
1

Algorithmic Design for Embodied Intelligence
in Synthetic Cells

Ana Pervan, Todd D. Murphey

Abstract—In nature, biological organisms jointly evolve both
their morphology and their neurological capabilities to improve
their chances for survival. Consequently, task information is
encoded in both their brains and their bodies. In robotics, the
development of complex control and planning algorithms often
bears sole responsibility for improving task performance. This
dependence on centralized control can be problematic for systems
with computational limitations, such as mechanical systems and
robots on the microscale. In these cases we need to be able
to offload complex computation onto the physical morphology
of the system. To this end, we introduce a methodology for
algorithmically arranging sensing and actuation components into
a robot design while maintaining a low level of design complexity
(quantified using a measure of graph entropy), and a high
level of task embodiment (evaluated by analyzing the Kullback-
Leibler divergence between physical executions of the robot
and those of an idealized system). This approach computes an
idealized, unconstrained control policy which is projected onto
a limited selection of sensors and actuators in a given library,
resulting in intelligence that is distributed away from a central
processor and instead embodied in the physical body of a robot.
The method is demonstrated by computationally optimizing a
simulated synthetic cell.

Note to Practitioners: Abstract—As robotic systems approach
the micron scale, designing them to be fully autonomous will
rely less on on-board computation and more on component
selection and design. In this paper we are motivated by synthetic
cells—microscopic devices with limited actuation, sensing, and
memory components. We apply tools from optimal control, graph
theory, and information theory to develop a methodology for
designing the electronic circuitry that relates actuation to sensing
using memory and physically-realizable transformations (e.g.,
simple logical operators). Results indicate that encoding task
information in the physical body of a robot via a simple control
policy leads to successful task performance. In future work, we
plan to apply these methods to different robotic systems and to
experimentally employ these designs on actual synthetic cells.

Index Terms—Design methodology, morphological operations,
information theory

I. INTRODUCTION

EMBODIED intelligence, the coupling of a system’s con-
troller and morphology, has been studied for quite some

time [7], [32], [33], often in the context of biologically in-
spired systems [16], [37], [40]. Recently, some significant and
comprehensive efforts have been made toward implementing
components of embodiment in robotic applications [3], [21].
But still, most robot designers opt for approaches using cen-
tralized computations to manipulate existing robotic platforms,

A. Pervan and T. D. Murphey are with the Department of Mechanical
Engineering, Northwestern University, Evanston, IL, 60208 USA. e-mail:
anapervan@u.northwestern.edu

Manuscript received June 24, 2019; revised May 27, 2020.

Fig. 1: A simple example of a control policy. Here the state
space is a two dimensional 5 × 5 grid and the desired state
is in the upper right of the state space. At each state, the
suitable control is indicated by its assigned color. (a) A simple
control policy with only three different states in the finite state
machine. (b) A complex control policy, with fifteen different
states in the finite state machine. Both achieve the task with
different implementations.

rather than offloading some of the computational effort onto
a robot’s morphology. In this work, we are motivated by a
system that is computationally limited but flexible in terms
of physical design, and is therefore an ideal candidate to take
advantage of embodied intelligence.

The main challenge with embedding control information in
material properties is the contradiction between continuous,
often complex, classical control and the discrete, simpler
capabilities that a materials-based system is likely to have.
A conflict exists between equipping a robot with what is
sufficient and what is necessary—what can enable a robot
to succeed (and is likely complex) and what is minimally
required for it to achieve its goal (and is necessarily simple).

This is especially evident when designing for robots without
any on-board, CPU-based, traditional computational capabil-
ities. Some robotic systems employ embodied intelligence
(which we’ll also refer to as embodied computation) to reduce
weight and energy—for example fully mechanical devices, like
passive dynamic walkers [14], [38] or those used in prosthetic
limbs [28]—while others must necessarily resort to embodied
computation because of scale, for example, robots on the
micro- or nano-scales [20], [24].

ar
X

iv
:2

00
6.

07
24

4v
1 

 [
cs

.R
O

] 
 1

2 
Ju

n 
20

20



2

We first examine the relationship between control policy de-
sign and physical robot body design. A control policy assigns
an action for a system at each time or state. Symbolic control
policies have been useful in robot control and motion planning
[4], [27] for systems with limited computational power [34].
An example is shown in Fig. 1, where the system consists of
three possible control modes: move right (blue), move up (red),
and stay still (white) and its goal is to navigate to the upper
right corner of the grid world. A simple robot placed in this
environment with one of these policies in its memory would
be able to achieve its task without any traditional computation,
replacing logical operators such as inequalities with physical
comparators to relate sensor states to control actions.

Figure 1 illustrates the difference in complexity between
these two policies. The policy in Fig. 1 (a) requires a combi-
nation of sensors that are capable of differentiating between
three different regions of the state space, and the policy in
Fig. 1 (b) requires sensors that are able to discern between
fifteen different regions. It is simpler to physically implement
the robot design implied by the control policy in Fig. 1 (a)
than the policy in Fig. 1 (b).

We pose the physical design problem as the projection of
a policy onto an admissible set of physical sensor-actuator
interconnections, the complexity of which must be managed
during policy iteration. This complexity is a measure of logical
interconnections between sensor states and control modes
(which correspond to arrows on the graphs in Fig. 1). The
policy projection will be performed both by computing a con-
trol policy assuming discrete control modes (and continuous
sensing) and then projecting onto a discrete sensor set, and
by generating a control policy assuming discrete sensing (and
unconstrained control authority) and then projecting onto a set
of discrete control modes.

After reviewing related work in Section II, this methodology
will be explored in terms of an extended example. The
example system, called a synthetic cell, will be introduced
in Section III. The primary contributions of this work can be
summarized as follows:

1) Quantitative definitions are given for design complexity
and task embodiment, described in Section IV.

2) An iterative algorithm is developed in Section V, and
is used to create control policies with low design com-
plexity while increasing task information.

3) A projection operator is presented in Section VI, which
projects a low complexity control policy onto a physi-
cally realizable set of sensor-actuator interconnections.

4) A methodology for algorithmically organizing compo-
nents for robot design is established. The procedure
begins either with a control policy based on a discrete
set of actuators (Sec. V) and interconnects them with
different possible sets of sensors (Sec. VI) or begins
with a control policy generated with a discrete set of
sensors (Sec. VII) and combines them with a selection
of discrete actuators (Sec. VIII).

