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Abstract— We present a game benchmark for testing human-
swarm control algorithms and interfaces in a real-time, high-
cadence scenario. Our benchmark consists of a swarm vs.
swarm game in a virtual ROS environment in which the goal of
the game is to “capture” all agents from the opposing swarm;
the game’s high-cadence is a result of the capture rules, which
cause agent team sizes to fluctuate rapidly. These rules require
players to consider both the number of agents currently at
their disposal and the behavior of their opponent’s swarm when
they plan actions. We demonstrate our game benchmark with
a default human-swarm control system that enables a player
to interact with their swarm through a high-level touchscreen
interface. The touchscreen interface transforms player gestures
into swarm control commands via a low-level decentralized
ergodic control framework. We compare our default human-
swarm control system to a flocking-based control system, and
discuss traits that are crucial for swarm control algorithms
and interfaces operating in real-time, high-cadence scenarios
like our game benchmark. Our game benchmark code is
available on Github; more information can be found at https:
//sites.google.com/view/swarm-game-benchmark.

I. INTRODUCTION

An appealing aspect of robot swarms is their potential

to be deployed into areas that are dangerous for humans

to enter. Many dangers—like fire and unstable structures—

cause physical harm and evolve rapidly. Operators control-

ling robot swarms deployed into environments with these

dangers cannot assume the environment will remain constant;

they need to be able to rapidly adapt to changing conditions,

new information, and swarm agent dropout.

Many dangers are challenging to simulate because each

environment is unique, however, simulations can still play

an important role in testing human-swarm control algorithms

and interfaces for these environments. Thus, the vision of

sending human-swarm teams into dangerous, rapidly evolv-

ing scenarios faces two challenges: 1) many existing algo-

rithms and interfaces are ill suited to the challenges of highly-

dynamic environments and 2) there are no benchmarks

(real-world or simulation-based) for testing such proposed

algorithms and interfaces. To tackle these challenges, we

present a game benchmark inspired by the challenges of real-

time human-swarm control in high-cadence environments.

Even in benign scenarios, controlling swarms is challeng-

ing. As swarm size grows, the cognitive load on the operator

increases, and it becomes difficult for an operator to task

individual agents [1]. Prior work has sought to reduce the

operator’s cognitive load by autonomously planning agent

trajectories via flocking algorithms [2], potential fields [3],

fixed formations [4], linear temporal logic [5], collective
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Fig. 1. Swarm vs. Swarm Game: Two players use interfaces to control
opposing swarms in a shared, continuous space. The objective is to capture
all agents on the opposing swarm by maneuvering one’s own swarm to
surround opposing agents. In this figure, as the blue swarm moves about, the
red swarm forms a circular structure that surrounds the center of the game
environment. Blue agents that pass through this surrounded area are captured
by the red swarm according to the game rules. The game rules, which lend
themselves to the emergence of vaguely Go-like structures during game play,
are further explained in Section II-C). The blue agents that are captured
become part of the red swarm, and can now be controlled by the red player.

motion [6] [7], and Voronoi partitions [8]. Unfortunately,

many of these algorithms are too rigid for highly dynamic

and dangerous scenarios and limit the variety of commands

an operator can use to achieve a task.

Density-based swarm control algorithms, on the other

hand, enable operators to specify flexible behavior to their

swarm in dynamic and potentially dangerous scenarios. For

example, authors in [9] developed a system that enabled

human operators to control their swarm through density

specifications via a touchscreen interface. Authors in [10]

created an end-to-end swarm control system that leveraged

their swarm’s heterogeneous capability, used autonomously

detected information to keep the swarm safe, and enabled

operators to specify multimodal commands to their swarm

via touchscreen that were adaptable in real-time. Further-

more, the touchscreen interfaces used in these works to

send commands enabled both persistent swarm behavior

and multiple variations of operator commands to achieve

tasks through density specifications. Other work in swarm

interfaces (e.g., touchscreen interfaces [11], brain-machine

interfaces [12], swarm programming languages [13], and

haptic control devices [14]), were more rigid in the types of

behavior they could specify. Some of these interfaces were

also not persistent and required the operator to constantly

input commands to their system. In this work, we extend the

system presented in [10] to demonstrate our game benchmark

due to the system’s promising real-time performance.

