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Abstract: We present a method for controlling a swarm using its spectral decomposition—that
is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout
the operational domain—guaranteeing scale invariance with respect to the number of agents both
for computation and for the operator tasked with controlling the swarm. We use ergodic control,
decentralized across the network, for implementation. In the DARPA OFFSET program field setting,
we test this interface design for the operator using the STOMP interface—the same interface used
by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate
that our approach is scale-invariant—the user specification does not depend on the number of agents;
it is persistent—the specification remains active until the user specifies a new command; and it is
real-time—the user can interact with and interrupt the swarm at any time. Moreover, we show that
the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents
goes down, enabling the operator to maintain the same approach as agents become disabled or are
added to the network. We demonstrate the scale invariance and dynamic response of our system in a
field-relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate
the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the
code for our system available.
Keywords: swarm robotics, robot teaming, human robot interaction

1. Introduction
One of the biggest problems in the field of swarm robotics is that it is difficult for human users to
reap the potential benefits of swarm robotic systems (i.e., robustness, information gains) due to the

∗Authors contributed equally to this work
Received: 31 March 2022; revised: 27 October 2022; accepted: 25 January 2023; published: 3 March 2023.
Correspondence: Joel Meyer, The Center for Robotics and Biosystems at Northwestern University,
Email: joelmeyer@u.northwestern.edu
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2023 Meyer, Prabhakar, Pinosky, Abraham, Taylor, Schlafly, Popovic, Diniz, Teich, Simidchieva, Clark and
Murphey
DOI: https://doi.org/10.55417/fr.2023011

http://fieldrobotics.net

https://orcid.org/0000-0002-9086-8203
https://orcid.org/0000-0002-3565-8430
https://orcid.org/0000-0002-3095-8856
https://orcid.org/0000-0003-0299-1760
https://orcid.org/0000-0002-7204-4956
https://orcid.org/0000-0001-7252-2527
https://orcid.org/0000-0003-3348-6329
https://orcid.org/0000-0003-3272-8621
https://orcid.org/0000-0001-9952-3060
https://orcid.org/0000-0002-4197-9468
https://orcid.org/0000-0001-8402-8841
https://orcid.org/0000-0003-2262-8176
mailto:joelmeyer@u.northwestern.edu
https://doi.org/10.55417/fr.2023011
http://fieldrobotics.net


Scale-invariant specifications for human-swarm systems · 369

high cognitive load associated with controlling swarms (Durantin et al., 2014). Cognitive load has
been shown to scale with both the size of the swarm a user controls, as well as with the complexity of
the environment in which the swarm and user operate (due to both agent-agent interactions and the
length of time the operator has to reason about decisions) (Gateau et al., 2016). Swarm operators
need interfaces and control algorithms that are scale-invariant to enable operators to specify the
same objective to swarms of different sizes without modification. Two major components are needed
to create such a system—an interface to transform user input into scale-invariant commands and
a control algorithm to automatically and flexibly adapt user commands to changes in swarm size
(which may occur due to communication dropouts, hardware failures, or newly available robots
joining the swarm).

1.1. Scale-Invariant User Interfaces
Prior work on user interfaces for swarm systems include interfaces that enabled operators to control
swarms of various sizes through haptic devices (Lee et al., 2011; Tsykunov et al., 2019), touch-
based tablet applications (Ayanian et al., 2014; Kato et al., 2009), and whole-body spatial gestures
(Podevijn et al., 2014; Nagi et al., 2014). Other researchers have run studies to find sets of gestures
users found natural for controlling a swarm (Kim et al., 2020; Micire et al., 2009) or developed
programming languages that made it easier for users to control a robot swarm through a computer
terminal (Pinciroli and Beltrame, 2016). While these methods enabled a direct mapping between
human commands and swarm motion, they did not provide a method for controlling the swarm’s
behavior beyond the initial specification. Operators had to maintain constant situational awareness
to input new commands for their swarm. Prior implementations of swarm interfaces in field scenarios
only displayed information and did not allow operators to modify the behavior of their swarm
through the interface (McCammon et al., 2021), or limited users by only allowing them to modify
their swarm’s behavior through trajectory waypoints (Leonard et al., 2010). Other swarm interfaces
for the field limited users by only allowing them to select predefined behaviors from a “playbook”
(Hsieh et al., 2007).

As a swarm interacts with both the environment and other agents in the environment, the
operator’s interface should enable the operator to specify behavior that is both scale-invariant
with respect to swarm size and persistent—which gives the operator the option of performing other
tasks while the swarm executes their initial command. The interface should also enable users to
modify these scale-invariant and persistent commands while they are in-progress if the environment
or user’s task change. The user swarm interface we extend in this paper, initially introduced in
(Prabhakar et al., 2020), enables users to specify commands to their swarm as target distributions
that can be deployed regardless of swarm size. The user can modify these commands in real time
and attend to other tasks after they specify a command since the swarm will persistently converge
to the target given by the user. User target distributions are not predefined. Users can draw their
own target distributions, which may correspond to another user’s high-level conception of how to
execute a task even if the two operators’ target distribution drawings are qualitatively different.

1.2. Scale-Invariant Control Algorithms
Previous work in swarm control algorithms has used methods that prespecify motion behaviors for
each robot in the swarm as part of a formation for accomplishing a task (Giles and Giammarco,
2017; Balch and Arkin, 1998; Setter et al., 2015; Kolling et al., 2012; Bevacqua et al., 2015). Other
previous work designed specifically for swarm sensing and coverage has relied on potential fields
(Ogren et al., 2004; Song and Kumar, 2002; Baxter et al., 2007) and/or Voronoi partitions (Cortes
et al., 2004; Schwager et al., 2009; Pimenta et al., 2008) to plan swarm trajectories. While these
methods have also been used for applications such as target tracking (Lee et al., 2010) and swarm
agent rendezvous (Cortes et al., 2006), they were not designed for dynamic replanning with a human
user or for replanning needs due to changes in swarm size from attrition or newly available agents
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joining the swarm. More recent swarm control methods have exhibited a greater degree of flexibility
in adapting to changes in swarm size but are controlled via a central node, which leads to swarm
system vulnerability (Sampedro et al., 2016; Wei et al., 2013). Other work on exploration and
mapping (Alonso-Mora et al., 2019; Schwager et al., 2009) incorporates decentralized methods that
are robust to swarm agent communication dropouts and hardware failure. However, these methods
do not enable a user to enter the swarm control loop and flexibly respecify swarm behavior as the
swarm’s environment and or user objectives change.

