the cost as shown in panel d. Panel c shows the corresponding graph in SAC as dictated by (4).

B. Contractive constraint on cost

In SAC, each action is calculated such that (4) is satisfied.
However, in general, this does not ensure that the cost will
follow a decreasing trend. The explanation lies in the fact that
(4) only guarantees that the cost will improve relative to a
nominal input in the current time step, but not necessarily
across time steps. As an example, Fig. 4c shows a general
scenario where condition (4) is met. In this case, the system
does not meet the desired specifications encoded in the cost,
since the latter is not decreasing with time. Thus, even if (4) is
satisfied, closed-loop stability cannot be established in SAC.

A solution to this problem is to modify condition (4) such
that (2) sufficiently “contracts” between time steps [26]–[29].
Contractive constraints have been widely used in the MPC
literature to show closed-loop stability as an alternative to
methods relying on a terminal (region) constraint [1], [2],
[16], [17], [21], [22]. A disadvantage of the latter is that they
require the computation of a terminal region, which has to
be calculated separately for each system of interest [30]–[32].
On the contrary, the contractive constraint approach can be
applied to a variety of examples without modification and is
easier to implement.

Specifically, instead of improving the cost relative to only
applying nominal control in (4), we apply

J
(
x∗i (·)

)
− J

(
x∗i−1(·)

)
≤ −

∫ ti

ti−1

l
(
t, x∗i−1(t)

)
dt, (11)

as a contractive constraint. Conditions similar to (11) also
appear in terminal region methods, either in continuous or in
discrete time, as an intermediate step used to prove closed-loop
stability.

One problem that arises with (11) in SAC is that the quan-
tities J

(
x∗i (·)

)
and J

(
x∗i−1(·)

)
cannot be related through the

mode insertion gradient, unlike, e.g., J
(
x∗i (·)

)
and J

(
xnom
i (·)

)
that appear in the original condition (4) and can be related
through (9). Thus, Proposition 1 can no longer be used to
ensure that (11) is feasible in SAC. On the contrary, in iSAC,
we can use the iterative nature of u∗i (t) to ensure feasibility of
(11) through Proposition 1 for sufficiently small sampling time
ts. In particular, in iSAC we can transform (11) to an equation
that is similar to (4) and includes the terms J

(
x∗i (·)

)
and

J
(
xdef
i (·)

)
, which can be related through the mode insertion

gradient dJ
dλ , as in (9).

By definition, (10) leads to xdef
i (t) ≡ x∗i−1(t) for t ∈

[ti, ti−1 + T] (see also Fig. 4b). We can then write

J
(
x∗i−1(·)

)
− J

(
xdef
i (·)

)
=

∫ ti

ti−1

l
(
t, x∗i−1(·)

)
dt

+m
(
ti−1 + T, x∗i−1(ti−1 + T)

)
−
∫ ti+T

ti−1+T

l
(
t, xdef

i (t)
)
dt

−m
(
ti + T, xdef

i (ti + T)
)
. (12)

Combining (12) with (11) and using (10) we get

J
(
x∗i (·)

)
− J

(
xdef
i (·)

)
≤ m

(
ti−1 + T, x∗i−1(ti−1 + T)

)
−
∫ ti+T

ti−1+T

l
(
t, xdef

i (t)
)
dt−m

(
ti + T, xdef

i (ti + T)
)

(13)

or equivalently

J
(
x∗i (·)

)
− J

(
xdef
i (·)

)
≤

−
∫ ti−1+ts+T

ti−1+T

l
(
t, xdef

i (t)
)

+ ṁ
(
t, xdef

i (t)
)
dt = C. (14)

Thus, we were able to transform (11) into a sufficient decrease
condition similar to (4), i.e., a condition that involves J

(
x∗i (·)

)
and J

(
xdef
i (·)

)
. In terminal region methods, the integrand

quantity in (14) is often required to be negative in some region
of the state space and for some nominal control signal (see e.g.
[1], [21]) to achieve closed-loop stability. Applying such a re-
quirement in our case would make satisfaction of (14) trivial as
the right-hand side of (14) would be positive and the left-hand
side would be negative (Proposition 1). However, calculation
of the terminal region and control is not straightforward and
is also not necessary for iSAC. The following Proposition can
be used in conjunction with Proposition 1 to ensure that the
new condition (14) is (recursively) feasible.

Proposition 2: For αd < 0 there exists a sufficiently small
sampling time ts such that the sufficient cost decrease required
by the contractive constraint (14) is attainable.

Proof: See Appendix.
The contractive constraint (14) can be applied in the line search
process that determines the duration of an action (Section II-4)
in lieu of (4). By applying this condition at each time step,
we can guarantee that the cost value will decrease across time
steps, and using this fact we can prove closed-loop stability
(Section IV).

Open-loop problem in iSAC

Based on the above, the open-loop problem solved by iSAC
at each time step is given by

B(ti, xi) : (15)
Find action A such that (14) is satisfied
subject to

u∗i (t) =

{
uA τA ≤ t ≤ τA + λA

udef
i (t) else

,

τA >= ti, τA + λA <= ti + T ,
and (1) with t ∈ [ti, ti + T] and x(ti) = xi.

Similar to the open-loop problem P in SAC, the solution
u∗i (t) of B can be obtained in closed form by following
the four steps in Fig. 2 and Section II, without relying on
nonlinear programming solvers. The only difference is that in
the solution process of B, the superscripts nom are replaced by
def. Our final result in this section utilizes the aforementioned
assumptions and propositions to ensure that the open-loop
problem B has a solution:

Proposition 3 (Existence of solution to B): For sufficiently
small sampling time ts, the solution u∗i (t) to the open-loop
problem B(ti, xi) exists for any xi, ti.

Proof: See Appendix.

IV. GLOBAL STABILITY ANALYSIS

In this section, we provide global stability results for iSAC
and discuss how iSAC can be used under a special case of dis-
turbances and to track infeasible trajectories, i.e., trajectories
that do not satisfy the dynamics (1).

A. Nominal Case
In this section we are considering nominal stability (not

robust stability), i.e., the trajectories of the plant are assumed
to coincide with the trajectories predicted by the model. Recall
that the iSAC method does not optimize the cost (2) but
rather improves it across time steps. It is often the case
that minimization of the objective function in the open-loop
optimization problem is not required to achieve stability of a
model predictive controller. Sometimes, a decrease in the cost
at every iteration is sufficient to guarantee stability [20], [21],
[33], [34]. In view of these observations, we now present the
following Theorem:

Theorem 1 (Asymptotic Stability): For sufficiently small
sampling time ts, the closed-loop system resulting from
applying iSAC is asymptotically stable in the sense that
||xcl(t)|| → 0 as t→∞.

Proof: See Appendix.
Theorem 1 does not imply Lyapunov stability, but rather
establishes the usual notion of attractiveness. The importance
of ts in establishing closed-loop stability is also underlined; if
the assumptions of the Theorem hold, by appropriate selection
of ts, we can ensure that the contractive constraint is feasible,
and thus, asymptotic stability.