Prior work involving swarm testbeds and real-world swarm

demonstrations has enabled researchers to test formation

control, motion planning, and collision avoidance [15], [16],

[17], [18], [19]. However, none of these testbeds or demon-

strations were particularly dynamic nor did they assess high-

cadence swarming. Work in game-theoretic scenarios involv-



Fig. 2. Overview of the Game Benchmark: Two players use separate
interfaces (pictured here are the touchscreen interfaces for our human-swarm
control system described in Section III; researchers can choose to develop
their own interfaces) to send commands via ROSbridge to their separate
teams of agents. A ROS node tracks the state of the game (the positions
of all agents) and determines whether an agent has been captured based
on the rules of the game. Both players have their own displays (in RViz)
showing the current state of the game. All code for the game benchmark will
be made open source and can be executed on any laptop running Ubuntu
18.04 LTS with an Intel I5 or equivalent processor, and 4 GB of RAM.
The code will contain a touchscreen interface for sending commands and
an implementation of decentralized ergodic control for executing commands
to enable researchers to demo the game benchmark “out of the box”.

ing pursuit-evasion and racing with multi-agent systems [20],

[21] [22], [23], [24] has created scenarios and algorithms that

have approached what is needed to assess real-time swarm

control in dynamic, high-cadence environments. The authors

of [25] conducted a field test with unmanned aerial vehicles

involving teams of 10 vs. 10 agents in which they examined

swarm combat tactics in a mock aerial dog fight. However,

all of these works were limited to team sizes under 10 agents,

and some did not involve human operators.

Given the lack of systems and testing scenarios for real-

time high-cadence human-swarm control, we have created a

game benchmark (shown in Figure 1) that consists of a ROS-

based virtual environment containing a swarm vs. swarm

game. The swarm vs. swarm game targets scenarios that

require evolving strategies—that is, rapid re-specification of

strategies—in a rapidly changing environment (with respect

to agent positions). We demonstrate our game benchmark

with a human-swarm control system that uses a touchscreen

interface to specify gesture-based objectives as distributions

for robot swarms using real-time, decentralized ergodic con-

trol.

Section II describes our dynamic swarm vs. swarm game

benchmark. Section III describes the default system for real-

time human-swarm control we use to demonstrate our game.

Section IV describes an example tactic that can be deployed

in the game with our default system, highlights considera-

tions operators may need to make when planning tactics in

the game, compares our default system for demonstrating the

game to a flocking-based method, and discusses the short-

comings of other swarm control systems for planning tactics

in high-cadence scenarios. In Section V, we discuss traits

of real-time human-swarm control algorithms and interfaces

that may be desirable for high-cadence scenarios like our

game benchmark and conclude with future work.

II. THE GAME BENCHMARK

In this section, we describe our benchmark, which is a

dynamic game in which players control their swarms to

capture all of the agents on the opposing team. Both teams

start with the same number of agents, which is specified by

the players when the game is initialized. The game is played

until all the available agents are captured by one team (i.e.,

if the game starts with 20 agents total, 10 on each team, the

game does not end until one team has all 20 agents and the

other team has 0).

Players must strategically maneuver their swarm to sur-

round agents on the opposing swarm while preventing their

own agents from being captured—resulting in the emergence

of vaguely Go-like structures (see Figure 1). We note,

however, that our game is played in continuous time and

space—there is no notion of teams “taking turns”. Also, all

of the agents in the game can be at any location in the

environment at any time. Figure 2 shows the architecture

for our game benchmark. The game benchmark architecture

includes the agents, the control algorithm and interface the

players choose to deploy, the virtual ROS environment, and

the game engine dictating the capture rules.

A. The Agents

Our virtual agents are modeled as second order, 2-D

point masses. Agents are spawned in one of four corners

of the virtual ROS environment. Each agent is given a

random initial altitude, distinct from all other agents in

the environment, at which it remains for the entire game

to avoid collisions. Agents subscribe to ROS topics that

players publish commands to. In our demonstrated examples,

each agent receives commands via touchscreen interface

(discussed further in Section III-A), runs its own real-time,

decentralized ergodic control algorithm (discussed further in

Section III-B), and receives information from members of

the team it is currently on. Each agent runs their controls at

10 Hz.

B. The Virtual ROS Environment

Our virtual ROS environment is rendered in a [0,1]2

grid in RViz. The game visualization shows areas of the

environment in which a player’s swarm can capture agents

on the opposing team. These areas are denoted by black

shading on the background of the environment. A ROS game

engine node enforcing the rules of the game (discussed in

Section II-C) sends information to another ROS node that

controls the game visualization. This information determines

each agent’s color (representing the team they are on) at each

time step. The game visualization also renders a decaying

trajectory history of each agent so players can see where

members of the opposing swarm have recently been. The

game visualization and game engine nodes both run at 30

Hz.