Various attempts have been made to enable human users to flexibly respecify swarm behavior. In
(Swamy et al., 2020), a user can take control of one member of their swarm to influence or modify
the task the swarm as a whole is currently performing. This work bears similarities to other prior
work involving leader-follower methods (Walker et al., 2013; Goodrich et al., 2012) for controlling
and influencing a swarm’s behavior with individual swarm members or small sub-teams within the
swarm. However, with an increasing number of agents, adjusting swarm behaviour by influencing
individual agents can become less effective if the user’s swarm can lose designated leader agents to
attrition (communication dropouts, hardware failure, etc.).

In contrast, defining how the collective swarm behaves using a spatial distribution has been
shown to both scale favorably to swarms of different sizes, and enable human users to dynamically
replan with swarms. Spatial distributions (both static and dynamic) have been used to control
swarms in sensing and coverage applications (Smith et al., 2012; Smith et al., 2011; Ghaffarkhah
et al., 2011). Dynamic distributions created by a human user have especially shown promise for
real-time human swarm control. The authors of (Diaz-Mercado et al., 2015) present a decentralized,
density-based coverage approach in which an operator uses a tablet interface to define an area
for their swarm to explore. The user draws the desired exploration areas on the tablet interface,
which are then partitioned into different regions using Voronoi tesselations. These tesselations are
assigned to individual agents in the swarm for coverage. Each agent then needs to communicate
with its nearest neighbors for the swarm to converge. This system as a whole was robust to agent
dropouts due to decentralization, was demonstrated with swarms of different sizes, and enabled
users to dynamically replan by redrawing the desired swarm coverage distribution on their tablet.

The method we extend from (Prabhakar et al., 2020) uses a decentralized ergodic coverage
algorithm (first introduced in (Abraham and Murphey, 2018)), which contains many of the desirable
attributes from (Diaz-Mercado et al., 2015) but does not need to partition the operating space and
assign partitions to each agent in the swarm. A robot running decentralized ergodic coverage spends
an amount of time in different regions of the exploration space that is proportional to the spatial
statistics measure of these regions in the exploration space, taking into account the consensus
estimate of how much time the entire swarm has spent there. This implies a human operator can
use spatial distributions to specify how a swarm should allocate its agents to achieve proportional
coverage of an exploration space in a decentralized manner. Unlike the algorithm presented in
(Diaz-Mercado et al., 2015), swarms of agents using decentralized ergodic coverage do not need to
communicate with their nearest neighbors to converge to a user’s distribution—communication with
any agents in the swarm will improve convergence (Abraham and Murphey, 2018). Not using Voronoi
partitions also enables individual agents in the swarm to explore the full environment without being
bound to a particular assigned area. This is especially helpful under agent communication dropout
or hardware failure since there is no need to recalculate or reassign partitions—our system will
persistently and flexibly adapt to changes in swarm size and the user target distribution.

1.3. Main Contributions
Our work develops a method for scale-invariant swarm control with a touch interface and a
decentralized control algorithm. The touch interface enables users to prescribe strategies at the
swarm level rather than at the individual agent level (Prabhakar et al., 2020). Gestures from the
touch interface are converted to commands for the swarm using a decentralized ergodic coverage
approach, which is invariant to swarm size (Abraham and Murphey, 2018). Each agent responds to
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the desired coverage map in real time. We extend our prior work described in (Prabhakar et al., 2020)
by demonstrating the capability of our system with larger swarms with field-relevant executions in
the STOMP (Swarm Tactics and Offensive Mission Planning) command software.

Our main contributions are as follows: (1) user interfaces for creating scale-invariant specifications
for human-swarm systems and (2) a scale-invariant (with respect to number of agents) integrated
system architecture for real-time human swarm control that enables dynamic replanning with
swarms. These two components enable human operators to dynamically replan with a swarm for
exploration and distributed sensing by using ergodicity as a quantitative measure of information in
the environment. Using our system, the operator maps visual input from both their line of sight in
the environment and from the command interfaces at their disposal (described in Section 2.2) to a
spatial representation of information that they then send as a command to their swarm via their user
interface. Each member of the swarm runs a decentralized ergodic coverage algorithm (described in
Section 3) that transforms user commands into swarm trajectories. The combination of visual input
the operator receives, the user interfaces they send swarm commands through, and the decentralized
ergodic coverage algorithm running on each member of the swarm enables the swarm to converge to
the operator’s spatial representation of information regardless of how many agents in the swarm the
operator has at their disposal at any point in time. Since the internal process an operator uses to
map visual input to expected information content is qualitative (in the sense that we do not have a
model of how humans make these choices), our system affords flexibility to the operators—different
operators can send different commands (representing spatial information) to their swarms based
upon the same visual input.

2. System Overview
In this section, we introduce the key elements of our system. First, we describe the user interfaces.
Then we describe the mission planning interface. Then, we discuss the individual swarm agents
(rovers). Finally, we discuss the overall architecture linking these components.

2.1. The User Interface
Over the course of the DARPA OFFSET program we developed two user interfaces. A touchscreen
interface was used for experiments run with Raytheon BBN’s STOMP command software–where
the only difference between simulation and physical experiments is that STOMP is communicating
with simulated agents. Additionally, a Tanvas interface (Olley et al., 2020) with haptic feedback
was used for physical hardware experiments at OFFSET field exercises. Both interfaces are shown
in Figure 1. Details of both interfaces are included in the sections below.

2.1.1. Touchscreen
The touchscreen interface shown in Figure 1A transmits user specifications to the user’s swarm of
agents. “User specifications” (aka “target distributions”) are distributions in physical space that
convey areas the user wants their swarm to converge to or avoid for the purpose of exploration. The
operator is able to draw these areas on the touchscreen with their fingertip, stylus, or computer
mouse. Blue regions indicate exploratory areas (high expected information content) for agents,
and green regions specify restricted areas (low expected information content) that the agents must
avoid. “Expected Information Content” in this work is defined as the relative importance an operator
assigns to a particular area of the environment (via prior knowledge or intuition) for the purpose
of exploration with their swarm. Areas with high expected information content may be expected
to contain a high-value target, while areas with low expected information content may be expected
to not contain a high-value target (or may be suspected to contain dangers that could disable the
user’s swarm).

The user can adjust the thickness of the lines they draw while creating these regions (for finer
or coarser specifications) by using the slider interface on the right side of the touchscreen. User

Field Robotics, March, 2023 · 3:368–391



372 · Meyer et al.