Cost as a Lyapunov function
Now that asymptotic stability has been proved, we will show

that, under certain assumptions, the objective (2) is a Lyapunov
function for the closed-loop system that decreases at intervals
of prediction horizons.

Theorem 2 (Objective Function as a discrete-time Lyapunov
Function): Assume that f is bounded such that ||f || ≤ ξ||x||
for some finite constant ξ > 0, and that the cost (2) is of the
form

J
(
ti, x(·)

)
=

1

2

∫ ti+T

ti

||x(t)||2Q dt+
1

2
||x(ti + T)||2P1

, (16)

with ti taking values in a discrete set for i ∈ N. Then, for
sufficiently small ts, (16) is a discrete-time Lyapunov function
for the closed-loop system.

Proof: The proof can be found in the Appendix.
Remark 3: Theorem 2 proves that a quadratic cost may be

used as a discrete-time Lyapunov function in our method.
The Lyapunov function does not have to be continuously
decreasing along solution trajectories, thus only establishing
attractiveness similar to Theorem 1. Additionally, even though
(16) is continuously differentiable, there is no assumption
on the continuity with respect to the state. These points
are important, since they allow application of this theorem
to problems that potentially do not admit a continuous-time
Lyapunov function which is also continuous in the state, e.g.
nonholonomic systems [35].

B. Asymptotically Decaying Disturbances
This section provides stability results for a special case of

disturbances. Here, we assume that the plant is described by
the following differential equations (instead of (1))

ẋp = f(t, xp, u) + η(t) = g(t, xp) + h(t, xp)u+ η(t), (17)

where xp(t) represents the trajectory resulting from applying
control u and the effect of an unknown additive disturbance
η(t). The disturbance is bounded and asymptotically decaying;
in particular, we assume the following:

Assumption 6: The disturbance η(t) is bounded, i.e.,
||ηi(t)|| ≤ δi < ∞ for all t ∈ [ti, ti + T] and all i > 0.
Furthermore, η(t) is asymptotically decaying, i.e., δi → 0 as
i→∞.
Closed-loop stability under η(t) is provided by the following
theorem.

Theorem 3 (Asymptotic Stability under Asymptotically De-
caying Disturbances): For sufficiently small ts, the closed-
loop system under the disturbance η(t) is asymptotically stable
in the sense that ||xcl(t)|| → 0 as t→∞.

Proof: The proof can be found in the Appendix.
As seen in the proof, for as long as the disturbance is
acting, the cost is allowed to increase. As time progresses, the
disturbance attenuates and the contractive constraint becomes
feasible again.

C. Remarks on tracking of non-admissible trajectories

When designing a control task, there are often cases where
asymptotic stability/convergence to the desired equilibrium
cannot be achieved. For example, in trajectory tracking, it
is not always feasible to identify trajectories that satisfy the
dynamics of the system of interest, unless there is special
structure one can exploit, e.g., differential flatness [36]. The
control goal in this case is to ensure that the deviation of the
generated (feasible) open-loop trajectory from the desired one
is bounded, i.e., ||x∗i (t)−xd(t)|| ≤ ∆i for t ∈ [ti, ti+T] with
∆i ∈ [0,∞). Unlike the decaying disturbance case, the upper
bound ∆i does not have any structure that can be exploited.
Thus there is no guarantee that xcl(t) → xd(t) as t → ∞.
Nevertheless, even for this scenario, our simulation results
show that iSAC keeps the deviation from the desired infeasible
trajectories bounded.

V. SIMULATION RESULTS

In this section we demonstrate the flexibility and versatil-
ity of iSAC through application to a variety of challenging
systems. For each example, we include literature review on
related control methods, and we also compare the performance
of iSAC on NASA’s TRACE spacecraft [37] to pseudospectral
infinite-horizon control [38], [39]. It is important to note that
unlike other system-specific methods mentioned in this sec-
tion, our approach requires no modifications across examples;
only the dynamic model that is being controlled and the
relevant parameters of iSAC are changed for each example.
Also, all the examples presented here run much faster than real
time, indicating applicability to hardware implementations. For
better visualization of the results, the reader is encouraged to
visit https://vimeo.com/219702474.

The control objective is encoded using a quadratic cost
throughout this section (Assumption 3 is thus satisfied). In
the TRACE example, we also incorporate state constraints
by introducing penalty terms in the cost. The examples also
include cases of feasible and infeasible tracking, as well as

disturbance rejection. The sampling time ts for each example
was appropriately selected to achieve closed-loop stability
(Theorems 1 and 3) when feasible. Finally, a summary of
iSAC-specific parameters for each example is given in Table I,
while Fig. 5 shows the resulting trajectories for the examples
described below. Our method is shown to be successful
in these scenarios, leading to asymptotic stabilization when
feasible.

A. Cart-pendulum inversion

The cart-pendulum inversion is a benchmark problem in
control theory [11], [40]. The dynamics of the system and
the parameters used in the simulations that follow can be
found in [41]. The state vector for the system includes
the angle and angular velocity of the pendulum and the
horizontal position and velocity of the cart, [θ, θ̇, xc, ẋc].
The control input is the horizontal acceleration of the
cart with zero unom. The desired setpoint in this example
was xd = [0, 0, 1, 0]. The cost weights were selected as
Q = Diag[20 , 0 , 5 , 0], P = Diag[0.1 , 0 , 5 , 0] and R = 0.3.

Comparing the cart-pendulum response in Fig. 5 with Fig. 1,
it is clear that iSAC, unlike SAC, can achieve final stabi-
lization. The proposed method is able to solve the inversion
problem by pumping energy into the system without explicitly
encoding this behavior in the objective. In contrast, alternative
methods switch between separately derived controllers [42] to
achieve the same result. Also, many methods (see [43], [44])
rely on energy-based objectives to solve the swing-up problem
for the acrobot and pendulum systems, primarily because
state-tracking objectives result in many local minima that
prevent convergence to desirable trajectories. It is noteworthy
that, iSAC is able to invert the system using a state-tracking
objective while bypassing local minima. The corresponding
cost for this example is shown in Fig. 6.

B. Car-like vehicle

The dynamics used in the simulations are

ẋc = v cos θ, ẏc = v sin θ, v̇ = u1, θ̇ = u2, (18)

where xc, yc denote the position of the car, θ is the angle
with respect to the horizontal axis and v is the forward
velocity. The iSAC method directly controls the acceleration
and the angular velocity of the car. This nonholonomic system
violates Brockett’s necessary condition for smooth or even
continuous stabilization [45], which makes the control design
problem challenging. Since iSAC automatically generates a
discontinuous control law, it is not subject to this condition.