These are supported by simulations of synthetic cells. A
version of this work was published in a conference paper [31].

II. RELATED WORK

Policy Optimization while Evolving Morphology (POEM)
[3], evolves the physical body of a continuously controlled
reinforcement learning agent and analyzes the relative impor-
tance of body changes using cooperative game theory. The
POEM method was shown to produce stronger agents than
optimizing the control policy alone. A common motivation of
the work in [3] and this paper is the theory that a physical
body that is well-suited to a task is easier, and simpler,
to control (and, in [3], easier to learn to control). In this
work, we characterize design updates in terms of moving
task information from centralized computations in control
calculations to embodied computation in the physical body.

The work in [11], [12], and [13] defines design problems as
relations between functionality, resources, and implementation
and shows that despite being non-convex, non-differentiable,
and noncontinuous, it is possible to create languages and
optimization tools to define and automatically solve design
problems. The optimal solution to a design problem is de-
fined as the solution that is minimal in resources usage, but
provides maximum functionality. We apply this definition by
proposing a min-max problem in which the goal is to minimize
design complexity (representative of the amount of sensors
and actuators required, i.e., the resources), and maximize task
embodiment (i.e., the functionality of the design).

A method for automatically designing action-based sensors
was explored in [19]. This was done by generating a strategy
for a robot task using a planner that assumes perfect sensing,
and using that plan to specify sensors that tell the robot
where to execute each action. The methodology in [19] is very
similar to the work presented in this paper, which also first
develops a control policy assuming perfect sensing (or perfect
actuation) and then specifies discrete sensors (or actuators) that
approximate the original strategy. This paper differs from the
contributions in [19] by taking complexity into account and
by also designing actuators.

Robotic primitives are introduced in [29] as independent
components that may involve sensing or motion, or both.
These are implemented in this work as actuator and sensor
libraries from which we allow our algorithm to choose compo-
nents. Task embodiment, which is defined in Sec. IV, parallels
the dominance relation proposed in [29] that compares robot
systems such that some robots are stronger than others based
on a sensor-centered theory of information spaces.

Similarly, our definition of design complexity (Sec. IV)
parallels an existing notion of conciseness, presented in [30].
The results in [30] are motivated by circumstances with severe
computational limits, specifically addressing the question of
how to produce filters and plans that are maximally concise
subject to correctness for a given task. This is very related
to our goal of finding the simplest way to physically organize
sensors and actuators so that a (computationally limited) robot
can achieve a given task.

The work presented in [23] produces asymptotically optimal
sampling-based methods and proposes scaling laws to en-
sure low algorithmic complexity for computational efficiency.
These algorithms were originally developed for path planning,



3

but we apply similar ideas for generating simple control
policies. The methods described in [23] start with an optimal,
infinite complexity solution, and from that develop simpler
plans. In Sec. V, we start with a zero complexity policy and
move towards more complex, better performing solutions—
while maintaining a level of computational complexity appro-
priate for physical implementations of embodied computation.

III. MOTIVATING EXAMPLE: THE SYNTHETIC CELL

How can we use control principles to organize sensor
components, actuator components, and their interconnections
to create desired autonomous behavior, without relying on tra-
ditional computation? To answer this question we will consider
the extended example of a synthetic cell—a small robot that
only has a finite number of possible sensor and actuator states
and potential pairings between them [25]. The purpose of this
example system is to show a concrete implementation of the
methods in Sections V-VIII, and to illustrate the relationship
between control policy design and physical robot body design.

A synthetic cell is a mechanically designed microscopic de-
vice with limited sensing, control, and computational abilities
[25]; it is essentially an engineered cell. A synthetic cell exists
in a chemical bath and generates movement by interacting
with its environment using chemical inhibitors, and it contains
simple circuits that include minimal sensors and very limited
nonvolatile memory [26]. Such a device is 100µm in size or
less, rendering classical computation using a CPU impossible.
But these simple movement, sensory, and memory elements
can be combined with a series of physically realizable logical
operators to enable a specific task.

For the example in this paper, a synthetic cell operates in a
two dimensional space, and its control authority is the ability
to be attracted toward a specific chemical potential. So at any
location (x, y) the robot may choose a control mode σ ∈
{σ0, σ1, σ2, σ3, σ4, σ5, σ6}, where σ0 is zero control, and the
other six modes are a potential that the synthetic cell can be
attracted to (their locations are shown in Fig. 2), with dynamics

x =


x
ẋ
y
ẏ

 , f(x, u) =


ẋ

sign (xSn−x)
r2n
ẏ

sign (ySn−y)
r2n

 , (1)

where rn is the distance from the synthetic cell to source
n and (xSn

, ySn
) are coordinates of the source locations. Be-

cause of the inverse squared terms in the dynamics, chemical
sources that are nearer to the synthetic cell will be able to
accelerate the cell faster than those that are far away. Boundary
conditions, like those discussed in [8], are necessary to avoid
an infinite acceleration as rn → 0. We included a very small
boundary ε around the chemical source [8], so that the cell
cannot be co-located with the source. The maximum velocity
was also bounded, to mimic terminal velocity in a fluid.

The control synthesis problem is to schedule σ in space
(x, y), based on an objective (in this case, to approach a point
P) specified in a cost function J (2) made up of a running
cost `(x(t), u(t)) (3) and a terminal cost m(x(tf )) (4).

J(x(t), u(t)) =

∫ tf

0

`(x(t), u(t))dt+m(x(tf )). (2)

`(x, u) = (x− xd)TQ(x− xd) + uTRu (3)

m(x) = (x− xd)TP1(x− xd). (4)

For our simulations, we used the parameters: prediction
time horizon T = 0.1s; time step ts = 0.02s; final time
tf = 5s; desired state1 xd = [2 − π

20 , 4 −
π
15 , 0, 0]T ; size

of the source ε = 0.001; maximum velocity vmax = 0.4; cost
weights Q = P1 = diag[10, 10, 0.001, 0.001] and R = 0;
and source locations (xS1 , yS1) = (1, 5), (xS2 , yS2) = (3, 5),
(xS3 , yS3) = (1, 3), (xS4 , yS4) = (3, 3), (xS5 , yS5) = (1, 1),
and (xS6

, yS6
) = (3, 1). The state space, desired point, and

chemical sources are all shown in Fig. 2 (a)

IV. DESIGN COMPLEXITY AND TASK EMBODIMENT

Graph entropy [1], [15] will be used as a measure of design
complexity for comparing robot designs. The complexity of a
control policy is equated with the measure of entropy of its
resulting finite state machine.