Figure 1. User specifications using touch interfaces. Figure 1A shows the touchscreen interface, through which
users can draw areas containing high (blue) and low (green) expected information content with their fingertips.
Users draw over a map of the swarm’s operating environment and can adjust their drawings in real time. Figure 1B
shows the Tanvas interface, which renders information in the environment as changes in surface friction the user
feels as they slide their finger across the interface, which enables the user to localize themselves in the environment
and issue commands without looking at the interface. The circle on the Tanvas interface represents the user’s
current position in the environment, while the squares represent buildings in the environment. Users can also draw
high and low expected information content areas with the Tanvas. We used the touchscreen for our field-relevant
simulations in Section 5 and the Tanvas for field tests in Section 6.

specifications that contain more than one target area (i.e., both a blue and a green region, multiple
blue regions, multiple green regions, or a combination of the aforementioned) are “multimodal,”
and represent a multimodal distribution of expected information in physical space. Once the user
finishes drawing these regions they can tap/click the “Deploy” button, which sends the user’s
multimodal drawing (in 2-D array form) to each agent in the swarm through a ROS websocket.
Additionally, the touchscreen interface allows the user to generate an RGB image of the map with
the user’s multimodal distribution overlaid on top of it for debugging purposes postexperiment or for
situational awareness during testing to see how the user’s drawing is translated into a multimodal
distribution. User specifications are modifiable in real time; users can draw over regions that have
already been drawn on, even if the agents have not yet made it to those regions. Users can also clear
the interface screen if they wish to redo a particular target specification.

The touchscreen interface application can be loaded on either tablets or PC’s. Users can launch
multiple instances of the interface application if the user wants to specify target distributions for
different subgroups of the swarm (keeping two or more specification channels for these subteams
open at the same time). The ability to use the touchscreen interface application on either tablets
or PC’s gives the operator flexibility in not being restricted to a particular operating system. A
downside of the touchscreen interface is that there is no haptic feedback. The operator needs to
continuously look at the screen while they specify target distributions, meaning the operator may
struggle to respecify swarm behavior if their operating environment requires visual awareness.

2.1.2. Tanvas
The Tanvas (shown in Figure 1B), on the other hand, gives users haptic feedback reflecting real-
time changes in the environment as they send commands to their swarm. The Tanvas renders
textures on its smooth screen by modulating the friction underneath the user’s fingertip (Olley et al.,
2020). These haptic features represent different objects in the environment, such as buildings, with
different textures. The circle on the Tanvas interface screen represents the user’s current position
in the environment, whereas squares on the Tanvas interface screen represent buildings and other
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structures. The Tanvas renders all features on its screen with respect to the user’s body frame.
With the Tanvas, the user can specify regions of exploratory interest by double-tapping the screen,
shading the region on the Tanvas, and double-tapping the screen again. At the second double-tap,
the user’s specification coordinates are transformed into a distribution and then sent over a TCP
socket to each agent in their swarm. The Tanvas also provides audio feedback to the user when they
double-tap the screen.

Haptic feedback is critical for “boots on the ground.” Operators need to be aware of their
immediate surroundings while working and cannot afford to keep their eyes focused on an interface.
The Tanvas enables users to orient themselves in the environment and send commands while
watching what is going on around them without looking away, which in the OFFSET scenario
was particularly useful for scenarios that required quick respecification of the swarm and that also
required high-operator awareness of their surroundings due to drones flying close by. A downside
of the Tanvas is that it represents the operating environment at a lower level of granularity with
haptic feedback than the touchscreen interface can with visual feedback.

2.2. STOMP
As part of OFFSET, we fully integrated our decentralized ergodic coverage algorithm with Raytheon
BBN’s mission planning interface STOMP (Swarm Tactics and Offensive Mission Planning). Figure 2
shows an overview of the STOMP environment. Box A shows the status of each rover, which includes
its IP address and battery level. Box B displays information about different objects detected by the
rovers. Since the objects are identified by April Tags, box B contains the ID number of each tag, the
type of information the tag represents (medic, civilian, building, etc.), the global pose of the tag in
the environment, and the ID number of the rover that detected it. Box C shows the current state
of the operating environment, which includes real-time rover positions and detected information.

2.3. Rover
Figure 3 shows the Aion Robotics R1 Rover that was used for field tests performed at DARPA
OFFSET. The rover includes an NVIDIA Jetson TX-2 embedded computing device and a Pixhawk

Figure 2. STOMP – a field-relevant simulator for OFFSET. This figure shows an overview of the STOMP
simulator. Users monitor the positions of their swarm and receive real-time information about the status of each
agent, communications between agents, and information detected by agents as they operate in the environment.
Boxes A and B show panels that display agent status, communications, and April Tag detections. Box C shows
the agents’ real-time positions in the operating environment.
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Figure 3. A unifying system architecture. This figure shows the entire sequence of human-swarm interaction
in our system. In (1) the user starts by inputting their target distribution through an interface (either a Tanvas
or touchscreen). The target distribution is sent to a communication node running on each rover as shown in (2).
The input is then transformed into a set of control commands via the algorithm running on each rover (explained
in Section 3) in (3). The operator uses visual feedback on the swarm’s progress in (4)—provided through plots
(introduced in Section 5), the locations of the agents in STOMP (4A), and the operator’s line of sight in the
actual environment (4B)—to plan subsequent target distributions to send to the rovers to accomplish their
desired task.

2.1 controller with a HERE GPS unit running ardurover 3.2. Onboard sensors include an RPLidar
A1M8 2D 360 Lidar and an Intel RealSense D435i depth camera. Motion planning on the rover used
the decentralized ergodic coverage algorithm, described below in Section 3, whose output was sent to
an RT-RRT? (Real-Time Rapidly Exploring Random Tree) algorithm (Naderi et al., 2015), described
in Section 3.3, for real-time path planning and obstacle avoidance.

The ergodic coverage algorithm ran locally on the NVIDIA TX-2 of each individual rover
running a local ROS network. The rovers in the swarm communicated with each other and received
swarm-level commands over a local LTE network through a Java/Protelis interface developed by
the Raytheon BBN team. The rovers connected to the LTE basestation via custom-built USB
LTE modems. The OFFSET experiments were conducted on a small range area that contained a
combination of grassy terrain and concrete sidewalks. The rovers operated in a bounding box defined
by GPS coordinates provided by Raytheon BBN’s Java/Protelis interface. User commands were
given at the Tanvas interface, which was connected to the robotic agents through the Java/Protelis
interface and a TCP protocol.

2.4. Unifying System Architecture
Figure 3 shows a unifying system architecture that contains the major components of our system
that were used throughout the OFFSET program. It also shows the entire sequence of human-swarm
interaction for a user commanding a swarm with our system. Users start by inputting commands
for their swarm through gestures at their user interface (either a Tanvas or touchscreen) that
are transformed into target distributions representing swarm-level behavior and then sent to a
communication node running on each rover. The algorithm running on each rover (explained in
Section 3) uses the target distribution it has received via its communication node to determine
its next control actions. Rovers send their past trajectories to each other (described in Section 3),
which enables the whole team of rovers to converge to the user’s commanded target distribution.
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The user receives visual feedback on the progress of their swarm as it converges to their target
distribution via the locations of the agents in their swarm through STOMP and the user’s line of
sight in the actual environment. The user also receives feedback on the progress of their swarm via
plots (introduced in Section 5). All of this information will help the user determine the content
and timing of their next commands/target distribution specifications as they complete their desired
task.