1) Parallel parking:
The desired setpoint for the parallel parking prob-

lem was xd = [0, 0, 0, 0] and the cost weights were se-
lected as Q = Diag[1 , 15 , 0.8 , 0.8], P = Diag[0 , 25 , 0 , 0]
and R = Diag[0.1 , 0.1]. As seen in Fig. 5, iSAC successfully
drives the system to the origin. Nominal control unom was set
to zero for both inputs. The corresponding cost is in Fig. 6.

Carwvehiclewfeasiblewtracking

0 2 4 6 8 10 12 14
=2

=1

0

1
→→→→

0 5 10 15
=2

0

2

4

6

8

10

12

14

16

timewRsA

disturbance

=1.5 =1 =0.5 0 0.5
=0.5

0

0.5

1

Carwvehiclewparallelwparking

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

timewRsA

0 5 10 15 20 25
=0.4

=0.2

0

0.2

0.4

0.6

0.8

1

1.2

disturbance

PVTOLwgustwcontrol

=0.5 0 0.5 1 1.5

=0.4

=0.2

0

0.2

0.4

0.6

→

→
→→→

timewRsA

0 5 10 15 20 25 30 35
=10

=5

0

5

10

15
Quadrotorwfigureweightwtracking

timewRsA

0 2 4 6 8 10 12 14 16 18
=2.5

=2

=1.5

=1

=0.5

0

0.5

1

1.5

2

timewRsA

Quadrotorwflip

=4

=2

0

2

4

6

8 Cart=pendulumwswing=up

0 2 4 6 8 10 12 14 16 18 20
=20

=15

=10

=5

0

5

10

15

20

timewRsA

0 2 4 6 8 10 12 14 16 18 20

TRACEwoff=eigenaxiswmaneuver

0 50 100 150 200 250 300
=60

=40

=20

0

20

40

60

=0.8

=0.6

=0.4

=0.2

0

0.2

0.4

0.6

timewRsA

timewRsA
0 50 100 150 200 250 300

0 50 100 150 200 250 300

tw=w0 tw=w100tw=w50

tw=w150 tw=w200

=20

0

20

40

60

80

100

Fig. 5. Summary of results; the iSAC method stabilizes the presented systems successfully. Notice that our method is effective even in the presence of
decaying disturbances and, also, keeps the deviation from the desired trajectory bounded in infeasible tracking. For better visualization of the results, the
reader is encouraged to visit https://vimeo.com/219702474.

2) Feasible trajectory tracking under disturbance:

The desired trajectory in this example was chosen
as

(
xdc(t), y

d
c (t), θd(t)

)
= (t, sin t, tan−1 cos t) and the

cost weights were Q = Diag[100 , 100 , 0 , 10] and
R = Diag[0.1 , 0.1]. Nominal control unom was set to zero for
both inputs. External disturbances acted instantaneously on
the system on four occasions, i.e., at t = 0, 3, 6, and 9s, each
perturbing v and θ by +3 m/s and +π

4 rad respectively. The
effect of the disturbance can be seen in the corresponding plot
in Fig. 5; while the car was tracking the desired trajectory, the
disturbance pushed the system away every time it acted on
the system. After the last disturbance attenuated the control
successfully steered the system back to the desired trajectory.
The corresponding cost is in Fig. 6.

A great deal of work on nonholonomically constrained car-
like models was completed in the 1990’s using nonsmooth
or time-varying control laws aiming to overcome stabiliz-
ability limitations traditional techniques [46]–[48]. Alternative
methods that achieve similar results in the parking problem

include fuzzy controllers as in [49] and dynamic feedback
linearization [50]. Other approaches that intrinsically lead to
piecewise continuous controls like iSAC include MPC as in
[26], [51]. The former paper utilizes contractive constraints
on the state and, although successful, results in a straight
line path between the initial and final configuration. The
latter uses the aforementioned terminal region constraints to
achieve stabilization, but, unlike iSAC, the method is designed
specifically for the car-vehicle system.

C. Gust control of planar vertical take-off landing (PVTOL)
aircraft

The dynamic model used in this example is given in [52].
The state vector for the system includes the position of the
aircraft, the angle with respect to the horizontal axis and the
corresponding velocities, i.e., [xa, ẋa, ya, ẏa, θ, θ̇]. The control
inputs of the system are thrust (directed out the bottom of
the aircraft) and the rolling moment. Lastly, the coupling
parameter ε that appears in the model was chosen as ε = 0.3.

Note that ε couples the rolling moment input with the lateral
acceleration of the aircraft; a positive value ε > 0 means
that applying a (positive) moment to roll left produces an
acceleration to the right, making this a non-minimum phase
system.

Nominal control unom was set to 1N for the thrust and zero
for the rolling moment. The desired setpoint in this example
was xd = [1, 0, 0.5, 0, 0, 0] and the cost weights were selected
as Q = Diag[15 , 3 , 15 , 3 , 3 , 0] and R = Diag[0.1 , 0.1]. Ex-
ternal disturbances acted instantaneously on the system on five
occasions, i.e., at t = 0, 2, 4, 6, and 8s, each perturbing ẋa by
+0.1 m/s. The behavior of the system was similar to the one
observed in the car-like vehicle; while the control was steering
the system towards the desired setpoint, the disturbance drove
it away until the last disturbance.

Figure 5 shows the resulting trajectories. The control of
PVTOL aircrafts has been extensively studied using, e.g.,
gain-scheduling [53], robust control [54] and input-output
linearization [52]. In the latter case, the system is decoupled
into simpler subsystems to facilitate the control process (a
similar approach is commonly followed in quadrotor control).
It is important to note that iSAC is able to successfully
control the system using the full dynamics and without relying
on separate controllers, unlike, e.g. in [53]. Finally, other
techniques that have been applied on VTOL aircrafts and
unmanned aerial vehicles (UAVs) in general include sliding
mode control and backstepping as explained in the following
example [55].

D. Quadrotor

For this example, a quaternion-based model is used because
it leads to polynomial, singularity-free dynamical equations
for the quadrotor. The model can be found in [56] and
the model parameters we used are the same as in [6].
The 13-dimensional state vector consists of the position
and velocity of the center of mass, the angular orientation
with respect to the inertial frame expressed in quaternions
and the angular velocity expressed in the body frame, i.e.,
[xq, yq, zq, ẋq, ẏq, żq, q0, q1, q2, q3, p, q, r]. The control inputs
are the squared angular velocities of the rotors, which are
converted to upward thrust for each rotor when multiplied
by an appropriate constant. For both examples that follow,
nominal control unom for each input was set to a constant
value such that the net upward thrust is approximately equal
to gravity force when the quadrotor is parallel to the ground.

1) Flip:
To perform a flip, the desired quaternion vector was a flip

trajectory with the respective Q weights set equal to 1500.
After the flip, the desired position for the center of mass of
the quadrotor was xd = [1, 1, 1] with the respective Q weights
set equal to 3. Finally, R = Diag[0.1 , 0.1 , 0.1 , 0.1]. Figures 5
and 6 show the resulting trajectories and cost.