A finite state machine consists of a finite set of states
(nodes), a finite set of inputs (edges), and a transition function
that defines which combinations of nodes and edges lead to
which subsequent nodes [35]. The finite set of nodes that
the system switches between are the control modes, and the
edges—inputs to the system which cause the control modes
to change—are the state observations (Fig. 1 (a)).

Finite state machines and their corresponding adjacency
matrices are generated numerically, by simulating a synthetic
cell forward for one time step, and recording control modes
assigned at the first and second states. These control mode
transitions are counted and normalized into probabilities, and
the resulting data-driven adjacency matrix A is used in the
entropy calculation,

h = −
∑
i

A(i) log (A(i)) (5)

which results in a complexity measure h for each robot
design. This measure of complexity is more informative than
other metrics (e.g., simply counting states) because it is a
function of the interconnections between states—which is
what we want to minimize in the physical design.

We define task embodiment as the amount of information
about a task encoded in a robot’s motion (not to be confused
with embodiment found in human-robot interaction [22], [39]).
We focus on this motion-based task information so that the
design update can be characterized in terms of moving task
information from the centralized computations in the control
calculations to embedded computation in the physical body.
One measure that captures how much information one system
encodes about another system is Kullback-Leibler divergence.
Here we measure the K-L divergence between a distribution

1Point P is slightly off center, to avoid adverse effects of symmetry. This
is reflected in the asymmetry of the resulting control policies (e.g., green and
orange not being perfectly even).



4

Fig. 2: (a) The state space and controls for the synthetic cell
example system introduced in Sec. III. At any location in the
state space, the robot is able to choose one of seven different
control modes: attraction to chemical potentials at the six
different sources or zero control. The goal is to reach P . (b) A
control policy for this system generated with discrete controls
and unconstrained sensing. (c) The control policy projected
onto a feasible set of sensor states. (These figures will be
explained in detail in Sec. V and Sec. VI.)

representing the task, P , and a distribution representing the
robot design, Q [6],

DKL (P‖Q) = −
∑

x

P (x) log

(
Q(x)

P (x)

)
. (6)

To define the goal task distribution P , a model predictive
controller (MPC) is used to simulate the trajectories of a robot
with an ideal (centralized, unlimited in sensing (Sec. V) or
actuation (Sec. VII)) controller. The same method is used to
generate a distribution Q that represents the robot design—
this time simulating trajectories using the generated control
policy. Task embodiment is a measure of the difference in
task executions between a robot with an ideal controller and a
resource-limited robot with some embodied intelligence. We
use Eq. (6) to compare the two distributions of trajectories: a
low measure of K-L divergence indicates that the distributions
are similar, and implies a high level of task embodiment, and
therefore a better robot design.

In other words, if a task is well-embodied by a robot, only
a simple control policy is necessary to execute it. Otherwise,
more information, in the form of a more complex control
policy, is required. To construct these control policies, we will
explore two opposing procedures: optimizing with respect to
actuation assuming unconstrained sensing (Sec. V) and pro-
jecting onto discrete sensor sets (Sec. VI), or optimizing with
respect to sensing assuming unconstrained actuation (Sec. VII)
and projecting onto discrete control modes (Sec. VIII).

V. CONTROL POLICY GENERATION: ACTUATION FIRST

The optimization problem of minimizing implementation
complexity while maximizing task embodiment is challenging,
with many reasonable approaches. We use techniques from
hybrid optimal control because of properties described next.

It was proven in [5] that optimal control of switched systems
will result in a chattering solution with probability 1. Chatter-
ing is equivalent to switching control modes very quickly in
time. In the case of these control policies, this translates to
switching between control modes very quickly in state. As a

result, an implementation of the optimal control policy would
be highly complex. Instead of an optimal solution, we are
looking for a “good enough,” near optimal solution that results
in a minimal amount of mode switching. It was shown in
[10] that the mode insertion gradient (MIG), which will be
discussed in Section V-B, has useful properties, including that
when the MIG is negative at a point it is also negative for a
region surrounding that point, and that a solution that switches
modes slowly can be nearly as optimal as a chattering solution.

This section will first review the topics of switched systems
[5], [10], [18] and the use of needle variations for optimization
[17], [36], [41], then develop an algorithm for building low
complexity control policies. The algorithm creates a simple
control policy under the assumption that the system has perfect
knowledge of its state. Mapping this policy to physically
realizable sensors is the subject of Section VI.

A. Switched Systems

A switched-mode dynamical system is typically described
by state equations of the form

ẋ(t) = {fσ(x(t))}σ∈Σ (7)

with n states x : R → X ⊆ Rn, m control modes
Σ = {σ1, σ2, . . . , σm}, and continuously differentiable func-
tions {fσ : Rn+m → Rn}σ∈Σ [17]. Such a system will switch
between modes a finite number of times N in the time interval
[0, tf ]. The control policy for this type of switched system
often consists of a mode schedule containing a sequence of
the switching control modes S = {σ(1), . . . , σ(N)} and a
sequence of switching times T = {τ1, . . . , τN} [18], [41].

In this paper, we will consider a similar switched-mode
system, but instead of implementing an algorithm to optimize
transition times between modes (so that control modes are
scheduled as a function of time σ(t)), we optimize transition
states (so that control modes are a function of state σ(x)).
This way a robot can directly map sensory measurements of
state to one of a finite number of control outputs.