Fig. 3. Swarm-based Game Geometry: Each agent contributes to the time-averaged trajectories of the team it is on through its individual trajectory
history. At each instance in time, the area surrounding an agent’s current position is weighted as a capture area for its team (as seen in the pop-out on
the left). Several agents with overlapping capture areas are more likely than an individual agent to capture an agent on the opposing team. The combined
capture areas of the two red agents (visualized in the pop-out on the right) create a “net” and successfully capture the blue agent. Thus, commanding
one’s swarm to surround an opposing agent, or to trap an opposing agent along the sides of the environment, are more likely to successfully capture the
opposing agent than driving one’s swarm to be directly on top of the opposing agent. The dark shaded areas of the environment shown in the middle figure
represent areas the red swarm can capture blue agents in. Darker shaded regions are more likely to lead to captures than lighter shaded regions.

C. Rules for Capturing Agents

The time-averaged trajectories of each swarm dictates

areas of the environment in which opposing agents can be

captured. The pop-out in Figure 3 shows how agents are

captured. In order to create vaguely Go-like structures and

motivate the concept of surrounding an opposing swarm,

the time-averaged trajectories of the swarm over the whole

environment (a 50x50 grid) are averaged over smaller

neighborhoods represented by 5x5 sub-grids centered at

each grid cell in the environment. Only the outer rows and

columns of these sub-grids are used to calculate the “value”

of each neighborhood.

Thus, regions of the environment that are completely

surrounded by a swarm, or that are surrounded by a swarm

and one or more of the four boundaries of the environment,

have higher potential to capture opposing agents than areas

of the environment a swarm is directly positioned over. At

each time step in the game, if an opposing agent enters

into a neighborhood containing a capture value greater than

75% of the maximum value over all neighborhoods, it will

be captured. When an agent is captured, it immediately

becomes controlled by the opposing player. The captured

agent’s command is updated to the last command published

by the player controlling the new team it is now on. The

captured agent also begins contributing to the areas its new

team can capture opposing agents in through its trajectory

history. If the new team the agent is on is running a

decentralized control algorithm, the captured agent will also

begin communicating with its teammates via ROS topics.

Players have a clear visual representation of where their

swarm can capture opposing agents via the game visualiza-

tion in RViz. Areas where their swarms are likely to capture

opposing agents are shaded in black, while areas with a low

or no chance of capture are shaded in white. The visual

representation helps the players build intuition about the

game rules. The density of one’s own swarm has no bearing

on its safety; a player must ensure the safety of their swarm

through commands driving their swarm away from areas the

opposing swarm is surrounding.

III. OUR DEFAULT SYSTEM FOR REAL-TIME

HUMAN-SWARM CONTROL

This section describes our default human-swarm control

system, which consists of a touchscreen interface and de-

centralized ergodic control framework we have developed for

demonstrating our game benchmark. Our system is scale and

permutation-invariant, which enables players to command

their swarm in real-time and respond to changes in the

environment by re-specifying behavior for their swarm.

A. Touchscreen Interface

Figure 4 shows our system’s touchscreen interface for

sending player commands to the swarm. We created our

touchscreen interface using Kivy—an open source Python

framework for developing graphical applications with touch

capabilities. Our touchscreen interface works on any PC

or tablet running Ubuntu 18.04 LTS or Windows 10 with

Tkinter, Python3, and OpenCV. Players can control their

swarm by specifying distributions with hand-gestures on a

touchscreen tablet or with a mouse on PC; these distributions

specify what their team of agents should do by interpreting

the path of the gesture as a spatial distribution.