2) Infeasible three dimensional figure eight tracking:
In this example, the quadrotor starts in an upside-down posi-

tion and is set to track a three-dimensional figure eight (respec-
tive Q weights set equal to 10) while keeping the quaternion
states at

(
qd0(t), qd1(t), qd2(t), qd3(t)

)
= [1, 0, 0, 0] (respective Q

weights set equal to 1000). Thus, the quadrotor is requested to
track an aggressive 3-dimensional maneuver without chang-
ing its angular orientation, which is infeasible. The weight
R = Diag[0.1 , 0.1 , 0.1 , 0.1]. As seen in Fig. 5, at the begin-
ning of the simulation the quadrotor reverts its angular orien-
tation and then it starts tracking the desired trajectory keeping
the error small. This behavior is automatically generated by
our method. The corresponding cost is in Fig. 6.

Many different approaches have been followed for control
of quadrotors over the years. Linear control methods like LQ
and PID synthesis [57], [58] are popular for their simplicity.
They utilize decoupled or simplified dynamics and also exploit
differential flatness [36] in order to track feasible trajectories.
For example, in [59] a quadrotor flip is implemented using a
dedicated attitude controller. In contrast iSAC controls the full
nonlinear dynamics of the system, and has good performance
even with infeasible trajectories as shown in the simulation
examples. No additional steps are required to apply our method
to this system, unlike, e.g., feedback linearization [60] or
sliding mode control [55]. The simplicity and versatility of
iSAC is one of the main points that this section demonstrates;
the same exact approach is being applied to a variety of chal-
lenging systems in real time, by replacing only the dynamic
model that is being controlled.

E. Incorporating State Constraints – TRACE Simulation

In 2010, the first in-orbit, time-optimal maneuver was
carried out, onboard the NASA’s TRACE spacecraft [37]. The
TRACE is a three-axis stabilized, zero-momentum, system that
employs a set of four reaction wheels for primary attitude
control. The in-orbit maneuvering strategy was calculated by
pseudospectral (PS) optimal control theory [38], [39].

For this example, the dynamics and parameters of the
system were taken from [37]. The inputs are the torques
applied to the reaction wheels. The 11-dimensional state vector
consists of the angular orientation expressed as a quaternion
vector, the vector of angular body rates and the reaction wheel
rates, i.e., [q0, q1, q2, q3, ω1, ω2, ω3,Ω1,Ω2,Ω3,Ω4]. The con-
trol objective was a rest-to-rest 100◦ time-optimal reorientation
about the spacecraft’s z-axis. The reaction wheels in the initial
configuration are moving at constant rates of 20 rad/s to
provide the necessary energy for the desired maneuver.

To introduce saturation constraints on the state of the form
−xsat < x < xsat we included bounded, differentiable penalty
functions in the cost as

B(x) =
Q̄

1 + e±a(x±xsat)
(19)

where Q̄ and a are parameters to be selected. These can be
directly integrated into the running cost l without violating
any of the stated assumptions. For this simulation the only
nonzero Q weights corresponded to the quaternion vector and
were set equal to 1500 with R = Diag[0.1 , 0.1 , 0.1 , 0.1],
thus prioritizing the maneuvering time. The penalty functions
were applied at the body rates ω and the reaction wheel rates
Ω according to [37] as |ωi| < 0.5 degrees/s, i = 1, 2, 3 and
|Ωj | < 100 rad/s, j = 1, 2, 3, 4. Also, Q̄ = 100 and a = 80.

TABLE I
ISAC PARAMETER VALUES USED IN SIMULATIONS

Example V-A V-B1 V-B2 V-C V-D1 V-D2 V-E

αd −15 J
(
xdef
i (·)

)
−100 J

(
xdef
i (·)

)
−10 J

(
xdef
i (·)

)
−5000 −5000

T 1.2s 1.2s 0.35s 3s 3s 2s 15s
ts 0.01s 0.02s 0.03s 0.02s 0.02s 0.05s 0.05s

[umin, umax] [−20, 20]m/s2
[−10, 10]m/s2 [0, 5]N [0, 12] rad2/s2 [−0.05, 0.05]N m
[−4, 4] rad/s [−100, 100]N m for all inputs for all inputs

0 5 10 15
-7

-6

-5

-4

-3

-2

-1

0

1

2

3
CarQvehicleQfeasibleQtracking

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6
Cart-pendulumQswing-up

timeQ7s3timeQ7s3

di
st

ur
ba

nc
e

di
st

ur
ba

nc
e

di
st

ur
ba

nc
e

IdealQcase DecayingQdisturbance InfeasibleQtrajectory NumericalQissues

0 5 10 15 20 25 30

1

2

3

4

5

6

7

8

9

timeQ7s3

QuadrotorQfigureQeightQtracking

timeQ7s3

CarQvehicleQparallelQparking

0 2 4 6 8 10 12

-6

-4

-2

0

2

Fig. 6. Sample cost behavior in the presented examples. As explained in Section V-F, due to numerical issues, the contractive constraint may not be satisfied
momentarily near the desired equilibrium, leading to a small cost increase. Nevertheless, the system is effectively already stabilized at that point (compare
corresponding trajectories from Fig. 5). Columns two and three show the cost behavior when acting under the presence of an external bounded disturbance
and tracking infeasible trajectories respectively, where the cost is not expected to continuously decrease.

Finally, nominal control unom was set to zero for all inputs.
The remaining iSAC parameters are given in Table I.

The iSAC simulation results as well as the real flight results
that correspond to the PS method (see [61]) are shown in
Fig. 5. First, notice that both methods successfully complete
the maneuver while satisfying the constraints on the body rates
and the wheel rates throughout the simulation. Despite the fact
that the PS method directly optimizes the maneuver time in
the cost function (we indirectly do so by weighing the state
error), it took approximately 170 seconds for iSAC to complete
the maneuver, i.e., 10 seconds less than the PS method (181
seconds). Also, the target quaternion vector in the PS method
was updated every 1 second, but no relevant discussion was
provided for the execution time in [61]. Our simulation with
iSAC took less than 40 seconds for the 4-minute trajectory
shown in Fig. 5, and computations were efficient enough to
be executed every ts = 0.05s.

Additionaly, note that both methods follow an off-eigenaxis
rotation, i.e., a rotation about a variable axis. The explanation
for this lies in the fact that the body masses were not
symmetrically distributed on the spacecraft, and as a result,
the shortest-time maneuver did not correspond to the shortest
angle path. Nevertheless, φ and θ in iSAC deviate much less
from zero and the same is true for the respective angular
velocities ω1 and ω2. Finally, the wheel rates Ω are smaller for
almost all time, indicating that iSAC uses less control authority
than the PS method over the time horizon.