3. Algorithm Overview
This section describes a decentralized ergodic coverage algorithm [first derived in (Abraham and
Murphey, 2018)] that converts spatially distributed task information into temporally driven motion
for a networked set of robotic agents. To integrate this algorithm with our system, we have extended
the algorithm by augmenting its outputted agent trajectories with RT-RRT? for low-level obstacle
avoidance. The inputs to the algorithm are high-level user task specifications that are distributions
in physical space representing expected information content in the environment. Incorporating user
task specifications into the decentralized ergodic coverage algorithm enables dynamic replanning
with the user’s swarm for exploration tasks.

3.1. Ergodicity and the Ergodic Metric
We start by defining ergodicity and the ergodic metric. Assume the state of a single robotic agent
at time t is given by x(t) : R+ → Rn and the controls given to the robot at time t are defined as
u(t) : R+ → Rm. The dynamics of the robot are defined to be a control-affine dynamical system of
the form

ẋ(t) = f(x(t), u(t)) = g(x(t)) + h(x(t))u(t), (1)

where g(x) : Rn → Rn is the free, unactuated dynamics of the robot and h(x) : Rn → Rn×m is the
dynamic control response subject to input u(t). Define the robot’s time-averaged statistics c(s, x(t))
for a trajectory x(t) (i.e., the statistics describing where the robot spends most of its time) for some
time interval t ∈ [ti, ti + T ] as

c(s, x(t)) = 1
T

∫ ti+T

ti

δ(s− xv(t))dt, (2)

where δ is a Dirac delta function, T ∈ R+ is the time horizon, ti ∈ R+ is the ith sampling time,
and xv(t) ∈ Rv is the state that intersects with the exploration space (with state dimension v < less
than dimension n of the exploration space). The ergodic metric introduced in (Mathew and Mezić,
2011) relates the time-averaged statistics c(s, x(t)) to an arbitrary spatial distribution φ(s) via

E(x(t)) = q
∑

k∈Nv

Λk (ck − φk)2 (3)

= q
∑

k∈Nv

(
1
T

∫ ti+T

ti

Fk(x(t))dt− φk

)2

,

where

φk =
∫
Xv

φ(s)Fk(s)ds.

In this work, φ(s) is the operator’s spatial representation of information in the environment based
upon their line of sight in the environment and visual input they receive from their command
interfaces (Section 2.2)—in other work such as (Miller et al., 2016), φ(s) is constructed from an
agent’s sensor’s measurement model. q ∈ R+ is a scalar weight on the metric, ck is the Fourier
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decomposition of c(s, x(t)),1 φk is the spectral decomposition of the spatial distribution φ(s), and

Fk(x) = 1
hk

v∏
i=1

cos
(
kiπxi

Li

)
is the cosine basis function for a given coefficient k ∈ Nv. hk is a normalization factor defined in
(Mathew and Mezić, 2011) and Λk = (1 + ‖k‖2)− v+1

2 are weights on the frequency coefficients.
A robot whose trajectory x(t) minimizes Equation 3 as t → ∞ is optimally ergodic with respect
to the target distribution. That is, the robot spends an amount of time in different regions of
the exploration space that is proportional to the spatial statistics measure of these regions in the
exploration space.

Thus, we obtain a method for specifying how long a single agent should spend in different regions
of the exploration space. If the user sends a multimodal target distribution to the system that
conveys the relative “importance” of each area, minimizing the ergodic metric enables an agent to
spend time in each area that is proportional to each area’s expected information content. If the user
needs to modify their target distribution, the agent will flexibly respond by changing its trajectory
to match the new distribution of expected information content in the environment. The next section
shows that in addition to allowing flexible task specification, the ergodic metric enables a user to
control a decentralized network of agents.

3.2. Decentralized Ergodic Control

Consider a set of N agents with state x(t) =
[
x1(t)>, x2(t)>, . . . , xN (t)>

]> : R+ → RnN . The
multi-agent system’s contribution to the time-averaged statistics ck can be rewritten as

ck = 1
N

N∑
j=1

1
TE

∫ ti+T

ti

Fk(xj(t))dt

= 1
TE

∫ ti+T

ti

F̃k(x(t))dt, (4)

where F̃k(x(t)) = 1
N

∑
j Fk(xj(t)), N is the number of agents, T is the time horizon, ti is the current

time step, ∆tE determines how far into the past the agent needs to remember, and TE = T + ∆tE .
The ck value used to calculate the ergodic metric is the average ck value of all agents on the team.
We use the spatial and temporal decompositions to calculate the ergodic metric Equation 3.

We determine the ergodic metric’s time sensitivity by differentiating with respect to a fixed time
duration λ and evaluating it at some fixed time t, which results in the costate equation. We can
additionally show that each agent can generate an independent action that contributes to minimizing
the entire team’s ergodic metric. Let us first define the dynamics of the collective multi-agent
system as

ẋ = f(x, u) = g(x) + h(x)u

=


g1(x1)
g2(x2)

...
gN (xN )

+

h1(x1) . . . 0
...

. . .
0 hN (xN )

u. (5)

We calculate the adjoint variable of the ergodic objective function as

ρ̇ = −E(x(t))∂Fk

∂x
− ∂Φ
∂x
− ∂f

∂x
ρ(t), (6)

1 The cosine basis function is used; however, any choice of basis function Fk that can be differentiated with respect
to the state x(t) and that can be evaluated along an agent’s trajectory is acceptable.
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where Φ is a barrier function that is needed to keep the agents within their operating environment.
(This barrier function is needed because of the spatial periodicity of Fourier transformations.) f(x, u)
represents the dynamics of the multi-agent team. We then calculate

∂F̃k

∂x
= 1
N


∂Fk(x1)

∂x1
...

∂Fk(xN )
∂xN

 and ∂f

∂x
=


∂f1
∂x1

0 . . . 0
0 ∂f2

∂x2
...

. . .
0 ∂fN

∂xN

 ,
where ∂f

∂x is a block diagonal. As a result, following (Abraham and Murphey, 2018), we define a
controller for the collective swarm that minimizes the ergodic metric:u?,1(t)

...
u?,N

(t)

 = −R−1

h1(x1) . . . 0
...

. . .
0 hN (xN )


> ρ1(t)

...
ρN (t)

+

udef,1(t)
...

udef,N (t)

 , (7)

where R ∈ RmN×mN is a diagonal matrix representing the weights on each swarm member’s control
inputs andmN is the size of the swarm system control input. Since h(x) is block diagonal, Equation 7
becomes

u?,j(t) = −R−1
j hj(xj)T ρj(t) (8)

for each agent j ∈ [1, . . . , N ] and Rj ∈ Rm×m. Note that the jth agent does not depend on the ith

agent. All that is required is that we communicate the ck values between each agent to obtain the
time-averaged statistics of the swarm as a whole before computing the control values. Each agent
has their own specification of the task target distribution φ(x) for which they calculate control
values. Since each agent calculates its own control values, the computational complexity of our
decentralized ergodic control algorithm remains constant with respect to the number of agents in
the swarm. Computational complexity will only scale with the dimension of an agent’s state (which
is not time-varying for these demonstrations).