Players draw their distributions on a 2-D, top-down render-

ing of the virtual ROS environment. Players can select one

of two input distribution types for areas of the environment:

“Attract” (denoted in blue) which agents will converge to and



Fig. 4. Touchscreen Interface: The virtual ROS environment (left) next
to our touchscreen interface with a target distribution drawn (right). Players
can draw areas of high interest (which will attract the agents) in blue and
areas of low interest (which will repel the agents) in green. When a player
is satisfied with the target distribution they have drawn, they can send
the target distribution to their team. Players can clear the map to draw a
new distribution. Players can also modify an existing target distribution by
drawing new targets on top of old targets. The touchscreen’s drawing area
directly maps to the virtual ROS environment’s area. The darker shaded
regions in the virtual ROS environment figure on the left correspond to
areas in which the red swarm can capture members of the blue swarm
(darker shaded regions are more likely to lead to captures than lighter shaded
regions).

spend more time in, and “Repel” (denoted in green) which

agents will avoid. New target distributions can be continually

overlaid on top of previous ones, which enables quick

updates to previous distributions. Players’ target distributions

are smoothed out with a Gaussian filter. They are then scaled

in value according to the resolution and size of the virtual

ROS environment before being sent via ROS websocket to

the swarm agents.

B. Decentralized Ergodic Control

Player target distribution specifications provided via the

touchscreen are transformed into low-level swarm commands

through decentralized ergodic control. Decentralized ergodic

control (described in detail in previous works [26], [27],

[28]) provides a natural framework for specifying density-

based swarm objectives, and enables a player to quickly and

flexibly specify behavior for their swarm in response to the

opposing swarm’s behavior.

To define decentralized ergodic control, we start by in-

troducing the dynamics of our system. Consider a set of N

agents with state x(t) =
[

x1(t)
⊤, x2(t)

⊤, . . . , xN (t)⊤
]⊤

:
R

+ → R
nN . From work in [26], we define the dynamics of

the collective multi-agent system as

ẋ = f(x, u) = g(x) + h(x)u

=










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
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+


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0 hN (xN )
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
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where g(x) is the free, unactuated dynamics of the multi-

agent system and h(x) is the system’s dynamic control

response. We seek to find a set of controls u for the multi-

agent system that minimizes the system’s ergodic metric E
with respect to some player target specification φ(s) where

s ∈ R
2 is a point in the game environment.

The ergodic metric E provides a way to calculate the

“difference” between player target specifications φ(s) and

past agent trajectories [28] (which are represented as ck val-

ues using Fourier decompositions)—similar to the Kullback-

Leibler divergence for comparing two distributions.

We can use both Fourier decompositions to calculate the

ergodic metric E (introduced in [28]):

E(x(t)) = q
∑

k∈Nν

Λk(ck − φk)
2 (2)

where q ∈ R
+ is a scalar weight, Λk = (1 + ||k||2)

ν+1

2

is a weight on the frequency coefficients, ck is the Fourier

decomposition of the agents’ trajectories in a player’s swarm

over a fixed time horizon, and φk is the Fourier decomposi-

tion of the player’s target specification φ(s) [28].

We can determine the ergodic metric’s sensitivity to differ-

ent control inputs u by differentiating the ergodic metric with

respect to a control application duration λ at some optimal

application time τ . This results in the costate equation

ρ̇ = −E(x(t))
∂Fk

∂x
−

∂Φ

∂x
−

∂f

∂x
ρ(t) (3)

where Φ is the exponential control barrier function that keeps

the agents in the operating environment, Fk is the cosine

basis function, and f(x, u) is the system dynamics.

We can then write an unconstrained optimization problem

J =

∫ ti+T

ti

∂E

∂λ

∣

∣

∣

∣

τ

+
1

2
||u⋆(t)− udef(t)||

2
R dt (4)

where R is a positive definite matrix that weights the control,

u⋆ is the optimal control and udef is some default control. The

default control udef could be that the agent moves forward

at its current velocity. In this paper, udef is zero. The control

that minimizes this objective J is:

u⋆(t) = −R−1 ∂f

∂u

T

ρ(t) + udef(t)

which is calculated and applied at every time step to the

player’s team of agents for the player’s current target speci-

fication input.