F. Discussion and Limitations

In general, iSAC performs well in the variety of scenarios
presented. When the task is feasible, trajectories are asymp-
totically stable and the cost is generally decreasing from time

step to time step as a result of applying condition (11).
Nevertheless, near the desired equilibrium, the behavior of
the cost sometimes deviates from what one would expect,
even when the control task is feasible. As an example, in
the rightmost panel of Fig. 6 the cost is not continuously
decreasing near the equilibrium, although the system is effec-
tively stabilized when the unexpected behavior occurs (the cost
value is less than 0.01). There are three possible explanations
for this. First, in order to speed up the solution process, the
line search (Section II-4) in all examples presented in this
paper was stopped after 10 iterations. While for the majority
of cases 10 iterations were sufficient to satisfy the sufficient
descent condition (11), on some occasions more iterations
were necessary. As a result, a small increase was observed
in the cost in these time steps. Another factor to consider is
numerical tolerance. From the simplified model (9), depending
on the value of the mode insertion gradient, the required λ
value that achieves the sufficient decrease descent could be
smaller than the minimum tolerance of numerical integrators.
This issue appears often near the equilibrium where systems
are more sensitive to the duration of an action. Finally, from
Proposition 2, it is possible that the selected sampling time ts
was not sufficiently small to (recursively) satisfy (14). Since
the open-loop problem in iSAC can be solved quickly and
efficiently, a strategy for selecting ts is to start with small
values and gradually increase ts until (14) is violated.

VI. CONCLUSION

In this paper we presented iSAC, a model-predictive ap-
proach for control of nonlinear systems. As the time horizon
progresses, our method sequences together optimal actions
and synthesizes piecewise continuous control laws. Some key

characteristics of iSAC include: a) analytic solution to the
open-loop problem—there is no need to rely on nonlinear
programming solvers, b) iterative update of the open-loop
solution and c) use of continuous dynamics while incorpo-
rating control constraints without additional overhead. Due to
these points, iSAC leads to computationally efficient solutions.
To establish closed-loop stability, we applied a contractive
constraint on the cost. Compared to methods relying on
terminal region constraints, the contractive constraint alleviates
the need to calculate a terminal region. We also investigated
different control scenarios ranging from feasible and infeasible
trajectory tracking to set point stabilization with or without
external disturbances. Finally, we presented simulation exam-
ples using a variety of challenging systems to demonstrate the
applicability and flexibility of our method.

APPENDIX

A. Proof of Proposition 1

Substituting (7) into the mode insertion gradient formula
given in (6) we get (we omit superscripts for brevity)

dJ

dλ
(t) = Γ(t)

(
Γ(t)TΓ(t) +RT

)−1
Γ(t)T αd

= αd ||Γ(t)||2(Γ(t)TΓ(t)+RT)−1 < 0, (20)

where Γ(t)T = h
(
t, x(t)

)T
ρ(t). The term Γ(t)TΓ(t) produces

a positive semi-definite matrix, and adding R > 0 yields
a positive definite matrix. Because the inverse of a posi-
tive definite matrix is positive definite, the quadratic norm
||Γ(t)||2(Γ(t)TΓ(t)+RT)−1 is positive for Γ(t)T 6= 0 (Assump-
tion 5). Therefore, if αd < 0, dJdλ (t) < 0.

B. Proof of Proposition 2

From Proposition 1 and (9), we know that
J
(
x∗i (·)

)
− J

(
xdef
i (·)

)
= ∆J < 0 for each λ in a

neighborhood around λ→ 0+ if αd < 0. By continuity
assumptions for m and l, C in (14) is continuous with respect
to ts since ts is part of the integral limits. Thus, it follows
that there exists a sufficiently small ts such that ∆J < C.

C. Proof of Proposition 3

The open-loop problem B is solved by following the same
four sequential steps as in the open-loop problem P in
Section II. The only difference is that in the solution process
of B, the superscripts nom are replaced by def. To show that
u∗i (t) exists, we will show that each of the four solution steps
has a solution:

1) The first step in Section II-1 involves calculating the
solutions to (1) and (5). Since the default control is in general
discontinuous, if solutions are interpreted as sample and hold
(CLSS) solutions (see [62]), existence follows directly from
Assumptions 2, 3.

2) In the second step our method in Section II-2 calculates
the optimal action schedule u∗s by minimizing (6). Because (6)
is convex with a continuous first variation from Assumptions
1-3, solutions (7) exist and are unique, which is also both
necessary and sufficient for global optimality of (6).

3) In the third step in Section II-3 the process selects τA and
uA by minimizing (8). Because τA ∈ [ti, ti + T] and (8) is in
general piecewise continuous (and thus bounded), a solution
to this one-dimensional problem exists.

4) Finally, from Proposition 2, the backtracking process
in Section II-4 is guaranteed to find a duration that satisfies
condition (14) for sufficiently small ts.

Since all four subproblems have solutions, the open-loop
solution u∗i (t) exists.

D. Proof of Theorem 1

The proof has two parts; Lemma 1 shows that the integral∫ t
t0
M
(
x(s)

)
ds is bounded for t → ∞ (see Assumption 3).

The latter is used in conjunction with a well-known lemma
found, e.g., in [63], [64], to prove asymptotic convergence in
the second part of the proof.

First, define

V
(
α, β, x(·)

)
=

∫ β

α

l
(
s, x(s)

)
ds+m

(
β, x(β)

)
. (21)

Consider the horizon interval [ti, ti + T]. Let u∗i (t)
be the solution to the open-loop problem B(ti, xi)
and x∗i (t) the corresponding state trajectory. Clearly,
V
(
ti, ti + T, x∗i (·)

)
= J

(
x∗i (·)

)
. Then, for t ∈ [ti, ti + T]

V
(
t, ti + T, x∗i (·)

)
= V

(
ti, ti + T, x∗i (·)

)
−
∫ t

ti

l
(
s, x∗i (s)

)
ds. (22)

Based on the above, we now present the following lemma.
Lemma 1: For small ts, all t ∈ [ti, ti + T] and all i ∈ N∫ t

t0

M
(
x(s)

)
ds ≤ V

(
t0, t0 + T, x∗0(·)

)
− V

(
t, ti + T, x∗i (·)

)
, (23)

with

x(t) =

{
xcl(t) for t < ti

x∗i (t) else
.

Proof: From (11) and Assumption 3 we get that

V
(
ti, ti + T, x∗i (·)

)
− V

(
ti−1, ti−1 + T, x∗i−1(·)

)
≤ −

∫ ti

ti−1

M
(
x∗i−1(s)

)
ds (24)

holds in [ti, ti + T] for sufficiently small ts (Proposition 2).
Using the corresponding inequalities from the previous time
steps until [t0, t0 + T] and the fact that the open-loop solution
u∗i (·) is only applied in [ti, ti+1] we can write∫ ti

t0

M
(
xcl(t)

)
ds ≤ V

(
t0, t0 + T, x∗0(·)

)
− V

(
ti, ti + T, x∗i (·)

)
. (25)

Also, from (22) we have∫ t

ti

M
(
x∗i (s)

)
ds ≤ V

(
ti, ti+T, x

∗
i (·)
)

− V
(
t, ti + T, x∗i (·)

)
. (26)

Adding (25) and (26) leads to (23) and Lemma 1 is proved.