B. Hybrid Optimal Control

Let ` : Rn → R be a continuously differentiable cost
function, and consider the total cost J , defined in Eq. (2).
We use the Mode Insertion Gradient (MIG) [17], [36], [41]
to optimize over the choice of control mode at every state.
The MIG measures the first-order sensitivity of the cost
function (2) to the application of a control mode σi for an
infinitesimal duration λ→ 0+. The MIG di(x) is defined

di(x) =
dJ

dλ+

∣∣∣∣
t

= ρ(t)T (fσi
(x(t))− fσ0

(x(t))). (8)

The adjoint variable ρ is the sensitivity of the cost function

ρ̇ = −(
∂fσ0

∂x
(x(t)))T ρ− (

∂`

∂x
(x(t)))T , ρ(tf ) = 0. (9)

The derivation of these equations is discussed in [17],
[36], [41], but the key point is that di(x) measures how
much inserting a mode σi locally impacts the cost J . When
di(x) < 0, inserting control mode σi at state x will decrease



5

Fig. 3: The curves show σk+1 = σk − γdk for three different
control modes σ1 (blue), σ2 (green), and σ3 (red), where γ is
the line search parameter and the background colors indicate
which mode is assigned to state x in the control policy. As step
size γ increases from top to bottom, the magnitude of γdk(x)
surpasses that of the default control σk(x) (here the default
control is σ1 = 0). (a) Minimum Complexity: Only one control
mode is assigned throughout the entire state space. (b) Low
Complexity: A few control modes are employed, indicating
that the cost function can be reduced by including these
extra control modes. (c) High Complexity: The control mode
switches often but the values are similar, indicating that there is
no significant difference in cost between these modes—despite
the large increase in complexity (i.e., chattering).

the cost throughout a volume around x, meaning a descent
direction has been found for that state. The MIG can be
calculated for each mode so that d(x) is a vector of m mode
insertion gradients: d(x) = [d1(x), ..., dm(x)]T . Therefore the
best actuation mode (i.e., the mode with the direction of
maximum descent) for each state x has the most negative value
in the vector d(x).

As long as the dynamics f(x(t)) are real, bounded, differ-
entiable with respect to state, and continuous in control and
time and the incremental cost, `(x(t)), is real, bounded, and
differentiable with respect to state, the MIG is continuous
[10]. Sufficient descent of the mode insertion gradient is
proven in [10], where the second derivative of the mode
insertion gradient is shown to be Lipschitz continuous under
assumptions guaranteeing the existence and uniqueness of both
x, the solution to the state equation Eq. (7), and ρ, the solution
of the adjoint equation Eq. (9). Combining this with the results
of [23], one can conclude that any sufficiently dense finite
packing will also satisfy the descent direction throughout the
volume of packing. As a result, although chattering policies
may be the actual optimizers, finite coverings will generate de-

Fig. 4: A chattering control policy. The corresponding graph
has entropy h = 7.6035.

scent throughout the state space, resulting in a non-optimal but
“good enough” solution. This provides the required guarantee
that we can locally control the complexity of the policy as a
function of state. This will be discussed further in Sec. V-C.

Figure 3 illustrates differences in complexity as a result of
optimizing using the mode insertion gradient. The magnitude
of the curves is the default control (the control we are
comparing to) minus the step size (a scaling factor, and also the
line search parameter) multiplied by the MIG. Therefore the
magnitude of these plots correspond to the amount of reduction
in cost that can be achieved by locally employing each
control mode at the state x. The complex policy illustrated
in Fig. 3 (c), occurs in simulation of the chattering policy of
Fig. 4. This happens when there is similar utility in employing
more than one mode in a region—there is only marginal
benefit in choosing one control mode over another, which
results in increased complexity.

C. Iterative Algorithm

An algorithm is introduced that can reduce the complexity
of a control policy in as little as one iteration, based on the
work in [9], [10].

Algorithm 1 Iterative Line Search Optimization

Input Parameters: εh, εJ
Initialize Variables: k = 0, γ = 0.001
Choose default policy σ0(x)
Calculate initial cost J(σ0(x))
Calculate initial complexity h0

Calculate initial descent direction d0(x)
hk−1 =∞
while hk < hk−1 + εh

while J(σk(x)) < J(σk+1(x)) + εJ
Re-simulate σk+1(x) = σk(x)− γdk(x)
Compute new cost J(σk+1(x))
Increment step size γ

Calculate new complexity hk+1

Calculate dk+1(x)
k = k + 1

In this line search algorithm the default control may be
chosen arbitrarily, but for simplicity we will show an example
using a null default policy (in Fig. 5).



6

Fig. 5: Control policies for the system in Fig. 2, starting from a null initial policy. (a) The control policies, mapping state to
control for various iterations of the line search. (b) A finite state machine representation of each policy, representative of the
complexity of the system. (c) The design complexity value calculated from Eq. (5). (d) 1000 Monte Carlo simulations illustrate
the results of random initial conditions using the associated control policies. (e) The Kullback-Leibler divergence between the
goal task distribution and the distribution generated by the control policy, from Eq. (6). (f) The average final distance of the
final states of (d) from the desired point P .

The cost J(σk(x)) of the entire policy is approximated
by simulating random initial conditions forward in time and
evaluating the total cost function for time tf . We use cost J
rather than task embodiment DKL as the objective function
because the line search in the algorithm is a function of
d(x) = dJ

dλ . This way, the algorithm decreases the objective
function (plus tolerance εJ ) each iteration. After choosing a
default policy σ0(x), computing the initial cost J(σ0(x)), and
calculating the initial entropy h0 (using Eq. (5)) the initial
descent direction d0(x) is calculated for the set of points in
S, as described in Sec. V-B. A line search [2] is performed
to find the maximum step size γ that generates a reduction in
cost in the descent direction dk(x), and then the policy σk(x)
is updated to the policy σk+1(x). The new design complexity
hk+1 and descent directions dk+1(x) are calculated, and this
is repeated until the cost can no longer be reduced without
increasing the complexity beyond the threshold defined by εh.

The tolerances εh and εJ are design choices based on how
much one is willing to compromise between complexity and
performance. In the example illustrated in Sec. V-D, the value
for εh is significant because it represents the allowable increase
in complexity—how much complexity the designer is willing
to accept for improved task embodiment. For these figures, we

used εh = 1.25 and εJ = 10.

This algorithm enforces low design complexity, meaning it
will not result in chattering outputs. The work in [10] showed
that if d(x(τ)) < 0 then there exists an ε > 0 such that
d(x(t)) < 0 ∀ t ∈ [τ − ε, τ + ε]. Since d(x) is continuous
in x (as discussed in Section V-B), d(x0) < 0 implies that
there exists an ε > 0 such that d(x) < 0 ∀ x ∈ Bε(x0). Note
that each point in Bε(x0) does not necessarily have the same
mode of maximum descent, but they do each have a common
mode of descent.