C. Scale and Permutation-Invariance

Our touchscreen interface and decentralized ergodic con-

trol algorithm enable our system to be scale and permutation-

invariant with respect to player target distributions. Figure 5

shows swarms containing 6, 12, and 24 agents responding to

three different player target distributions specified through

the touchscreen interface. The combination of our touch-

screen interface and decentralized ergodic control algorithm

produces scale-invariant swarm behavior, since all three

swarm sizes converge to the three different target distribu-

tions. Our system also produces permutation-invariant swarm

behavior, since the swarm will converge to the player’s target

distribution from different permutations of agent positions

(i.e., the player’s swarm contains 10 agents that are in

different positions when the player specifies the target. If

Agent 1, Agent 2, etc. swapped positions, the swarm would

still converge to the player’s target).

Our system’s scale and permutation-invariance enables the

player to plan swarm-level behavior instead of individual



User Specification 6 Agents 12 Agents 24 Agents

Fig. 5. Specification is Independent of Swarm Size with our Default

Human-Swarm Control System: In this example, the black and white
shaded areas of the environment represent the time-averaged trajectories of
the swarm (not capture areas based on the game rules), with black areas
corresponding to areas the player’s swarm’s trajectories have spent more
time in relative to white areas. The player’s specifications are scale-invariant,
since all three swarm sizes converge to the player target specifications. The
player target specifications are also permutation-invariant, since the swarm
will converge to the player’s target specification from different permutations
of the same set of agent positions.

agent trajectories. For high-cadence scenarios like our game

benchmark, as the number of agents the player controls in-

creases and the time horizon the player has to plan decreases,

the player cannot think strategically in terms of individual

agents and their trajectories. Our system enables players to

make strategic decisions based on the general positions and

densities of their own swarm and their opponent’s swarm.

Furthermore, the decentralized nature of our ergodic con-

trol algorithm enables players to maintain their strategy (the

most recent target distribution they sent to their swarm)

regardless of how many agents are currently under their

control. Even if the number of agents under their control

is fluctuating, their swarm will still converge to their last

target. These traits are advantageous for players planning

tactics in high-cadence scenarios like our game benchmark.

We elaborate on these traits in Section IV.

IV. SWARM TACTICS

In this section, we describe an example ensemble tactic

a player can deploy with our default human-swarm control

system to beat an opponent in the game benchmark. We then

discuss tactical considerations players may need to make

during the game. We also discuss the shortcomings of other

methods for human-swarm control and the challenges players

may face when using these other methods to plan tactics in

high-cadence scenarios like our game benchmark.

A. Example Game Tactics

Figure 6 shows an example sequence of target specifi-

cations a player can use with our default human-swarm

control system to capture agents on the opposing team. The

nature of our game enables a player to quickly capture all

Fig. 6. Ensemble Game Tactics: In the game state on the far left, it is
difficult to discern any particular structure. Once the red player specifies
a unimodal target distribution, the red agents converge to the center of the
environment and capture opposing blue agents in the process. The red player
then specifies their red agents to track the remaining blue agent along the
left side of the environment to capture it and win the game. The dark shaded
areas in the game state figures correspond to areas in which the red team
can capture blue agents. The darker shaded regions are more likely to lead
to captures than the lighter shaded regions.

the opposing agents (and win the game) with a well-timed

sequence of commands. In the initial game state shown in

Figure 6 on the far left, it is difficult to discern any particular

structure in the agent positions. Once the red player specifies

a unimodal distribution in the center of the environment with

our interface, the red agents converge to a visible structure

via decentralized ergodic control and capture opposing blue

agents in the process. The red player then specifies their

swarm to track the remaining blue agent as it circles along

the left side of the environment. The red swarm then captures

the blue agent and wins the game.

This is one of many possible winning specification se-

quences players can make with our human-swarm control

system (see multimedia attachment). Players can reason

about how they can use the distribution of their swarm in

the environment to create the most opportunities to capture

opposing agents. Players can also reason about the current

position of the opposing swarm and attempt to predict where

the opposing swarm will be in subsequent time steps.