From Lemma 1, because V
(
t, ti + T, x∗i (·)

)
≥ 0 and M

is positive definite, we can deduce that
∫ t
t0
M
(
x(s)

)
ds is

bounded for t→∞. We also have that x∗i (·), and thus xcl(·),
are bounded and from the properties of f , ẋ∗i (·) and ẋcl(·)
are bounded as well. These facts combine with the following
well-known lemma to prove asymptotic convergence.

Lemma 2: Let x : R+ → X be an absolutely continuous
function and M : X → R+ be a continuous, positive definite
function (0 ∈ X). If

||x(·)||L∞(R+) <∞,
||ẋ(·)||L∞(R+) <∞, and

lim
T→∞

∫ T

0

M
(
x(t)

)
dt <∞

then x(t)→ 0 as t→∞.
Proof: The proof can be found, e.g., in [63], [64].

Theorem 1 is proved.

E. Proof of Theorem 2

We will show that, for all i, there exist positive constants
a, b, c, such that
1. a||x∗i ||2 ≤ J

(
ti, x

∗
i (·)
)
≤ b||x∗i ||2

2. J
(
ti, x

∗
i (·)
)
− J

(
ti−1, x

∗
i−1(·)

)
≤ −c||x∗i−1||2.

Using Assumption 4, we can find a constant d > 0 such
that

||x∗i (t)|| ≤ d||x∗i ||, ∀t ∈ [ti, ti + T], i ∈ Z+ (27)

with x∗i = x∗i (ti). Since u is constrained, this is always true
except for systems with finite escape times which are already
ruled out from Assumption 4.
• Upper bound on J

(
ti, x

∗
i (·)
)
: From (16) and (27) we have

J
(
ti,x
∗
i (·)
)
≤ 1

2
Tλmax(Q)d2||x∗i ||2 +

1

2
λmax(P1)d2||x∗i ||2

=
d2

2

(
Tλmax(Q) + λmax(P1)

)
||x∗i ||2 = b||x∗i ||2. (28)

• Lower bound on J
(
ti, x

∗
i (·)
)
: Using (27), the reverse

triangle inequality and ||f || ≤ ξ||x|| we have

||x∗i (t)|| ≥ ||x∗i || −
∫ t

ti

||f || dτ

≥ ||x∗i || −
∫ t

ti

ξ||x∗i (τ)|| dτ

≥ [1− ξd(t− ti)]||x∗i ||.

It then follows, for example, that

||x∗i (t)|| ≥
||x∗i ||

2
for t ∈

[
ti, ti +

1

2ξd

]
. (29)

Thus, we have two cases to consider:
1) ti + T ≤ ti + 1

2ξd , or T ≤ 1
2ξd .

In this case,

J
(
ti, x

∗
i (·)
)
≥ 1

2

∫ ti+T

ti

λmin(Q)||x∗i (t)||2 dt

+
1

2
λmin(P1)||x∗i (ti + T)||2

or

J
(
ti, x

∗
i (·)
)
≥ 1

8
Tλmin(Q)||x∗i ||2. (30)

2) ti + T ≥ ti + 1
2ξd , or T ≥ 1

2ξd .
In this case

J
(
ti, x

∗
i (·)
)
≥ 1

2

∫ ti+
1

2ξd

ti

λmin(Q)||x∗i (t)||2 dt

+
1

2
λmin(P1)||x∗i (ti + T)||2

or

J
(
ti, x

∗
i (·)
)
≥ 1

16ξd
λmin(Q)||x∗i ||2. (31)

Thus, it follows from (30), (31) that

J
(
ti, x

∗
i (·)
)
≥ min

{
1

8
Tλmin(Q),

1

16ξd
λmin(Q)

}
||x∗i ||2

= a||x∗i ||2. (32)

• Upper bound on J
(
ti, x

∗
i (·)
)
−J

(
ti−1, x

∗
i−1(·)

)
: From (11)

and (29) we have the following two cases to investigate.
1) ti ≤ ti−1 + 1

2ξd , or ts ≤ 1
2ξd .

In this case,

J
(
ti, x

∗
i (·)
)
− J

(
ti−1, x

∗
i−1(·)

)
(33)

≤ −
∫ ti

ti−1

λmin(Q)||x∗i−1(t)||2 dt ≤ −1

4
tsλmin(Q)||x∗i−1||2.

2) ti ≥ ti−1 + 1
2ξd , or ts ≥ 1

2ξd .
In this case

J
(
ti, x

∗
i (·)
)
−J
(
ti−1, x

∗
i−1(·)

)
≤ −

∫ ti−1+ 1
2ξd

ti−1

λmin(Q)||x∗i−1(t)||2 dt

≤ − 1

8ξd
λmin(Q)||x∗i−1||2. (34)

Thus, it follows from (33), (34) that

J
(
ti, x

∗
i (·)
)
− J

(
ti−1, x

∗
i−1(·)

)
(35)

≤ −min

{
1

4
tsλmin(Q),

1

8ξd
λmin(Q)

}
||x∗i−1||2 = −c||x∗i−1||2.

Theorem 2 is proved.

F. Proof of Theorem 3

The difference between the dynamics of the plant and the
model used by iSAC for the control computation at each time
step i and t ∈ [ti, ti + T] is given by

ẋpi (t)− ẋ
∗
i (t) = f(t, xp, u∗i)− f(t, x∗i , u

∗
i) + ηi(t). (36)

The states of this model are updated using feedback at every
ti, so x∗i (ti) = xp(ti) for all i. Then, we can integrate (36) to
obtain

xpi (t)− x
∗
i (t)

=

∫ t

ti

[f
(
s, xp(s), u∗i (s)

)
− f

(
s, x∗i (s), u

∗
i (s)

)
] + ηi(s) ds.

Therefore, using Assumption 6, we can write

||xpi (t)− x
∗
i (t)||

≤
∫ t

ti

||f
(
s, xp(s), u∗i (s)

)
− f

(
s, x∗i (s), u

∗
i (s)

)
|| ds

+ δiT := ∆i(t). (37)

The terminal cost m and the running cost l are Lipschitz
continuous from Assumption 3, so we can use this relationship
to find the expected cost discrepancy:

||J
(
xpi (t)

)
− J

(
x∗i (t)

)
||

≤
∫ ti+T

ti

||l
(
s, xpi (s)

)
− l
(
s, x∗i (s)

)
|| ds

+ ||m
(
ti + T, xpi (ti + T)

)
−m

(
ti + T, x∗i (ti + T)

)
||

≤
∫ ti+T

ti

L1∆i(ti + T) ds+ L2∆i(ti + T)

≤ ∆i(ti + T)(L1T + L2). (38)

with Lipschitz constants L1 and L2. Using (38) one can show
that the upper bound on the contractive constraint (11) will
inevitably be higher due to the effect of the disturbance.
Specifically, from (11) and (38)

J
(
x∗i (·)

)
− J

(
x∗i−1(·)

)
≤ −

∫ ti

ti−1

l
(
t, x∗i−1(t)

)
dt

+ (L1T + L2)[∆i(ti + T) + ∆i−1(ti−1 + T)]. (39)

This practically means that the cost is allowed to increase for
as long as the disturbance is active.