The MIG serves as a descent direction for a volume in the
state space, rather than just at a point. This property allows
us to assign one control mode throughout a neighborhood
so that instead of choosing the optimal control mode (the
direction of maximum descent) at each point and causing
chattering, we select a good control mode (a direction of
descent) throughout a volume and maintain relative simplicity
in the policy. Figure 4 shows a control policy that is the result
of assigning the optimal control mode at each point, which
results in chattering.



7

D. Examples

Figure 5 begins with an initial control policy of zero control
throughout the state space, and increases design complexity
and task embodiment until the line search algorithm con-
verges to a new control policy. Monte Carlo simulations were
performed with 1000 random initial conditions, shown in
row (d) and the average distance of the final points from the
desired point is shown in row (f). Most interesting are the
trends in rows (c) and (e). These correspond to the min-max
problem posed earlier, in which we attempt to minimize design
complexity, computed using graph entropy (c), and maximize
task embodiment, calculated using K-L divergence (e). The
graph entropy in row (c) increases as the K-L divergence in
row (e) increases. This shows that the entropy must increase
(from 0) to ensure some amount of task embodiment.

Synthetic cells can encode these simplified control policies
by physically combining their movement, sensory, and mem-
ory elements with a series of logical operators, as discussed
next, in Section VI.

VI. PROJECTING POLICIES ONTO DISCRETE SENSORS

Section V described synthetic cells with perfect state mea-
surement. In this section, implementations using discrete sen-
sors will be explored. In some design processes, it may be
possible to create sensors that are able to detect exactly where
a robot should switch between control modes (e.g., a sensor
that can perfectly sense the boundary between the green and
orange regions of the control policy). It is also possible that
a designer may start with a fixed library of sensors, in which
case the state space should first be divided into sensed regions
and then control modes should be assigned, as described in
Section VII. Another possible scenario, and the one we will
examine in this section, is that a designer has many sensors
to choose from, and will want to use some subset of them.

For the synthetic cell example, we will assume discrete
sensing provided by a chemical comparator—a device that
compares the relative strength of two chemical concentrations.
From a given library of sensors, how should the combination
of sensors, actuators, and logical operators be chosen so that
the task is best achieved?

Figure 6 (a) shows five different individual sensors: each
comparing the strength of chemical source 1 to another of
the chemical sources in the environment, and how each of
these sensors is able to divide the state space into two distinct
regions, while Fig. 6 (b) illustrates which regions of the
state space are able to be discerned using these five sensors
combined. Figure 6 (c) shows all possible combinations of
comparators: all six chemical sources compared to each of
their five counterparts, and therefore the maximum granularity
of sensed regions in the state space using this sensor library2.

The optimal scenario would be that these sensor regions
correspond perfectly to the control regions found using the
iterative algorithm in Fig. 5. Since this will almost never be

2Note that some comparators divide the state space in the exact same way,
e.g., comparing chemical sources 1 and 3 results in the same sensed regions
as comparing sources 2 and 4 (this is true for three other sets of comparators:
1/2 = 3/4 = 5/6, 1/5 = 2/6, and 3/5 = 4/6).

Fig. 6: (a) Illustration of five individual chemical comparators,
each comparing the chemical potential of Source 1 with one of
the other sources. Each sensor can tell whether the robot is on
one side of an equipotential—the dotted line—or the other. (b)
Using a combination of the five sensors, a robot is able to sense
which of these 9 regions it is in. (c) Sensor regions resulting
from the combination of all possible chemical comparators in
this environment.

the case, we must attempt to approximate our control policy
using the library of sensors.

Figures 7 and 8 demonstrate how the control policy syn-
thesized in the previous section combines with a library of
sensors to create a physical design. Figure 7 (a) shows two
comparators chosen from the sensor library and how they each
divide the state space into sensed regions and Fig. 7 (b) is
the policy that results from projecting the final control policy
found in the algorithm onto the feasible sensor space.

This projection from continuous sensing to discrete sensing
is done by simulating many rollouts, and finding the best dis-
crete control mode for each sensor region. We pose the ques-
tion: assuming the best possible control (the unconstrained-
sensing control policy from Fig. 5) everywhere else in the
state space, which control mode should be used inside each
individual sensor region?

In each rollout, a trajectory begins from a random initial
condition x within the state space (and therefore a random
initial sensor region r in the set of sensor regions R). As the



8

simulated synthetic cell executes its trajectory, it uses a single
control mode s when it is inside its initial region r, and the
continuous sensing control policy C(x) (from Fig. 5) when it
is outside that initial region r. This is executed for each of the
S control modes, and the cost J of each trajectory is calculated
based on how long it takes the particle to reach the desired
point. In case a trajectory gets stuck in a loop, or for some
other reason never reaches the desired point, the algorithm will
break the loop after imax increments, and record a large cost
for that control mode and sensor region combination. After N
rollouts, we assign the lowest cost control mode s to each
sensor region r to construct the projected, discrete control
policy D(r). As N →∞, repeated execution of the algorithm
will not change the resulting policy D(r). The projection
algorithm also does not depend on the order of executions,
and can be computed in parallel. An outline of this process
can be found in Algorithm 2.

Algorithm 2 Projection

for each rollout n ∈ N
x = random initial condition
r = initial sensor region of x
i = 0 (increment counter)
for each control mode s ∈ S

while x 6= desired point P
if current sensor region of x = r

u = s
else

u = control from continuous policy C(x)

Update x using dynamics f(x, u)
Update cost J
if i > imax

Break loop and record large cost
Record cost J for each region r and control mode s

Generate discrete policy D(r) = argmin
s

J(r) ∀r ∈ R

Logical operators can be combined with sensory observa-
tions to represent the state space with more fidelity than sen-
sors alone (e.g., a single sensor in Fig. 6 (a))—so that actions
can be associated with combinations of sensory observations
(e.g., Fig. 6 (b)). Figure 7 (c) illustrates the logical diagram
that would be physically encoded in circuitry onto a synthetic
cell so that the policy in Fig. 7 (b) could be executed.

Figure 8 is similar to Fig. 7, but illustrates the physical
design corresponding to the highest fidelity control policy from
the library of comparator sensors. Figure 8 (a) shows each
of the sensors in the library, including the ones that repeat
sensed regions due to the symmetry in this environment. The
projected control policy shown in Fig. 8 (b) and Fig. 8 (c)
illustrates the logic of the physical circuitry.