If a single agent detaches from the communication network, then that agent will minimize its
own ergodic metric. Communication from other agents in the swarm helps the individual agent
minimize the energy it expends as it moves through the exploration space since it knows where
other agents have recently been from their communicated ck values. This enables the swarm as a
whole to converge to the user’s target distribution. The following section describes the local planner
we used for obstacle avoidance and low-level control.

3.3. Interfacing with RT-RRT?

The control signal u(t) for each agent is converted to kinematic input ẋ(t) where the forward
simulation x(t) for each individual agent is supplied to the RT-RRT? low-level planner as a set
of target controls. All safety features, such as rover velocity limits and obstacle avoidance, are
handled after the user target specification is transformed by the ergodic coverage algorithm. Thus,
the controls that are sent to the rover may be different from the output of the ergodic coverage
algorithm. This allows the ergodic coverage algorithm to avoid considering obstacle avoidance and
divides the computational load into two segments: low-level planning for robot control and obstacle
avoidance, and high-level task planning and adaptation with the ergodic coverage algorithm, which
will persistently explore according to the spatial measure defined by the target distribution. Since the
ergodic coverage algorithm is temporally driven (i.e., the amount of time spent in a region directly
impacts future behavior), and because we replan at every timestep, any regions the user wants their
swarm to explore in that cannot be immediately visited due to obstacles will eventually be visited
once the RT-RRT? planner calculates a path around the obstacles (assuming an unobstructed path
from the agent’s current position to these regions exists).
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3.4. High-level Planning for Dynamic-Task Adaptation
This section defines how tasks are specified as spatial distributions represented by φ(x). We also
define how new user commands representing new or updated tasks are combined with existing task
specifications to enable multimodal distributions to act as descriptions of where agents need to be
allocated. We focus on two scenarios: reallocating priority to “attraction” regions with high expected
information content and lowering priority for “repulsion” regions with low expected information
content.

3.4.1. Specifying Tasks with Easter Eggs (EEs) and Disabling Devices (DDs)
We use easter eggs (EE) to denote generic “attraction” regions and Disabling Devices (DD) to
denote generic “repulsion” regions, each of which are Gaussians centered at (latitude, longitude)
coordinates in the environment. The positions of EEs and DDs that are specified by the user, or
autonomously detected by an agent in the swarm, are sent to each agent in the swarm’s network. The
locations of these elements in the environment are added to the specification φ(x) by parameterizing
the expected information content in the environment as a multimodal sum of Gaussians:

φ(x) = 1
η

∑
i

ai exp
(
−1

2‖x− xEE‖2Σ−1

)
+ 1
η

∑
j

bj

(
1− exp

(
−1

2‖x− xDD‖2Σ−1

))
(9)

where η is a normalization factor,
∑

i ai = 1 and
∑

j bj = 1, and xEE, xDD are the locations of EEs
and DDs respectively. The parameter Σ is the width of the Gaussian region of attraction or repulsion
that can be tuned based on the size of the environment and the user’s desired granularity. We
used Σ = diag(0.01, 0.01) for both EEs and DDs. EEs represent high expected information content
regions (attraction regions) while DDs represent low expected information content regions (avoidance
regions). The resulting distribution is then normalized and represented with 10 Fourier coefficients
for each dimension of the exploration space. Exploration space coordinates are transformed and
scaled to a bounding box of size [0, 1]2 for numerical stability.

3.4.2. Specifying Tasks Through User Drawings at the Tablet Interfaces
The interfaces described in Section 2.1 transmit a user’s specification (represented as a multimodal
distribution drawn by the user on an interface screen) to the team of agents the user is controlling.
The user’s multimodal task distribution consists of a discretized grid of normalized values that
represent the relative importance of different areas of the environment (with respect to each other)
that the team of agents operate in. When a user draws an “attraction” region on the interface screen,
the areas of the interface their finger makes contact with are assigned a value of 1 (the highest level of
importance)—this is equivalent to the EE specifications described in the section above, the difference
being that user attraction drawings do not have to be Gaussians centered at a particular position
of the environment; drawings can take on different shapes that do not resemble Gaussians. Other
areas that have not been drawn in are assigned a random noise value between [0, .001) in order
for the team of agents to generate minimal coverage over the non “attraction” areas. When a user
draws a “repulsion” region, the areas of the screen their finger makes contact with are assigned a
value of 0—which is equivalent to the DD specifications described above (with other areas also being
assigned random noise between [0, 0.001)). If both “attraction” and ”repulsion” regions are drawn,
areas that have not been drawn on are assigned a value of 0.5, which denotes “medium” information
content. As above, the resulting distribution of attraction and repulsion regions is normalized and
represented using 10 Fourier coefficients for each dimension of the exploration space.

4. Small-scale Simulations in ROS
We demonstrate the dynamic response of our system with small-scale proof-of-concept tests in
ROS simulations with six agents. We use aerial vehicles for these small-scale tests (as opposed to
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Figure 4. Simulation of a team of six agents dynamically adapting to the environment while also
responding to user commands. Figures (a)–(c) show a time-lapse of the agents’ trajectories in response to
the different stimuli. (a) The agents discover a DD and explore the rest of the environment while avoiding that
location. (b) A user inputs a bimodal target with two areas with high expected information content for the team
of agents to explore. The team responds to the user command while continuing to avoid the DD location. (c) The
team discovers an EE (in this example the EE has higher expected information content than the user’s attraction
region drawing input—for other cases, EEs and user attraction regions have an equivalent expected information
content) in the environment. The team of agents converges on the EE, while still exploring the user drawing
inputs to a lesser extent. The agents continue to avoid the DD location. (d) The target distribution containing
the DD, user input, and EE. The “x” label in red marks the DD location, while the “x” label in black marks the
EE location. The circles in green highlight the user target input from the Tanvas interface.

the ground vehicles used for our simulated demonstrations in Section 5 and field demonstrations
in Section 6) because the dynamic response of our system is clearer with faster platforms that
do not have to avoid obstacles in the environment. These agents explore an environment and
adapt their trajectories to environmental stimuli and user commands sent from a Tanvas interface.
Figure 4a shows the team of six agents discover a disabling device (which we use to represent an
area of the environment with the lowest possible expected information content) in the upper left
hand corner of the environment. The agents avoid the disabling device and explore the rest of the
environment. The user then sends a bimodal target distribution to the team of agents, represented
by the black shaded areas. In Figure 4b, the agents converge to the user’s target distribution while
they continue to avoid the disabling device. In Figure 4c, the agents discover an easter egg—which
we use to represent an area with higher expected information content than the targets sent by
the user (the difference in expected information content between EEs and user attraction region
drawing inputs are only different for this particular experiment—in all other cases EEs and user
drawings that represent attraction regions have the same expected information content values).
The team of agents converges on this easter egg but continues to explore near the previous targets
sent by the user. The team of agents spends more time near the easter egg due to its higher
expected information content. The team of agents also continues to avoid the disabling device.
Figure 4d shows the distribution representing the agents’ expected information content for the entire
environment.