The following Lemma is the last step before proving the
theorem.

Lemma 3: As t→∞, ∆i(t)→ 0 in (37).
Proof: From Assumption 6, δi → 0 as i→∞. Also,

using the fact that x∗i (ti) = xp(ti) and Assumption 2,
xpi (t)→ x∗i (t) as i→∞.
We can now follow the steps in the proof of Theorem 1 to
show asymptotic stability under the disturbance η(t). First,
we can use Assumption 3, (39) and Lemma 3 to show that∫ t
t0
M
(
x(s)

)
ds is bounded for t→∞ by following the same

procedure as in Lemma 1. Asymptotic stability then follows
directly from Lemma 2. The process is left as an exercise to
the reader.

Theorem 3 is proved.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under awards CNS-1426961 and DCSD-
1662233. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[2] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[3] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-
form optimal control for nonlinear and nonsmooth systems,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1196–1214, 2016.

[4] A. Mavrommati, A. Ansari, and T. Murphey, “Optimal control-on-
request: An application in real-time assistive balance control,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 5928–5934.

[5] E. Tzorakoleftherakis, A. Ansari, A. Wilson, J. Schultz, and T. D. Mur-
phey, “Model-based reactive control for hybrid and high-dimensional
robotic systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 431–438, 2016.

[6] T. Fan and T. Murphey, “Online feedback control for input-saturated
robotic systems on Lie groups,” in Proceedings of Robotics: Science
and Systems, 2016.

[7] G. Mamakoukas, M. A. MacIver, and T. D. Murphey, “Sequential action
control for models of underactuated underwater vehicles in a planar ideal
fluid,” in American Control Conference (ACC), 2016, 2016, pp. 4500–
4506.

[8] M. Egerstedt, Y. Wardi, and H. Axelsson, “Optimal control of switching
times in hybrid systems,” in IEEE International Conference on Methods
and Models in Automation and Robotics, 2003.

[9] ——, “Transition-time optimization for switched-mode dynamical sys-
tems,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp.
110–115, 2006.

[10] L. S. Pontryagin, Mathematical Theory of Optimal Processes. CRC
Press, 1987.

[11] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy
control,” Automatica, vol. 36, no. 2, pp. 287–295, 2000.

[12] F. Lizarralde, J. T. Wen, and L. Hsu, “Feedback stabilization of nonlinear
systems: a path space iteration approach,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), 1997, pp. 4022–4023.

[13] M. da Silva, Y. Abe, and J. Popović, “Interactive simulation of stylized
human locomotion,” ACM Transactions on Graphics (TOG), vol. 27,
no. 3, p. 82, 2008.

[14] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential
dynamic programming,” in Advances in Neural Information Processing
Systems, 2008, pp. 1465–1472.

[15] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012, pp. 4906–4913.

[16] H. Chen and F. Allgöwer, “Nonlinear model predictive control schemes
with guaranteed stability,” in Nonlinear Model-based Process Control.
Springer, 1998, pp. 465–494.

[17] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Springer,
2011.

[18] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[19] L. T. Biegler, “A survey on sensitivity-based nonlinear model predictive
control,” in Proceedings of the IFAC International Symposium on
Dynamics and Control of Process Systems, 2013, pp. 499–510.

[20] H. Chen and F. Allgower, “A quasi-infinite horizon nonlinear model pre-
dictive control scheme with guaranteed stability,” in European Control
Conference (ECC), 1997, pp. 1421–1426.

[21] F. A. Fontes, “A general framework to design stabilizing nonlinear model
predictive controllers,” Systems & Control Letters, vol. 42, no. 2, pp.
127–143, 2001.

[22] J. H. Lee, “Model predictive control: review of the three decades
of development,” International Journal of Control, Automation and
Systems, vol. 9, no. 3, pp. 415–424, 2011.

[23] M. Hale, Y. Wardi, H. Jaleel, and M. Egerstedt, “Hamiltonian-based
algorithm for optimal control,” arXiv preprint arXiv:1603.02747, 2016.

[24] G. Mamakoukas, M. Maciver, and T. D. Murphey, “Feedback synthesis
for underactuated systems using sequential second-order needle varia-
tions,” International Journal of Robotics Research, 2018.

[25] T. M. Caldwell and T. D. Murphey, “Projection-based switched system
optimization: Absolute continuity of the line search,” in Proceedings of
the IEEE Conference on Decision and Control (CDC), 2012, pp. 699–
706.

[26] S. L. de Oliveira Kothare and M. Morari, “Contractive model predic-
tive control for constrained nonlinear systems,” IEEE Transactions on
Automatic Control, vol. 45, no. 6, pp. 1053–1071, 2000.

[27] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE Control Systems, vol. 22, no. 1, pp.
44–52, 2002.

[28] F. Xie and R. Fierro, “First-state contractive model predictive control of
nonholonomic mobile robots,” in American Control Conference (ACC),
2008, pp. 3494–3499.

[29] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini,
“Model predictive control schemes for consensus in multi-agent systems
with single-and double-integrator dynamics,” IEEE Transactions on
Automatic Control, vol. 54, no. 11, pp. 2560–2572, 2009.

[30] W.-H. Chen, J. O’Reilly, and D. J. Ballance, “On the terminal region
of model predictive control for non-linear systems with input/state
constraints,” International Journal of Adaptive Control and Signal
Processing, vol. 17, no. 3, pp. 195–207, 2003.

[31] S. Yu, H. Chen, C. Böhm, and F. Allgöwer, “Enlarging the terminal
region of NMPC with parameter-dependent terminal control law,” in
Nonlinear Model Predictive Control. Springer, 2009, pp. 69–78.

[32] P. A. Parrilo, “Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization,” Ph.D. dissertation,
California Institute of Technology, 2000.

[33] P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model
predictive control (feasibility implies stability),” IEEE Transactions on
Automatic Control, vol. 44, no. 3, pp. 648–654, 1999.

[34] A. Jadbabaie, J. Yu, and J. Hauser, “Unconstrained receding-horizon
control of nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 46, no. 5, pp. 776–783, 2001.

[35] F. ACC Fontes, “Discontinuous feedbacks, discontinuous optimal con-
trols, and continuous-time model predictive control,” International Jour-
nal of Robust and Nonlinear Control, vol. 13, no. 3-4, pp. 191–209,
2003.

[36] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2011, pp. 2520–2525.

[37] M. Karpenko, S. Bhatt, N. Bedrossian, A. Fleming, and I. Ross, “Flight
implementation of pseudospectral optimal control for the TRACE space
telescope,” in AIAA Guidance, Navigation, and Control Conference,
2011, pp. 65–70.