B. Player Tactic Considerations

Since the rules of the game allow any agent to be captured

regardless of how many of its team members are surrounding

it, players might be wary of sending commands to their

swarm that cause all of their agents to be in positions

close to one another. While agents on the same team that

are close together create areas of the environment that are

more likely to capture agents on the opposing team (due to

overlapping capture areas from the game rules), the opponent

may maneuver their swarm in a way that enables them to

simultaneously capture all the agents on the player’s team

and win the game. Thus, there are consequences to every

maneuver a player makes; a player may maneuver to capture

a small number of agents on the opposing team, only to find

that their agents have now been steered into an area where

they can be captured.

The dynamic, high-cadence nature of the game also re-
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Fig. 7. Swarm Size Changes Rapidly During Game Play: This figure
shows the number of agents on each team over the course of an example
game between two players. The game starts at approximately the 15s mark
and ends right before the 200s mark. The number of agents on each team
changes rapidly over the course of the game. Near the end of the game, the
frequency of agent captures stabilizes as the blue player accumulates more
total agents than the red player. The blue player eventually captures all the
red agents and wins the game.

quires the player to consider the amount of time they take to

send commands to their swarm. Intricate commands (such

as drawing detailed target specifications with our default

human-swarm control system) may require the player to

solely focus on creating their command (i.e., focusing on

their touchscreen interface while they draw) instead of

looking at the rapidly changing swarm positions in the

environment. Figure 7 shows how the number of agents on

each team fluctuates over the course of an example game.

As seen in the figure, team sizes change rapidly over short

periods of time. A brief advantage in number of agents

under a player’s control can quickly vanish in a matter of

seconds. This rapid cadence may also affect player strategy

in that players with larger swarms may be able to study

the environment for emerging patterns in an opponent’s

play and take longer to specify new commands for their

swarm since they can afford to lose agents without losing

the game. Players down to the last member of their swarm

may instead have to repeatedly specify commands that cause

their agent to quickly move around the environment to create

opportunities to capture opposing agents and rebuild the size

of their swarm.

We note here that it is possible to recover from a dramatic

ratio in numbers of agents between teams. One agent,

controlled strategically, can be sufficient to build up team

size again. Players may find that they need to play many

games before they become adept at reasoning about their

swarm’s behavior as a whole. A naive player may find that

even an opponent swarm specified by a uniform coverage

command across the domain—with no changes over time—

is a challenging adversary.

Various strategies for trapping and capturing agents on the

opposing team may emerge for players from repeated game

play. Player tactics may mirror some of those presented in

other work in pursuit-evasion, such as [23], or in swarm

tactics work such as [25]. In some instances, players may

find it useful to make the environment more chaotic by

having their swarm spread out in all directions, which

could disorient the opponent. For instance, players using our

default human-swarm control system could crash their swarm

into one side of the environment through “wavefront” attacks

via specifically-drawn attraction and repulsion regions, which

may quickly capture many opposing agents at high risk to

the player losing their own agents.

C. Challenges of Applying Traditional Swarm Control Meth-

ods to Game Tactics

Leader-follower methods such as those presented in [29],

[30] may not be able to perform the tactics described above

because pre-designated leaders (or leaders elected at each

time step) could be captured. Each team would have to re-

appoint a leader from their available agents, which may

not be possible with certain leader-election algorithms or

methods that involve multiple leaders [31] at high-cadence.

Likewise, influencing the swarm by having the player take

control of an individual agent or sub-team (such as in

[32]) may also be infeasible since the agent the player is

controlling could be captured. It may also be difficult for the

player to select an individual agent or sub-team in a high-

cadence environment due to cognitive load.

Formation-based control methods, such as those presented

in [4], [33], [34], may limit how a player can specify different

locations for sub-groups of their swarm to converge to for

strategic purposes. It is not clear how the same multimodal

maneuvers performed by drawing density specifications with

our default system can be achieved with swarm forma-

tion control methods that may require fixed formations to

be determined beforehand. Some of these formation-based

methods that are non-decentralized may also be affected by

communications failure or agents changing teams.

Both leader-follower and formation-based control meth-

ods, however, do have advantages over our default system

in the different types of automatic swarm-response behavior

they can enable. For instance, leader-follower methods could

enable a player to create automatic multi-modal behaviors

for elected leaders in their swarm to perform in response to

different opposing swarm configurations during game play.

Formation-based methods could enable a player to create a

library of swarm formations they found useful for strategic

purposes that they could then deploy at any instant during

the game. Such automatic behaviors would not be possible

with our default system (in its current form).