We then simulate a team of six heterogeneous agents exploring and adapting to environmental
stimuli based on their individual capabilities. The team of six agents contains five regular agents
tasked to explore the environment, while one agent is tasked to remove DDs from the environment.
We simulate an agent discovering a DD and communicating its location to its teammates. The
regular agents avoid the DD location while the DD blocker agent converges on it to make it safe for
any agent that comes close to it.

In Figure 5a, the team of heterogeneous agents uniformly explores the environment. When a DD
location is discovered (Figure 5b) the DD blocker agent converges on DD to remove it from the
environment, while the rest of the team continues to explore away from the DD (in Figure 5c). The
examples shown in Figures 4 and 5 demonstrate our system responding to detected changes in the
information content of the environment with homogeneous and heterogeneous teams of six agents.
The next section describes how we use STOMP to interface with a larger number of agents and
demonstrate the scale-invariance of our system.
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Figure 5. Heterogeneous team discovering a disabling device (DD) then dynamically responding to it
based on team members’ capabilities. The figures here show a time-lapse of the agent trajectories. The
team contains a DD blocker agent (agent 1) and non-DD blocking agents (agents 2-6). Thus, agent 1 and
agents 2-6 will respond differently to DDs. The team starts by uniformly exploring the environment in (a).
Here, the black colored background corresponds to uniform information content in the environment for all of the
agents, which leads to uniform coverage. (b) The agents discover a DD in the upper right-hand corner of the
environment. The background here shows the information content in the environment from the perspective of
the DD blocker agent—the white color corresponds to low information content, while the black color corresponds
to high information content (the position of the DD). In this example, information content in the environment
denotes where agents in the swarm should position themselves according to their capabilities. The DD blocker
agent converges on the DD location (denoted by the black circle), while the other agents scatter and explore
areas away from the DD. (c) The information content of the environment from the perspective of the non-DD
blocking agents. The non-DD blocking agents avoid the white-colored area of the environment denoting low
information content (where the DD is) and explore the black areas of the environment away from the DD.

5. Demonstrations Using STOMP
In this section, we demonstrate scenarios that are relevant to the OFFSET program by using
STOMP to interface with up to 50 simulated agents. We demonstrate the high-level benefits our
system offers in scenarios that include covering multiple areas of the environment, converging upon
a target area and quickly evacuating from it, and simultaneously converging on and surrounding a
target area, one of the stated goals for the FX-5 exercises.2 We also show how information collected
by the swarm varies according to the size of the swarm, and how our system automatically adapts
to an operator’s target specification if the swarm loses agents.3

5.1. User Specifications Are Scale-Invariant With Respect to Swarm Size
In swarm exploration scenarios, the operator may want to specify which areas of the environment
are more or less likely to contain information. Our system enables an operator to draw an arbitrary,
multimodal distribution that contains areas with both high and low expected information content
for their swarm to explore. Our decentralized coverage algorithm (Abraham and Murphey, 2018)
plans trajectories for the swarm such that the time agents spend in different areas of the environment
is proportional to their expected information content. In the OFFSET setting, this is relevant for
operators who seek to use swarms of robots to discover where targets of interest are and which
areas should be avoided due to threats. We demonstrate an operator sending a multimodal target
distribution to their swarm that contains two areas with high expected information content (which
the swarm will spend more time in) and two areas with lower expected information content (which
the swarm will spend less time in) on swarms that contain 10, 25, and 50 agents. The results are
shown in Figure 6.

2 We did not perform physical experiments in FX-5 due to the COVID-19 pandemic.
3 The code for our system can be found at: https://github.com/MurpheyLab/rover_decentralized_ergodic_
control.
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Figure 6. Scale invariance in target distribution convergence with respect to swarm size. Swarms of different
sizes will all converge to user target distributions. The user specifies an example target distribution [shown in (a)]
which contains two areas with high expected information content (shown in blue) and two areas with low expected
information content (shown in green). (b), (c), and (d) show swarms containing 10, 25, and 50 agents converging
to this user target distribution. The top row of each of these figures [(b)–(d)] shows the initial positions of agents
in the swarm (denoted by the blue rectangles) at time 0 s and their final positions after converging to the user’s
target distribution at 1800 s. The bottom row of each of the figures shows the Fourier reconstruction of the
time-average of the agents’ trajectories in these swarms at 0 s (on the bottom left) and at 1800 s (at the bottom
right). Despite the different sizes, all three swarms converge to the user target, as seen by the near identical
Fourier reconstructions of the swarms’ time-averaged trajectories at 1800 s.

The multimodal target shown in Figure 6 contains two regions with high expected information
content (blue) centered on clusters of buildings in the STOMP environment and two areas with
low expected information content (green) centered on featureless areas in the environment. The
operator monitors the swarm’s “progress” with respect to the user’s target specification through both
the normalized ergodic metric plot (which indicates convergence when the steady-state normalized
ergodic metric value approaches 0 or plateaus after decreasing for some time) and the plot showing
the Fourier reconstruction of the time-average of the agents’ trajectories (which provides visual
feedback on how closely the Fourier reconstruction of the swarm’s time-averaged trajectories
matches the operator’s target specification). The user knows the swarm has converged to their
target specification (and completed the current task) when the Fourier reconstruction plot of the
time-average of the agent trajectories in the swarm matches the target specification the user has
given through their interface, or when the value of the normalized ergodic metric plot for their
system plateaus and remains relatively constant (after decreasing for some time).

Figure 7 shows a plot of the normalized ergodic metric values over time for three different swarm
sizes (10, 25, and 50 agents) running the same multimodal target distribution in the STOMP
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Figure 7. Normalized ergodic metric values converge across scale. Swarms containing 10, 25, and 50 agents
converged to the operator’s desired multimodal target distribution (given in Figure 6), as seen through the
normalized ergodic metric values over time for all three swarm sizes asymptotically converging to 0. Despite the
small difference in the time at which the operator’s multimodal target distribution was sent to each differently
sized swarm, all three swarms converged to the operator’s target after approximately 1200 s (the experiments for
each swarm size lasted for roughly 1800 s in total).

environment. As seen in Figure 7, the normalized ergodic metric values of all three swarm sizes
converge to near zero at roughly the same time. The Fourier reconstructions of the time-average
of the agents’ trajectories (shown in the “Reconstructions of Time-Averaged Trajectories” plots
in Figure 6) of all three swarms also closely match the operator’s original multimodal target
specification at the end of each run. Large portions of the agent trajectories for each run are spent
in areas of the map with high expected information content. The agent trajectories avoid areas
with low expected information content. This indicates that an operator can expect the same system
behavior from swarms of different sizes.