[38] F. Fahroo and I. M. Ross, “Pseudospectral methods for infinite-horizon
nonlinear optimal control problems,” Journal of Guidance, Control, and
Dynamics, vol. 31, no. 4, pp. 927–936, 2008.

[39] N. S. Bedrossian, S. Bhatt, W. Kang, and I. M. Ross, “Zero-propellant
maneuver guidance,” IEEE Control Systems, vol. 29, no. 5, 2009.

[40] C.-W. Tao, J.-S. Taur, T. W. Hsieh, and C. Tsai, “Design of a fuzzy
controller with fuzzy swing-up and parallel distributed pole assignment
schemes for an inverted pendulum and cart system,” IEEE Transactions
on Control Systems Technology, vol. 16, no. 6, pp. 1277–1288, 2008.

[41] E. Tzorakoleftherakis and T. D. Murphey, “Controllers as filters: Noise-
driven swing-up control based on maxwell’s demon,” in Proceedings of
the IEEE Conference on Decision and Control (CDC), 2015, pp. 4368–
4374.

[42] T. Albahkali, R. Mukherjee, and T. Das, “Swing-up control of the
pendubot: an impulse–momentum approach,” IEEE Transactions on
Robotics, vol. 25, no. 4, pp. 975–982, 2009.

[43] X. Xin and T. Yamasaki, “Energy-based swing-up control for a remotely
driven acrobot: Theoretical and experimental results,” IEEE Transactions
on Control Systems Technology, vol. 20, no. 4, pp. 1048–1056, 2012.

[44] X. Xin and M. Kaneda, “Analysis of the energy-based swing-up control
of the acrobot,” International Journal of Robust and Nonlinear Control,
vol. 17, no. 16, pp. 1503–1524, 2007.

[45] R. W. Brockett et al., “Asymptotic stability and feedback stabilization,”
Differential Geometric Control Theory, vol. 27, no. 1, pp. 181–191,
1983.

[46] C. Samson and K. Ait-Abderrahim, “Feedback control of a nonholo-
nomic wheeled cart in cartesian space,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 1991,
pp. 1136–1141.

[47] C. C. De Wit and O. Sordalen, “Exponential stabilization of mobile
robots with nonholonomic constraints,” IEEE Transactions on Automatic
Control, vol. 37, no. 11, pp. 1791–1797, 1992.

[48] A. Astolfi, “On the stabilization of nonholonomic systems,” in Proceed-
ings of the IEEE Conference on Decision and Control (CDC), 1994, pp.
3481–3486.

[49] C.-S. Chiu, K.-Y. Lian, and P. Liu, “Fuzzy gain scheduling for parallel
parking a car-like robot,” IEEE Transactions on Control Systems Tech-
nology, vol. 13, no. 6, pp. 1084–1092, 2005.

[50] A. De Luca, G. Oriolo, and M. Vendittelli, “Stabilization of the unicycle
via dynamic feedback linearization,” in IFAC International Symposium
on Robot Control, 2000, pp. 397–402.

[51] D. Gu and H. Hu, “A stabilizing receding horizon regulator for nonholo-
nomic mobile robots,” IEEE Transactions on Robotics, vol. 21, no. 5,
pp. 1022–1028, 2005.

[52] J. Hauser, S. Sastry, and G. Meyer, “Nonlinear control design for slightly
non-minimum phase systems: application to v/stol aircraft,” Automatica,
vol. 28, no. 4, pp. 665–679, 1992.

[53] S.-L. Wu, P.-C. Chen, C.-H. Hsu, and K.-Y. Chang, “Gain-scheduled
control of pvtol aircraft dynamics with parameter-dependent distur-
bance,” Journal of the Franklin Institute, vol. 345, no. 8, pp. 906–925,
2008.

[54] F. Lin, W. Zhang, and R. D. Brandt, “Robust hovering control of a pvtol
aircraft,” IEEE Transactions on Control Systems Technology, vol. 7,
no. 3, pp. 343–351, 1999.

[55] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode tech-
niques applied to an indoor micro quadrotor,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2005, pp.
2247–2252.

[56] A. E. C. D. Cunha, “Benchmark: Quadrotor attitude control,” in Pro-
ceedings of the International Workshop on Applied Verification for
Continuous and Hybrid Systems (ARCH), vol. 34, 2015, pp. 57–72.

[57] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a large
quadrotor robot,” Control Engineering Practice, vol. 18, no. 7, pp. 691–
699, 2010.

[58] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control tech-
niques applied to an indoor micro quadrotor,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 3, 2004, pp. 2451–2456.

[59] E. Fresk and G. Nikolakopoulos, “Full quaternion based attitude control
for a quadrotor,” in European Control Conference (ECC), 2013, pp.
3864–3869.

[60] D. Lee, H. J. Kim, and S. Sastry, “Feedback linearization vs. adaptive
sliding mode control for a quadrotor helicopter,” International Journal
of Control, Automation and Systems, vol. 7, no. 3, pp. 419–428, 2009.

[61] M. Karpenko, S. Bhatt, N. Bedrossian, A. Fleming, and I. Ross, “First
flight results on time-optimal spacecraft slews,” Journal of Guidance,
Control, and Dynamics, vol. 35, no. 2, pp. 367–376, 2012.

[62] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin, “Asymp-
totic controllability implies feedback stabilization,” IEEE Transactions
on Automatic Control, vol. 42, no. 10, pp. 1394–1407, 1997.

[63] H. Michalska and R. Vinter, “Nonlinear stabilization using discontinuous
moving-horizon control,” IMA Journal of Mathematical Control and
Information, vol. 11, no. 4, pp. 321–340, 1994.

[64] I. Barbalat, “Systemes déquations différentielles doscillations non
linéaires,” Rev. Math. Pures Appl., vol. 4, no. 2, pp. 267–270, 1959.

Emmanouil Tzorakoleftherakis received the joint
B.S./M.S. degree in electrical and computer engi-
neering from University of Patras, Greece in 2012,
and the M.S. and Ph.D. degrees in mechanical engi-
neering from Northwestern University, Evanston, IL,
USA, in 2015 and 2017 respectively. His interests
include control and robotics.

Todd D. Murphey received the B.S. degree in math-
ematics from University of Arizona, Tucson, AZ,
USA, and the Ph.D. degree in control and dynamical
systems from California Institute of Technology,
Pasadena, CA, USA.

He is an Associate Professor of Mechanical Engi-
neering with Northwestern University Evanston, IL,
USA. His laboratory is part of the Neuroscience and
Robotics Laboratory, and his research interests in-
clude robotics, control, and computational methods
for biomechanical systems and neuroscience. He has

received honors including the National Science Foundation CAREER award
in 2006, membership in the 2014-2015 DARPA/IDA Defense Science Study
Group, and Northwestern’s Professorship of Teaching Excellence.