It is notable that the designs in Figures 7 and 8 are quite
dissimilar. Figure 9 shows how each of the physically feasible
designs compare to each other, to another physically feasible
design, and to the control policy with perfect knowledge of
state. The high-fidelity design in the middle of Fig. 9 captures
much of the structure of the sensor-agnostic policy, and the

Fig. 7: Low-fidelity Design. (a) Two sensors. Left: comparing
chemical Sources 1 and 2 divides the state space into left and
right. Right: comparing Sources 1 and 5 divides the space
into top and bottom. (b) Control policy from Fig. 5 projected
onto the sensed regions. (c) Logical decision diagram for this
system. (d) Circuit diagram for physical synthetic cell design.

Fig. 8: High-fidelity Design. (a) Ten distinct sensors. The
equipotential lines demonstrate how the device can use chem-
ical comparators to estimate its location in the environment.
(b) Control policy from Fig. 5 projected onto the sensed
regions. (c) Logical decision diagram for this system. (d)
Circuit diagram for physical synthetic cell design.



9

Fig. 9: Left: The policy generated when perfect knowledge of state was assumed. Right: A high-fidelity design using all of
the (10 distinct) sensors in the sensor library, as shown in Fig. 8. A medium-fidelity design, using five sensors. A low-fidelity
design, using only two of the sensors from the sensor library, as shown in Fig. 7.

results are evident in the relatively low K-L divergence. The
medium-fidelity design uses fewer sensors than the high-
fidelity one and consequently does not embody the task
quite as well. The low-fidelity design has the highest K-
L divergence, corresponding to the worst task performance.
But, depending on the goals of the designer, it’s possible
that even this task performance is good enough to sufficiently
achieve the goal, and a synthetic cell would be designed in
this simplest form.

VII. CONTROL POLICY GENERATION: SENSING FIRST

The main objective of this paper has been to encode
task information in material properties to produce a simple,
physically feasible synthetic cell design that will best achieve
a task. We have specified this problem statement to include
a set library of sensors (chemical comparators) and actuators
(attraction to chemical sources), and in Sections V and VI we
discussed taking a finite set of control modes, finding a control
policy using those discrete control modes and assuming perfect
sensing, and then projecting that policy onto discrete sensors.
But there may be cases where a robot designer has good reason
to solve this problem in the opposite order.

In this section, we will discuss generating a control policy
with discrete sensors and assuming continuous control author-
ity, and then projecting this policy onto discrete control modes.

Figure 10 (a) shows the (x, y) state space divided into 32
regions using chemical comparators. To compute a control
policy assuming continuous control capabilities, we use the
same type of control authority as the previous sections (the
synthetic cell being attracted to a chemical potential) but the
location of that chemical potential is no longer restricted to a
few fixed positions.

Figure 11 shows an RGB (red, green, blue) color gradient
that represents all possible locations of a chemical source in
this system. The value of red is increased as the x location of
a potential source increases (i.e., moves from left to right)
and the value of blue is increased as the position of the
chemical potential increases in the y direction (i.e., moves
from the bottom to the top). The environment contains a
constant amount of green, so where x and y are both small,
the color green is most visible (e.g., in the bottom left corner,
at (x = 0, y = 0)). This color-based representation of (x, y)
locations of potential sources allows us to illustrate continuous
control authority.

A control policy was generated using the discrete sensor
regions shown in Fig. 10 (a) and the continuous control
shown on the left of Fig. 11. The resulting policy is shown
in Fig. 10 (b). This was computed using rollouts: for each
sensor region, a control mode (i.e., a location for a chemical
potential to be placed) was chosen that would minimize the
cost of trajectories starting in that region, and its location is



10

Fig. 10: (a) Combinations of ten discrete sensors yield 32
distinct regions in the state space. (b) Control policy generated
with discrete sensing and continuous control authority (chem-
ical sources placed anywhere in the environment). (c) Control
policy projected onto discrete control modes.

illustrated by the color of each region. The left of Fig. 12
shows the performance of this policy.

Note that we are using the same sensor regions (divided
by equipotential lines from Fig. 6) as in the last section,
even though we are choosing new locations for the chemical
potentials. On synthetic cells, the ability to detect and compare
specific chemicals (as a chemical comparator does) and the
ability to be attracted to a certain chemical (resulting in
locomotion) are distinct and unrelated. There might be many
chemical stimuli in an environment that a synthetic cell can
use for state estimation which have no affect at all on a
cell’s actuation. Here we continue with the assumption that the
synthetic cell has chemical comparators on board that pertain
to the 6 potentials shown in Fig. 2, but assert that there is some
possibility in the design space that sources might be added at
new positions, or that we otherwise would be interested to
know where the best possible source locations are.

VIII. PROJECTING POLICIES ONTO DISCRETE ACTUATORS

Now that we have calculated our control policy with dis-
crete sensors and unconstrained control authority, the optimal
scenario would be to create actuators that perfectly align with
the policy: if possible, we should place a chemical potential
at each preferred location. Since this is unlikely to be easily
achievable, we will approximate our control policy using a
library of actuators.

For continuity, we assume that our library of actuators
consists of the same control modes shown in Fig. 2. We
project the computed policy onto 3 subsets of these actuators,
shown on the right side of Fig. 11. The subsets are: all six
control modes, a set of three of the control modes (1, 2, and
3) and a set of only two control modes (1 and 4). We generate
synthetic cell designs with each of these sets of actuators by
projecting the unconstrained controls computed in the policy
to these discrete control modes, and then compare their design
complexities and levels of task embodiment in Fig. 12.

The projection operator in this section is the same as the one
described in Sec. VI. But in this case, the continuous control
policy C(x) (used outside each region being evaluated) is the
discrete-sensing, continuous-actuation policy shown in Fig. 10,
rather than the discrete-actuation, continuous sensing control
policy shown in Fig. 2.

Fig. 11: Left: All possible locations of chemical sources,
represented by RGB (red, blue, green) colors. As the x location
of a source increases, the color illustrating the source location
becomes more red. As the y location of the source increases,
more blue is added to the color. There is a constant level of the
color green throughout the state space. Right: Three different
subsets of discrete control modes are shown: 6 discrete source
locations, 3 locations, and only 2 locations.