5.2. Dynamically Responding to User Target Re-Specification
In real-world operations, operators need to be able to quickly retask their swarm in response to
changing environments. We present an example scenario in which a swarm is given an area with
high expected information content in the center of the map that then inverts and becomes an area
with a low expected information content (an area to avoid). This scenario is relevant to OFFSET
in that a rover may discover a disabling device in an area that was previously thought to be “safe.”
The system would have to quickly respond to this new knowledge. It is difficult to achieve this type
of behavior with geometric (Voronoi) methods such as (Cortes et al., 2004), leader-follower methods
for dispersion (Hsiang et al., 2004), or methods in which a user controls (or selectively takes control
of) a single agent (Swamy et al., 2020). Figure 8 demonstrates this behavior with our system for a
team of 50 agents, showing the transition between the team converging on an attraction region and
then scattering when the attraction region inverts into a repulsion region. This example is a larger
scale version (in terms of number of agents and operating environment) of the example introduced
in Section 4.

5.3. Nontrivial Multimodal Distributions (Bullseye)
An advantage of our system is the flexibility with which it provides operators—allowing operators to
task swarms to explore areas of any arbitrary shape. Figure 9 shows a swarm of 50 agents converging
on a target that resembles a “bullseye” with two regions to converge to: a circle surrounded by an
outer ring. This target distribution is analogous to a tactical situation in which a swarm must
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Figure 8. Dynamically responding to user target respecification. This figure shows a user specifying their
swarm of 50 agents to converge upon a specific area in the center of the environment—the user then respecifies
the center as an area to avoid, which causes their swarm to scatter. (a) The initial user target specification, which
is a convergence region (“attraction” regions are drawn in blue in the interface). (b) Swarm agent trajectories
responding to this target—the agents move from their initial positions on the left side of the environment to the
center (the different colored lines represent the trajectories of different agents). (c) The Fourier reconstruction
of the time average of these agent trajectories at time t = 0 and 1800 s. (d) The user respecifies their target to
be an avoidance region (“repulsion” regions are drawn in green) which is located at the area that they previously
specified to be a convergence region. (e) The agent trajectories moving away from the center of the environment
in response to this new target. (f) The Fourier reconstruction of the time-averaged agent trajectories for this
new repulsion target. A video of this sequence can be viewed online: https://sites.google.com/view/scale-
invariant-human-swarm.
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Figure 9. Nontrivial multimodal demonstrations. Our system enables swarms to converge to “nontrivial”
multimodal target distributions. (a) The user’s target distribution, which resembles a bullseye. (b) The agent
trajectories as the swarm converges to this target (the different colored plot lines represent the trajectories of
different agents). (c) The Fourier reconstruction of the time-averaged trajectories of the swarm at t = 0 and
1800 s (the time at which the system has converged). As seen in (c), our system automatically allocates a small
number of agents to converge on the smaller centroid of the bullseye, and a larger number of agents to converge
on the outer ring that surrounds the centroid. (b) also shows the agents in the smaller centroid and outer ring
exchange positions with one other as time tends towards infinity, which indicates that our system is persistent
and will constantly work towards converging to the target.

converge on a target while surrounding it, perhaps to prevent the target from escaping (Day et al.,
2018). As shown in Figure 9, our system enables the swarm to successfully converge to this target.
Also of note is that the agents will exchange positions with other agents between the center and outer
ring of the bullseye as the system converges, which indicates that the swarm automatically adjusts
to real-time changes in its time-averaged behavior. Thus the operator does not need to manually
reallocate members of the swarm, a task that could be mentally taxing as the total number of agents
increases. Instead, the operator can focus on high level strategy and interpreting the information
their swarm collects from the environment.

5.4. Graceful Degradation in the Amount of Information Collected Across Swarms of
Different Sizes

We also demonstrate the graceful degradation of our system—our system continuing to operate
under unexpected agent loss and enabling the operator to use the same strategy or mental model
with swarms of different sizes—with respect to the amount of information the swarm collects. For
“information” we use simulated April Tags that represent different entities relevant to the OFFSET
program (IED, High Value Target, etc.). We randomly distribute these April Tags throughout the
STOMP simulation environment. As shown in Figure 10, the operator draws a target distribution
that uniformly covers an area of the map in which they expect their swarm to obtain information.
As the figure shows, the largest swarm detects the highest number of April Tags. However, there
was a graceful degradation in the amount of information collected for the smaller swarms, indicating
that our system is suitable for uncovering information at any scale, and that an operator can use
our system with different numbers of agents knowing that the amount of information collected
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Figure 10. Graceful degradation in the amount of information collected across swarms of different sizes.
The user sends the same target distribution (a) to swarms of 10, 25, and 50 agents. The user expects there to
be information (in the form of April Tags in this example) in the bottom left corner of the environment. (b) The
ground truth distribution of April Tags in the environment. As the swarms of different sizes converge to the user’s
target distributions, they detect the April Tags in the environment. (c) The number of April Tag detections for
each swarm after 900s. The swarm of 50 agents detects the most April Tags, followed by the swarms with 25
agents and 10 agents. The April Tag detection curves for all three different swarm sizes have the same shape and
trend, which indicates there is a graceful change in information detection across swarm size. Thus, an operator
can expect larger swarms to detect more information, but will not have to alter their strategy or mental model
with smaller swarms.

will gracefully increase or decrease if new agents are added to the swarm or if agents are disabled
during operation.

5.5. Scale-Invariant Continuity in the Event of Agent Failure
The scale-invariant continuity of our system also enables operators to retain the same strategy for
executing a task even if agents in their swarm unexpectedly fail. Figure 11 shows the results of an
operator running a multimodal target distribution with 50 agents, and then losing 25 of them to
attrition (due to a simulated EMP) as they converge towards the target. The figure shows a spike
in the normalized ergodic metric, which indicates that the swarm, now containing less agents, is
further from converging to the target distribution than the original team was at the instant before
25 of the agents were disabled. Despite this, the system is able to continue converging towards
the original target without user intervention, which indicates our system can “recover” from the
sudden loss of agents without methods such as network topology reconfiguration (Chen et al., 2020).
Thus, an operator does not have to abandon their current specification (or mental model of how to
complete a task) if they lose agents. The remaining agents will converge to the existing target given
enough time.