Figure 8 compares our default method for human-swarm

control to a flocking-based control algorithm (adapted from

work in [34]). In the figure, the player specifies a bimodal

target for their swarm to converge to. Our system enables

players to specify both targets at once, while flocking re-

quires both targets to be specified in sequence, one at a

time (denoted by the circles in the figure). The desired

“compactness” of the player’s swarm at each target would

also have to be specified through an attractor weight param-

eter (green color saturation). On the other hand, our system

enables the player to draw a larger region for more diffuse

coverage and a smaller region for more compact coverage



Fig. 8. Our Default Method for Human-Swarm Control vs. Flocking: This figure compares how our system for human-swarm control and a flocking-
based method converge to a bimodal target (with a more diffuse target in the bottom left corner and a more compact target in the upper right). The top
row shows the results for our default system for human-swarm control. The player specifies the bimodal target all at once, drawing a larger circle on their
interface for the more diffuse target and a smaller circle for the more compact target. The bottom row shows the results for the flocking-based method. The
player has to specify each of the targets in a sequence instead of all at once. The player also has to specify both the flocking attractor positions (denoted
by circles) and the attraction weights (denoted by green color saturation) for each of these targets to achieve the desired level of compactness.

in a single specification. Although our default system can

perform some tactical maneuvers (such as the one above)

in fewer specifications than the flocking-based method, the

flocking-based method is still scale and permutation-invariant

(like our default system) and may prove superior in other

scenarios. For instance, specifying a single attractor position

and weight to capture opposing agents in a particular area

of the game environment may take a player less time than

drawing an attractor region with our touchscreen interface.

Thus, while the system we have used to demonstrate

the game benchmark contains many advantages over more

traditional methods for swarm control, we only make those

arguments in specific cases of specific algorithms; other

researchers implementing their own systems for real-time

human-swarm control in this game benchmark will lead

to better comparisons and faster development of capable

algorithms. The game benchmark is a useful opportunity

for the swarm and human-robot interaction communities to

determine what traits are necessary for these systems to have

to succeed in high-cadence scenarios. We conclude with what

some of these traits are in the next section.

V. DISCUSSION

We have designed a game benchmark for assessing human-

swarm control algorithms and interfaces in a real-time, high-

cadence scenario. We demonstrated our game benchmark

scenario using a default human-swarm control system that

was scale and permutation-invariant. We provided discussion

on example tactics players can employ, tactical considera-

tions players may need to make while playing our game

benchmark, and compared our default system to other meth-

ods for human-swarm control.

Based on our demonstrations, scale and permutation-

invariance are important characteristics for algorithms and

interfaces operating in high-cadence scenarios like our game

benchmark. It is difficult to deploy tactics at high-cadence

without algorithms and interfaces that scale to teams of

different sizes and enable players to specify locations for

their swarm to converge to without having to keep track of

unique agent locations or which agents have been captured

or newly acquired. Instead of reasoning about individual

agents, players must be able to reason about their and their

opponent’s swarms as a whole.

A specific advantage of our default system for human-

swarm control is that the touchscreen interface does not

require player swarm specifications to be pre-determined.

Different players can draw different distributions on the

touchscreen that represent the same “tactic” at a higher level

(i.e., trapping opposing agents by drawing some type of

shape). Players who are interested in using techniques from

machine learning to learn possible tactics (that humans could

deploy) for swarm systems operating in high-cadence sce-

narios may want to develop control algorithms and interfaces

(with or without touch-based modalities) that afford machine

learning agents the same specification flexibility as our

system during the learning process. Scale and permutation-

invariance may also be necessary traits for these algorithms

and interfaces to make tactic learning feasible (especially if

techniques from reinforcement learning are used).

Future work could develop a virtual adversary to compete

against human players in this benchmark scenario. We en-

vision this adversary as an opponent benchmark that other

researchers could use to test their real-time human-swarm

control systems against. Then, the performance of real-

time human-swarm control systems could be compared via



number of wins and duration of game-play. Finally, the game

benchmark could be extended to conduct human subject

testing to empirically determine what types of strategies

human players employ. Biometric data could be collected

from players as they play the game to determine how much

cognitive load they are experiencing and if certain changes

to the human-swarm control algorithm or interface produce

more or less cognitive load.
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