Figure 12 shows the projected control policies and the
results of simulations performed with each different design.
Monte Carlo simulations were performed with random initial
conditions, shown in row (d), and the average distance of
the final points from the desired point is shown in row (f).
Note the trends in rows (c) and (e). Similarly to Fig. 9, we
observe that as the graph entropy in row (c) decreases, the
K-L divergence in row (e) decreases. This shows that as the
designs become simpler (i.e., use fewer control modes), the
task performance becomes worse. But, depending on the goals
of the robot design process, it’s possible that even the worst
performance shown on the right would be a worthy trade off
for the simplicity of the design and ease of fabrication.

IX. DISCUSSION

In this work we addressed the question of designing robots
while minimizing complexity and maximizing task embodi-
ment. We demonstrated our method of solving this min-max
problem, which included both solving for the organization
of actuators first and then projecting onto discrete sensors,
and organizing sensors first and then projecting onto discrete
actuators. To accomplish the former, an iterative algorithm was
introduced that resulted in a simple control policy assuming
discrete control modes and perfect sensing, and then projecting
that policy onto a discrete space of sensed regions resulting
from a library of sensors. This is not necessarily an optimal
design pipeline for all robot design problems. There may
be some instances where there is a fixed library of sensors,
in which case one would solve the latter problem, by first
dividing the state space into discrete sensor regions, then
computing a control policy assuming discrete sensors and
unconstrained control authority, and finally projecting the
policy onto a discrete library of control modes from a library
of actuators.

When these two approaches were applied to the same
libraries of sensors and actuators, slightly different designs
were generated (as seen in the second columns of Fig. 9 and
Fig. 12). Also, although both methods resulted in similar levels
of task embodiment across the different designs, the designs
produced by the sensors-first method were more complex. This



11

Fig. 12: Left: The policy generated when continuous control was assumed. Right: A high-controllability design using all 6
of the discrete control modes in the actuator library, as shown in Fig. 11. A medium-controllability design using only three
control modes (chemical sources 1, 2, and 3). A low-controllability design using only two of the actuators from the actuator
library: chemical sources 1 and 4.

is because the complexity of a design is directly related to the
number of states, which depends significantly on the quantity
of sensor regions. In Fig. 2 each subsequent design had
fewer and fewer sensors where as in Fig. 10 each design had
the same number of sensor regions, keeping the complexity
relatively high.

In future work, this methodology will be implemented for
a wider range of dynamical systems, specifically higher order
systems. The algorithm will be tested with different modi-
fications, including using DKL in the objective function so
that task embodiment is the actual object of the optimization,
rather than a correlated consequence. The authors also plan
to use reinforcement learning techniques to organize sensors
and actuators simultaneously, over many rollouts. Finally,
this methodology will be validated by using control policies
computed by this method to design and create actual, physical
synthetic cells.

ACKNOWLEDGMENT

The authors would like to thank Dr. Michael Strano and
Albert Tianxiang Liu who provided insight and expertise that
greatly assisted this research.

REFERENCES

[1] K. Anand and G. Bianconi. Entropy measures for networks:
Toward an information theory of complex topologies. Physical
Review E, Oct 2009.

[2] L. Armijo. Minimization of functions having lipschitz contin-
uous first partial derivatives. Pacific Journal of Mathematics,
pages 1–3, 1966.

[3] D. Banarse, Y. Bachrach, S. Liu, G. Lever, N. Heess, C. Fer-
nando, P. Kohli, and T. Graepel. The Body is Not a Given:
Joint Agent Policy Learning and Morphology Evolution. In-
ternational Conference on Autonomous Agents and Multiagent
Systems (AAMAS), May 2019.

[4] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. J. Pappas. Symbolic planning and control of robot motion
[grand challenges of robotics]. IEEE Robotics Automation
Magazine, pages 61–70, Mar 2007.

[5] S. C. Bengea and R. A. DeCarlo. Optimal control of switching
systems. Automatica, pages 11–27, Jan 2005.

[6] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[7] R. A. Brooks. New approaches to robotics. Science, Sept 1991.
[8] C. Burgess, P. Hayman, M. Williams, et al. Point-particle ef-

fective field theory I: classical renormalization and the inverse-
square potential. J. High Energ. Phys., Apr 2017.

[9] T. M. Caldwell and T. D. Murphey. Projection-based optimal
mode scheduling. IEEE Conference on Decision and Control,
Dec 2013.

[10] T. M. Caldwell and T. D. Murphey. Projection-based iterative
mode scheduling for switched systems. Nonlinear Analysis:
Hybrid Systems, pages 59–83, Aug 2016.



12

[11] A. Censi. A mathematical theory of co-design. ArXiv e-prints
https://arxiv.org/abs/1512.08055, 2015.

[12] A. Censi. A Class of Co-Design Problems With Cyclic
Constraints and Their Solution. IEEE Robotics and Automation
Letters, Jan 2016.

[13] A. Censi. Uncertainty in Monotone Co-Design Problems. IEEE
Robotics and Automation Letters, Feb 2017.

[14] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient
bipedal robots based on passive-dynamic walkers. Science,
pages 1082–1085, 2005.

[15] M. Dehmer and A. Mowshowitz. A history of graph entropy
measures. Journal of Information Science, pages 57–78, Jan
2011.

[16] M. H. Dickinson, C. T. Farley, R. J. Full, M. A. R. Koehl,
R. Kram, S. Lehman. How Animals Move: An Integrative
View. Science, pages 100–106, Apr 2000.

[17] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time
optimization for switched-mode dynamical systems. IEEE
Transactions on Automatic Control, pages 110–115, Jan 2006.

[18] M. Egerstedt, Y. Wardi, and H. Axelsson. Optimal control of
switching times in hybrid systems. International Conference
on Methods and Models in Automation and Robotics, 2003.

[19] M. Erdmann. Understanding action and sensing by designing
action-based sensors. The International Journal of Robotics
Research, pages 483–509, 1995.

[20] B. Esteban-Fernández de Ávila, P. Angsantikul, D. E. Ramı́rez-
Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen,
L. Zhang, and J. Wang. Hybrid biomembrane functionalized
nanorobots for concurrent removal of pathogenic bacteria and
toxins. Science Robotics, 2018.