6. Field Demonstration
We demonstrated the above operator interface at the FX-3 OFFSET field test in December 2019.
The purpose of this demonstration was to enable operators to control the robots from the tablet
interface (though we mention here that some of the testing included commanding the robots from
the command line by directly specifying distributions). We focused on the case of identifying a
particular target area and then responding to a dangerous event that might disable other robots.
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Figure 11. Recovery from agent failure. In column (a) of the top half of this figure, the operator starts by
specifying a multimodal distribution with two areas containing high expected information content in the top and
bottom left corners of the environment. Their swarm of 25 agents converges to this target distribution, shown
in column (b). In column (c), an EMP (electromagnetic pulse) device disables all of the agents in the top left
corner of the environment. The swarm automatically adapts to the drop in the number of accessible agents by
reallocating agents from the bottom left corner of the environment to the top right corner. The system then
successfully converges to the original target, as seen in column (d). The bottom row of the figure shows the
normalized ergodic metric plot for the swarm over the course of this experiment. The normalized ergodic metric
starts at 1.0 at the timestamp shown in column (a). The normalized ergodic metric smoothly decreases to the
value corresponding to column (b) as the system converges to the user target distribution. After the EMP occurs,
there is a spike in the normalized ergodic metric plot [column (c)]. The system is now “far” from converging
because all of the agents in one of the target areas have been disabled. However, the system is not as far as it
was from converging at the start of the experiment in column (a) since some of the agents are still located at
one of the user target areas. After the swarm reallocates members to the top left corner, the normalized ergodic
metric converges to near zero again, shown in column (d).

In Figure 12, several real world rovers adapt to the operator’s specifications, which are represented
by the dotted blue areas on the top row of Figure 12. As the real world rovers receive new
inputs through the Tanvas tablet interface, they update their target distributions and spend more
time in areas of the environment with higher expected information density. For this real-world
demonstration, we started with four real-world rovers which then dropped down to two due to
hardware issues. Despite the hardware issues, our system was able to adapt to the user target
specifications with the drop in team size. The remaining agents updated their trajectories to
compensate for the loss of their two team members.

Next, we demonstrate a team of four real-world rovers exploring their environment and dynam-
ically adapting to environmental stimuli they encounter in real time. Through the command-line,
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Figure 12. Real-world agents dynamically respond to the user’s target distribution sent through the
Tanvas. The figures at the top show the time-lapse of the real world agents’ trajectories (shown in orange and
green). The bottom figures show the Fourier reconstruction of the time-average of these trajectories. When
the user updates their target distribution [represented in (a)–(c) with the blue dots], the robots update their
trajectories to converge to this new target.
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Figure 13. Inverting a user specification produces the same behavior in the real world as it does in
simulation. The real-world rovers converge on a target with high expected information content. This target then
transforms into a disabling device that the rovers must avoid. The top figure shows pictures of the real-world
testing environment. In each bottom figure, the left shows the robots’ trajectories (in red, orange, and blue) while
the right shows the Fourier reconstructions of the time-average of these trajectories. In (a), the real-world rovers
start by uniformly covering their environment. We then add an area with high expected information content (which
could represent a high value target) via the command line to the center of the environment. The rovers update
their target distribution with this high value target location [shown in (b)], and converge towards the center. We
then change the high value target to a DD. (c) shows the rover trajectories and the Fourier reconstruction of the
time-average of these trajectories after 40 seconds—which was the approximate time the rovers needed to move
away from the location.

we simulate one of the rovers discovering a high value target and then sending the location of this
high value target to its teammates. Each member of the team updates its own target specification.
We then transform the high value target location into a disabling device, which causes the team
members to scatter to avoid the area.

Figure 13 shows the results at each stage of the scenario described above. The rovers start out uni-
formly exploring the task space (Figure 13a) until a high value target is discovered (Figure 13b). The
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rover that discovered the high value target shares the target’s location to its teammates. Each rover
in the team updates its target distribution in a decentralized manner. Note that when the rovers con-
verge to the target location they do not move to the peak and wait—instead, they generate persistent,
exploratory trajectories over the environment (see the bottom row that contains the Fourier recon-
struction of the time-average of the rover trajectories (Figure 13). We then transform the high value
target into a disabling device, which causes the rovers to scatter (see Figure 13c). As the rovers scat-
ter, they uniformly explore areas of the environment that are away from the disabling device. These
examples show that our system works in the real-world, in real time, with an operator in the loop.

7. Discussion, Lessons Learned, and Future Work
In this work, we developed a scale-invariant interface framework for real-time human-swarm control.
Our touchscreen interface enables users to specify behavior for a swarm in a setting that is
scale-invariant—the user specification does not depend on the number of agents—persistent—the
specification remains active until the user specifies a new command—and real time—the user can
interact with and interrupt the swarm at any time. Our decentralized ergodic coverage algorithm
enables the swarm to converge to user-specified targets, including in the setting of a large percentage
of the agents unexpectedly failing. We demonstrated our system with simulated agents using
command software developed by Raytheon BBN for the DARPA OFFSET program with up to
50 agents, and also demonstrated our system working in the field, in real time, with a human
operator in the loop for several scenarios.

We note that using STOMP to interface with simulated agents requires substantial computation,
since the simulation is modeling every agent and their on-board computing. This practically makes
simulation for hundreds of agents challenging; although this computational limitation is not present
for a real physical swarm, where each agent is equipped with its own computational resource, it
means that mission planning (which inevitably involves some simulation) is dependent on significant
computational power. Future work includes distributing nodes across multiple computers and using
more, and more powerful, CPUs to enable simulation of hundreds/thousands of agents.

Field tests in the OFFSET FX-3 program revealed that the algorithms we present here were
capable of persistent coverage even in the presence of long duration network loss. This practical result
that was evident in the experiments themselves is not an obvious outcome for our algorithms; indeed,
it is not clear why ergodic coverage may be insensitive to long duration network dropouts. The
authors’ basic intuition is that coverage goals, specified by a particular distribution (either specified
by a user or determined autonomously) have slower time constants than trajectory specifications.
As a result, even though the trajectories may be executed at high speed, the rate at which the
distribution representing coverage changes is at a much lower speed, leading to an overall low
sensitivity to network failures. Future work includes analytically justifying this—including counter-
example cases where this intuition fails.

In other future work, we are interested in creating a swarm that has closed-loop capability:
automatically updating its target distribution based upon the environmental stimuli each agent
receives (as opposed to simulating this capability by manually adding areas containing high and low
expected information content to the environment). Doing so would further reduce the burden on a
user. We also want to investigate how to balance these automatic target distribution updates with
updates made by the human operator. Furthermore, we would like to perform field tests that involve
dynamic adversarial agents, such as persons wearing April Tags moving throughout the operating en-
vironment. (Such tests had originally been within the scope of the OFFSET field tests, but practical
limitations and disruption due to the COVID-19 pandemic made them experimentally impractical.)
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