[21] D. Howard, A. E. Eiben, D. F. Kennedy, J. B. Mouret, P. Va-
lencia and D. Winkler. Evolving embodied intelligence from
materials to machines. Nature Machine Intelligence, 2019.

[22] U. Huzaifa, C. Bernier, Z. Calhoun, G. Heddy, C. Kohout,
B. Libowitz, A. Moenning, J. Ye, C. Maguire, and A. LaViers.
Embodied movement strategies for development of a core-
located actuation walker. 2016 6th IEEE International Confer-
ence on Biomedical Robotics and Biomechatronics (BioRob),
pages 176–181, June 2016.

[23] S. Karaman and E. Frazzoli. Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics
Research, pages 846–894, 2011.

[24] S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song, J. Wang,
Y. Zou, G. J. Anderson, J. Han, Y. Chang, Y .Liu, C. Zhang,
L. Chen, G. Zhou, G. Nie, H. Yan, B. Ding, and Y. Zhao. A
DNA nanorobot functions as a cancer therapeutic in response
to a molecular trigger in vivo. Nature Biotechnology, pages
258–264, 2018.

[25] P. Liu, A. T. Liu, D. Kozawa, J. Dong, J. F. Yang, V. B. Koman,
M. Saccone, S. Wang, Y. Son, M. H. Wong, and M. S. Strano
Autoperforation of 2D materials for generating two-terminal
memristive Janus particles. Nature Materials, pages 1005–
1012, 2018.

[26] P. Liu, A. L. Cottrill, D. Kozawa, V. B. Koman, D. Parviz,
A. T. Liu, J. F. Yang, T. Q. Tran, M. H. Wong, S. Wang, and
M. S. Strano. Emerging trends in 2D nanotechnology that are
redefining our understanding of nanocomposites. Nano Today,
2018.

[27] A. Mavrommati and T. D. Murphey. Automatic synthesis of
control alphabet policies. IEEE International Conference on
Automation Science and Engineering (CASE), Aug 2016.

[28] V. N. Murthy Arelekatti and A. G. Winter, V. Design and
preliminary field validation of a fully passive prosthetic knee
mechanism for users with transfemoral amputation in india.
Journal of Mechanisms and Robotics, pages 350–356, 2015.

[29] J. M. OKane and S. M. LaValle. Comparing the power of
robots. The International Journal of Robotics Research, pages
5–23, Jan 2008.

[30] J. M. OKane and D. A. Shell. Concise Planning and Filtering:

Hardness and Algorithms. IEEE Transactions on Automation
Science and Engineering, pages 1666–1681, Oct 2017.

[31] A. Pervan and T. D. Murphey. Low complexity control
policy synthesis for cyber-free robot design. Workshop on the
Algorithmic Foundations of Robotics (WAFR), Dec 2018.

[32] R. Pfeifer, J. C. Bongard. How the Body Shapes the Way We
Think. MIT Press, 2007.

[33] R. Pfeifer, M. Lungarella, F. Iida. Self-organization, embodi-
ment, and biologically inspired robotics. Science, pages 1088–
1093, Nov 2007.

[34] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar
symbolic models for nonlinear control systems. Automatica,
pages 2508–2516, 2008.

[35] P. J. Ramadge and W. M. Wonham. Supervisory control of a
class of discrete event processes. SIAM Journal on Control and
Optimization, pages 206–230, 1987.

[36] M. Shahid Shaikh and P. E. Caines. On the optimal control of
hybrid systems: Optimization of trajectories, switching times,
and location schedules. Hybrid Systems: Computation and
Control. Springer Berlin Heidelberg, 2003.

[37] J. C. Spagna, D. I. Goldman, P. C. Lin, D. E. Koditschek,
and R. J. Full. Distributed mechanical feedback in arthropods
and robots simplifies control of rapid running on challenging
terrain. Bioinspiration and Biomimetics, Jan 2007.

[38] R. Tedrake, T. W. Zhang, M. Fong, and H. S. Seung. Actuating
a simple 3D passive dynamic walker. IEEE International
Conference on Robotics and Automation, Apr 2004.

[39] J. Wainer, D. J. Feil-Seifer, D. A. Shell, and M. J. Mataric.
Embodiment and human-robot interaction: A task-based per-
spective. IEEE International Symposium on Robot and Human
Interactive Communication, Aug 2007.

[40] R. J. Wood. The First Takeoff of a Biologically Inspired At-
Scale Robotic Insect. IEEE Transactions on Robotics, 2008.

[41] X. Xu and P. J. Antsaklis. Optimal control of switched systems
via non-linear optimization based on direct differentiations of
value functions. International Journal of Control, pages 1406–
1426, 2002.

Ana Pervan Ana Pervan received her B.S. degree
in Mechanical Engineering from the University of
Notre Dame in 2016 and her M.S. degree in Mechan-
ical Engineering from Northwestern University in
2018. She is currently a PhD candidate in Mechan-
ical Engineering at Northwestern University. Her
research interests are focused in algorithmic design
of robots and emergent behaviors. She was awarded
the National Science Foundation Graduate Research
Fellowship in 2018.

Todd D. Murphey Todd D. Murphey received his
B.S. degree in mathematics from the University
of Arizona and the Ph.D. degree in Control and
Dynamical Systems from the California Institute of
Technology. He is a Professor of Mechanical Engi-
neering at Northwestern University. His laboratory is
part of the Neuroscience and Robotics Laboratory,
and his research interests include robotics, control,
computational methods for biomechanical systems,
and computational neuroscience. Honors include the
National Science Foundation CAREER award in

2006, membership in the 2014-2015 DARPA/IDA Defense Science Study
Group, and Northwesterns Professorship of Teaching Excellence. He was a
Senior Editor of the IEEE Transactions on Robotics.


	I Introduction
	II Related Work
	III Motivating Example: The Synthetic Cell
	IV Design Complexity and Task Embodiment
	V Control Policy Generation: Actuation First
	V-A Switched Systems
	V-B Hybrid Optimal Control
	V-C Iterative Algorithm
	V-D Examples

	VI Projecting Policies onto Discrete Sensors
	VII Control Policy Generation: Sensing First
	VIII Projecting Policies Onto Discrete Actuators
	IX Discussion
	Biographies
	Ana Pervan
	Todd D. Murphey


